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Abstract. A common prerequisite for a number of debugging and performance-
analysis techniques is the injection of auxiliary program code into the application
under investigation, a process called instrumentation. To accomplish this task,
source-code preprocessors are often used. Unfortunately, existing preprocessing
tools either focus only on a very specific aspect or use hard-coded commands for
instrumentation. In this paper, we examine which basic constructs are required to
specify a user-defined routine entry/exit instrumentation. This analysis serves as a
basis for a generic instrumentation component working on the source-code level
where the instructions to be inserted can be flexibly configured. We evaluate the
identified constructs with our prototypical implementation and show that these are
sufficient to fulfill the needs of a number of todays’ performance-analysis tools.

1 Introduction

As a prerequisite for various performance-analysis and debugging techniques, it is often
necessary to insert additional code fragments into the application that is currently under
investigation, e.g., to validate parameters given to a function call, read hardware counter
values such as the number of cache misses, or query the system clock to calculate the
time spent in a certain code region. This process of adding extra code to be executed
at runtime is called instrumentation and can be accomplished in a number of different
ways.

A well-accepted technique of instrumenting an application is the so-called source-
code instrumentation method, which is the subject matter of this paper. With this ap-
proach, additional code fragments such as function calls are directly inserted into the
application’s source code at appropriate places before compilation. Although this can
be done manually by the developer—being quite time-consuming and error-prone—it
is generally more convenient to perform this step automatically using a source-code
preprocessor. Since instrumentation is entirely performed on the source-code level, its
granularity can be flexibly controlled and is even not restricted to functions, but can
also be done, e.g., for program phases, basic blocks, loops or individual statements. In
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addition, correlating analysis results gained from such an instrumentation with loca-
tions in the source code is trivial. And finally, this approach is platform-independent as
a source-code preprocessor can be implemented in a very portable way.

Unfortunately, to the authors’ knowledge, none of the source-code instrumentation
tools available today is flexible enough to satisfy the need of the tool developer commu-
nity for a generic instrumentation component, since the commands to be inserted into
the application’s source are typically hard-coded for a particular purpose or toolset.
To overcome this situation, this paper investigates the general requirements for such
a configurable source-code instrumentor. As a starting point, our initial focus is pri-
marily on instrumenting routine entries and exits, a feature which is commonly needed
by performance-analysis and debugging tools. Not to start entirely from scratch, our
prototypical implementation used to evaluate the identified constructs is based on the
instrumentor of the TAU performance-analysis framework [1].

The remainder of this paper is structured as follows: after a review of related work
in Section 2, we summarize the architecture of the aforementioned TAU instrumentor in
Section 3. Section 4 then discusses the requirements of a configurable instrumentation
component and the basic constructs that we identified as “building blocks” for user-
defined instrumentation. Next, Section 5 evaluates the presented configuration concepts
by mapping the manual instrumentation API of various performance-analysis toolsets
onto the generic constructs, before we conclude the paper and outline directions of
future work in Section 6.

2 Related Work

A simple way of inserting instrumentation code into an application is specified by the
Message Passing Interface (MPI) standard [2]. Here, all library calls also exist with a
second entry point name using the PMPI prefix, allowing a user or tool developer to
provide an interposed wrapper library intercepting MPI calls issued by the user code.
However, this approach can only capture the behavior of the instrumented MPI routines
and has to be used in conjunction with one or more of the techniques described below
to also gain insights into the computational core of the application.

Somewhat similar interfaces for instrumenting communication-related events are
provided by the PERUSE MPI extension [3] as well as the GASP performance-analysis
tool interface [4] targeting partitioned global address space (PGAS) languages. In both
cases, the user of these interfaces is given the possibility to register callback functions
for events of interest. Although providing very detailed information about the internals
of the communication, pure user functions are still ignored.

A complementary approach applicable to user code is to leverage the capability pro-
vided by many of todays’ compilers to automatically instrument the entry and exit
points of functions. Although this sounds like a convenient way to instrument user code,
this approach has several drawbacks. First, this feature sometimes has to rely on undoc-
umented or unsupported compiler functionality (e.g., for the IBM xl compilers). Second,
it is absolutely compiler-dependent whether instrumentation is performed before or af-
ter code optimization, i.e., the granularity of the results may differ significantly when
switching between compilers. And third, the user has only very limited control over
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what is instrumented. Enabling or disabling the instrumentation on a per-file level is
of course always possible, but control on the function level is only supported by few
compilers, typically using relatively inconvenient command-line interfaces [5].

In contrast to compiler-based instrumentation, the binary instrumentation technique
[6,7] inserts measurement calls after the program’s binary code is generated. In this
case, the additional instrumentation code is injected either at runtime by patching the
application’s binary code in memory, or through rewriting the application executable
prior to execution. However, this low-level technique is very architecture- and compiler-
dependent, which restricts its applicability to the supported set of platforms/compilers.
In addition, it suffers from a non-negligible runtime overhead, since calls to the inserted
instrumentation code typically cannot be performed directly but have to go through
some sort of indirection (e.g., using so-called trampolines). Nonetheless, this technique
is the only choice if the application’s source code is not available.

As an example of a source-code preprocessing tool, OPARI [8] specifically focuses
on instrumenting OpenMP directives, requiring it to be used in conjunction with some
other technique to instrument user functions. This could be done, e.g., using the afore-
mentioned TAU source-code instrumentor, which forms the basis of our prototypical
implementation and will therefore be covered in more detail in the next section.

An alternative framework that can be used to write source-to-source translation tools
is ROSE [9]. Although being very powerful through the ability of regenerating source
code after modifying the abstract syntax tree im memory, ROSE is currently only dis-
tributed for x86 and x86-64 architectures, limiting the portability of tools written on top
of it.

3 TAU Source-Code Instrumentor Overview

Altering the source code of an application by a preprocessor before it is passed to the
compiler typically involves parsing the source code to infer the locations of potential
instrumentation points. To relieve developers of source-to-source translators from the
burden of writing their own parsers and to support the development of such tools, the
TAU project has developed the Program Database Toolkit (PDT) [10]. As depicted in
Figure 1, PDT consists of several components that are used in different steps of the
instrumentation workflow described below.

The first step is to parse the source-code files using commercial-grade compiler front-
ends which build an internal representation in form of an abstract syntax tree and write
this information to an intermediate language (IL) file. Next, IL analyzers walk the ab-
stract syntax tree stored in the IL file and extract a reasonable subset of the syntactic
entities, storing the result in a program database (PDB) ASCII text file. PDB files pro-
vide information such as the list of all input files read, a list of all routines including
the source-code locations of their declaration and definition, and a list of all statements
for each routine, again providing their source-code locations. To simplify tool devel-
opment, PDT also provides a C++ class library (DUCTAPE) as a convenient interface to
access the PDB data.

The TAU source-code instrumentor, built on top of the DUCTAPE library, first reads
the generated PDB file, analyzes the contained syntactic information and generates a list
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Fig. 1. Overview of the TAU instrumentor workflow. The source code is first processed by a parser
front-end for the corresponding programming language, generating an intermediate language (IL)
file. This file is then converted by an IL analyzer into an program database (PDB) file. The instru-
mentor itself then reads the PDB file, the application or library source code as well as a filter file
and generates the modified, instrumented source.

of instrumentation requests. At this point, filter rules specified in a configuration file
given to the instrumentor are applied to selectively enable or disable instrumentation for
certain code regions (e.g., functions or loops). Finally, the original application or library
source code is read line by line and augmented with calls to the TAU measurement
library according to the instrumentation requests that remain after filtering.

The TAU source-code instrumentor currently works with C, C++, and Fortran. It is
robust, can process very large source files, and is able to instrument routines, methods,
and loops. However, the instrumentor only generates TAU measurement code. A general
approach would allow any measurement library to be used and would be applicable to
other languages such as Java or the emerging HPCS languages X10, Chapel and Fortress,
provided that suitable parser front-ends are available.

4 Requirements for a Configurable Instrumentation Component

To generalize the instrumentor to be used with performance-analysis or debugging tools
other than TAU, the hard-coded insertion of calls to the TAU measurement API has to
be replaced by the injection of arbitrary code fragments that can be specified by the
user (i.e., typically the developer of the corresponding tool). In this context, the most
important questions to be considered are:

– What are the basic constructs needed to specify a user-defined instrumentation?
– Which additional information available at instrumentation time might be useful?
– How can this information be referenced in the users’ code fragments?

The following subsections examine these questions in more detail and present our cur-
rent solution. They are structured based on the basic constructs that we have identified
as the “building blocks” for user-defined instrumentation. All examples are given in the
syntax used by our current prototype implementation based on the TAU instrumentor.
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4.1 Entering a Routine

One important point where tool developers typically want to insert extra instrumentation
code is at the begin of functions, to be notified when the routine is entered. For this type
of instrumentation request, the entry construct is provided:

entry file="*" routine="#" code="printf(\"Entering\\n\");"

To make this construct generic and flexible, both file and routine names can be specified
using wildcards. Note that we are using the hash character (#) as a wildcard for routine
names, since the asterisk (*) can be part of the function signature in C/C++ and we
wanted to avoid introducing an escape character for routine names. In addition, since
such “catch all” rules as shown in the example are commonly used, we decided to make
them the default behavior, allowing the user to omit the file and routine parts of the
specification line. For the specified code fragment, we adopted the standard C syntax
to quote special characters within strings using the backslash character, also supporting
line breaks (\n) and tabulators (\t). This allows for inserting multiple code lines with
a single specification rule. Alternatively, several entry clauses for the same file/line
combination can be given since their code fragments will be concatenated in the order
of appearance in the specification file, separated by a line break. Of course, all filter rules
defined in a filter file given to the instrumentor still apply, allowing generic specification
rules which are then not used for certain files or routines.

To leverage “instrumentor knowledge” in the code snippets to be inserted, a number
of textual substitutions are performed just before they are written to the output file. For
example, the keyword @FILE@ will be replaced by the name of the input file and @LINE@
by the line number in the original source file at which the code is inserted. Although this
information is in principle also available through the C preprocessor macros FILE
and LINE , using these macros will usually insert the wrong values since the file
that is actually being compiled will be the instrumented source file with a temporary
name as well as displaced code lines due to the instrumentation. Theoretically, this
can be corrected using #line directives, however, adding them correctly is non-trivial.
Moreover, the FILE and LINE macros cannot be used inside of strings.

Besides file and line number information, the instrumentor can also provide the name
of the routine (i.e., the full signature) as well as the line and column of both begin and
end of the function body. Table 1 provides a full list of all keyword substitutions that
we deemed useful and that are currently supported.

4.2 Leaving a Routine

Similar to the point of entering a routine, the location where the routine is left is another
important point to insert instrumentation code. This applies to the end of the function
body as well as to every intermittent return statement. For this purpose, the exit
construct is provided:

exit file="*" routine="#" code="printf(\"Leaving\\n\");"

Again, the same wildcard, quoting and keyword substitution rules as described in the
context of the entry construct (Sec. 4.1) apply. Note that it is possible to distinguish
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Table 1. Keyword substitutions performed while inserting user-defined code fragments

Keyword Substitution

All constructs:
@FILE@ File name
@LINE@ Source line of insertion
@COL@ Column of insertion

decl, init, entry, exit, abort only:
@ROUTINE@ Routine name
@BEGIN LINE@ Begin line of routine body
@BEGIN COL@ Begin column of routine body
@END LINE@ End line of routine body
@END COL@ End column of routine body

decl, entry, exit, abort only (C++):
@RTTI@ Dynamic routine name (class/member function templates)

init only (C/C++):
@ARGC@ Name of first paramater to main()
@ARGV@ Name of second parameter to main()

different return statements of a routine using the @LINE@ keyword substitution, which
might be handy for debugging purposes.

For C and C++, the expression after the return keyword defining the return value
can be arbitrarily complex. To insert the exit code fragment as late as possible (e.g.,
for accurate time measurements), the source-code needs to be slightly rewritten. First,
the result of the return expression is assigned to a local variable. Next, the given exit
code snippet is inserted and finally, the return statement returning the value of the
aforementioned local variable is generated. Note that replacing a single-line expression
with multiple lines of code might require the creation of a new {...} block in C/C++
or modifying the surrounding if statement in Fortran.

4.3 Variable Declarations

The code fragments specified by a user to instrument routine entries and exits might
require the declaration of local variables. For C and C++, this does not seem to be an
issue since new variables can either be declared at any position in the code (C99/C++)
or at the beginning of a new block (C89), which could be opened as part of an entry
construct’s code fragment. However, this approach would require to close the block
at the end of the function body, which cannot be accomplished using a simple exit
construct as this is also applied to intermittent return statements. In addition, Fortran
requires the declarations of local variables to precede the first executable statement. It
therefore seems reasonable to provide a separate decl construct to specify local variable
declarations:

decl file="*" routine="#" code="static int count = 0;"

Depending on the purpose of the instrumentation, initializing such a variable with the
result of a function call should be avoided, since this would be executed before any code
fragment specified via an entry construct.
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4.4 Inclusion of Header Files

Inserting calls to a performance-measurement or debugging API into the source code
of an application typically also requires including one or more header files defining the
corresponding function prototypes. Fortunately, the TAU instrumentor already provides
a mechanism which can be exploited to accomplish this task: using a special file rule,
some arbitrary code fragment can be inserted at a particular line in the specified source
file. For example, the specification line

file="*" line=1 code="#include <stdio.h>"

can be used to include the header file “stdio.h” at the top of every processed source file.

4.5 Aborting the Application

Other interesting locations where the insertion of, e.g., clean-up code might be useful
are calls to the exit() or abort() functions in C/C++ or the occurrences of the stop
keyword in Fortran. For this purpose, the abort construct is provided:

abort file="*" routine="#" code="printf(\"Abort\\n\");"

As already described in Sec. 4.2 in the context of the exit construct, the keyword
substitutions can be used to distinguish different abort locations from each other.

4.6 Initialization

Finally, a tool library might need to be initialized before any other API call is executed.
For C and C++ this could be accomplished by providing an entry rule restricted to
the function main(), however, for Fortran the name of a program can be arbitrary.
Therefore, a separate init construct is necessary:

init file="*" code="init_api();"

This construct does not need a routine part, as it implicitly applies to main() in C/C++
or the main program routine in Fortran, respectively.

As a tool library might want to parse the command line arguments given to the in-
strumented application, e.g., to configure a measurement run, two special keyword sub-
stitutions have been implemented for the init construct, although for C and C++ only.
In this case, the names of the first and second parameter of main() are substituted for
the @ARGC@ and @ARGV@ keywords, respectively. If main() has been defined without
arguments, the names of two artificially created local variables are inserted, providing
the values “1” and “unknown”.

4.7 Restricting Rules to a Language

Although it is possible to create separate instrumentation specification files for each
supported programming language, we believe that it is more convenient to keep every-
thing together in a single file. All of the aforementioned constructs therefore support an
optional lang="..." part taking a comma-separated list of language names, restricting
the corresponding specification clause to only those languages.
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4.8 Language Peculiarities: Line-Length Limit, Templates and Exceptions

Due to the keyword substitutions performed at instrumentation time, the actual lengths
of the code fragments to be inserted are not known in advance. This poses a problem in
the context of instrumenting Fortran codes, since the maximum length of an individual
source line is restricted by the language standard. It is therefore necessary to preprocess
the code snippets before inserting them into the output file and eventually introduce
additional line breaks and continuation marks, taking into account whether fixed-format
or free-format style is used.

Another challenging language feature are C++ templates. At instrumentation time,
the @ROUTINE@ keyword substitution can only provide the generic template prototype,
but not the concrete instantiation. If it is a class or member-function template, however,
this information can be queried using the run-time type information system (RTTI). As
this constraint can be verified at instrumentation time, an additional keyword substitu-
tion for @RTTI@ can be performed, which either expands to typeid(*this).name() in
case of a class or member-function template or the generic template prototype (i.e., the
same value as for @ROUTINE@) otherwise. However, the value of the typeid expression
is compiler-dependent and might be a linker decorated name, which has to be taken into
account when using this feature.

Finally, a source-code instrumentor can handle C++ exceptions only to a certain
extend, since this is a highly dynamic language feature. Although throw statements
could be instrumented similar to return statements, they do not necessarily leave only
the current routine, but all routines up to the next matching catch block. However, tools
can leverage destructors of local objects [11] to get a correct sequence of exit events.

5 Evaluation

To evaluate whether the proposed specification clauses presented in the previous section
are already sufficient to satisfy the needs of current tools to perform a simple per-routine
entry/exit instrumentation, we have implemented them in our prototype based on the
TAU instrumentor, except for the language-specific features described in Section 4.8.
Afterwards, we have developed a set of specification files for a number of performance-
analysis toolsets using their manual instrumentation API and verified their correct mode
of operation by applying the instrumentor to various test codes.

Our first target was the Scalasca toolset [12]. As the documented user instrumen-
tation API is basically a set of convenience C preprocessor macros heavily using the
predefined names FILE and LINE , we had to use the lower-level routines these
macros are build upon. For all three supported languages, a header file defining the API
had to be included. In addition, instrumenting C++ code only required a single entry
construct due to the availability of a measurement class employing the aforementioned
“local object” technique. By contrast, instrumenting C code required the entry and
exit constructs, as shown in the following self-contained example:

file="*" line=1 code="#include <epik_user.h>"
entry code="EPIK_User_start(\"@ROUTINE@\", \"@FILE@\", @BEGIN_LINE@);"
exit code="EPIK_User_end(\"@ROUTINE@\", \"@FILE@\", @END_LINE@);"
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For Fortran, an additional local variable needed to be declared, i.e., the decl construct
had to be used as well. In all three cases, the @ROUTINE@, @FILE@ and @LINE@ keyword
substitutions were sufficient to fully exploit the current functionality of the provided
instrumentation API.

As a second example, we investigated the VampirTrace performance measurement
system [13]. Providing an instrumentation API very similar to Scalasca, it was straight-
forward to come up with a specification file using the same constructs. For both toolsets,
the instrumentor could in fact provide more details about source-code locations than
necessary, indicating potential for extending the tool APIs to collect even more expres-
sive information.

A far more challenging problem was to clone the TAU instrumentation originally
performed by the instrumentor using the generic specifications. It turned out that all of
the constructs described in Sec. 4 are needed to fulfill this task. However, two minor
issues still remained were the original TAU instrumentor behaved differently.

First, TAU supports so-called profile groups as a mechanism to further classify sets
of functions. The default behavior of the instrumentor for C and C++ codes is to add
the program’s main function to the group TAU DEFAULT and all the other functions to
the group TAU USER. This behavior could be partially emulated by specifying a separate
entry rule restricted to the main() function, however, there is currently no way of
restricting a clause to every function except main(). This issue could potentially be
solved by supporting full regular expressions in the routine part of the specification
rules.

The second issue will show up once we have fully implemented template support
in our prototype as proposed in Sec. 4.8 because the @RTTI@ keyword substitution has
slightly different semantics than what the TAU measurement system currently assumes.
Here, a minor change to the measurement system API would be required, however, this
could be implemented as an extension not to break backward compatibility.

6 Conclusion

In this paper, we have investigated which basic constructs are required to specify a user-
defined function entry/exit instrumentation in a generic way. We identified six different
constructs as the “building blocks” that can be applied to individual files, routines or
programming languages, as well as a set of keyword substitutions to take advantage of
instrumentor knowledge at instrumentation time. We then evaluated the applicability
of the proposed constructs by defining appropriate specification files for three different
performance-analysis toolsets and showed that this small set of constructs can already
fulfill almost all the needs of a number of todays’ tools with respect to routine enter/exit
instrumentation. Our prototypical implementation supporting all described constructs
except for the language-specific features described in Section 4.8 is available as part of
the PDT distribution.

As part of our future work, we plan to first address the open language-specific issues
mentioned in Section 4.8. In addition, we will investigate how the configurability can be
extended beyond the current enter/exit instrumentation, e.g., to support instrumenting
throw statements as well as try and catch blocks, loops, or specially marked program
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phases such as OpenMP regions. As a result, the configurable source-code instrumentor
component described in this paper should ultimately be able to replace the existing
special-purpose instrumentators currently used by various toolsets.
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