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Abstract

When scaling message-passing applications to thousands of processors, their per-
formance is often affected by wait states that occur when processes fail to reach
synchronization points simultaneously. As a first step in reducing the performance
impact, we have shown in our earlier work that wait states can be diagnosed by
searching event traces for characteristic patterns. However, our initial sequential
search method did not scale beyond several hundred processes. Here, we present a
scalable approach, based on a parallel replay of the target application’s communica-
tion behavior, that can efficiently identify wait states at the previously inaccessible
scale of 65,536 processes and that has potential for even larger configurations. We
explain how our new approach has been integrated into a comprehensive parallel
tool architecture, which we use to demonstrate that wait states may consume a
major fraction of the execution time at larger scales.
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1 Introduction

Faced with increasing power dissipation and with little instruction-level par-
allelism left to exploit, computer architects are realizing performance gains by
using larger numbers of moderately fast processor cores rather than by further
increasing the speed of uniprocessors. As a consequence, numerical simulations
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are being required to harness much higher degrees of parallelism in order to
satisfy their growing demand for computing power. However, writing code
that runs efficiently on large numbers of processors and cores is extraordinar-
ily challenging and requires adequate tool support for performance analysis.
Increased concurrency levels impose higher scalability demands not only on
applications but also on software tools. When applied to larger numbers of
processors, familiar tools often cease to work in a satisfactory manner (e.g.,
due to escalating memory requirements, limited I/O bandwidth, or failing
displays).

In message-passing applications, which still constitute the major portion of
large-scale applications running on systems such as IBM Blue Gene or Cray
XT, processes often require access to data provided by remote processes, mak-
ing the progress of a receiving process dependent upon the progress of a send-
ing process. If a rendezvous protocol is used, this relationship also applies in
the opposite direction. Collective synchronization is similar in that its com-
pletion requires a certain degree of progress for each participating process.
As a consequence, a significant fraction of the time spent in communication
and synchronization routines can often be attributed to wait states that occur
when processes fail to reach implicit or explicit synchronization points in a
timely manner, for example, as a result of an unevenly distributed workload.
Especially when trying to scale communication-intensive applications to large
processor counts, such wait states can present severe challenges to achieving
good performance.

As a first step in reducing the impact of wait states, application developers
need a diagnostic method that allows their localization, classification, and
quantification especially at larger scales. Because wait states cause tempo-
ral displacements between program events occurring on different processes,
their identification can be accomplished by logging those events along with a
timestamp in event traces. Actions typically stored in such traces include en-
tering/leaving a function or sending/receiving a message. While, in principle,
wait states are visible in time-line diagrams generated from event traces by
graphical display tools such as Vampir [21], we have shown in our earlier work
on the KOJAK trace analyzer [28] that wait states can be identified more
effectively by automatically searching the trace data for execution patterns
indicating their occurrence. In addition to usually being faster than a manual
analysis performed using a trace browser, this approach is also guaranteed to
cover the entire event trace and not to miss any instances.

However, as the number of processors used by individual applications rises
to thousands, our original approach of sequentially analyzing a single global
trace, as used by KOJAK, becomes increasingly constrained due to the large
number of events. The biggest impediment to achieving scalability is the lack
of processing power and memory available to a sequential program. Merging
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large numbers of process-local trace files into a single global trace file creates
another bottleneck.

In this article, we describe how the pattern search can be accomplished in a
more scalable way by exploiting both distributed memory and parallel pro-
cessing capabilities available on the target system. Instead of sequentially an-
alyzing a single global trace file, we analyze separate process-local trace files
in parallel by replaying the original communication on as many processors as
have been used to execute the target application itself. Since trace process-
ing capabilities (i.e., processors and memory) grow proportionally with the
number of application processes, we can achieve good scalability at previously
intractable scales.

The general concept of the parallel analysis and our prototypical implemen-
tation, which we call Scalasca, has been outlined in [9]. Here, we focus on
Scalasca’s parallel trace-analysis architecture, describe recent enhancements
resulting in significantly reduced overall analysis time and substantially in-
creased scalability, and provide evidence that the wait states we are looking
for are manifested as critical performance problems at larger scales.

We start our discussion in Section 2 with a review of related work including our
previous sequential design, followed by a description of our trace analyzer’s
new parallel architecture in Section 3, where we provide some background
on trace generation, discuss the current parallel pattern-analysis scheme, and
compare it to our initial prototype. In Section 4, we give experimental results
that show scalability for up to 65,536 processes and substantial improvements
in comparison to the initial parallel version. Afterwards, we demonstrate the
relevance of our performance-analysis method using a real-world fluid dynam-
ics application in Section 5. Finally, in Section 6 we discuss current limitations,
outline potential remedies, and describe our plans for more advanced analyses.

2 Related and Prior Work

Event tracing is a well-accepted technique for postmortem performance anal-
ysis of parallel applications. Time-stamped events, such as entering a function
or sending a message, are recorded in a memory buffer at runtime, later written
to one or more files, and analyzed afterwards with the help of software tools.
For example, graphical trace browsers, such as Jumpshot [34], Paraver [16],
or Vampir [21], allow the fine-grained investigation of execution behavior us-
ing a zoomable time-line display. Whereas profiling summarizes performance
metrics such as execution time or hardware event counts, tracing preserves
both the spatial and temporal relationships between individual runtime events.
Hence, tracing is the performance method of choice when the interaction be-
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tween different processes or the temporal evolution of a performance metric
needs to be examined.

In spite of its strength, the use of tracing is often limited by the large amount of
data being generated and the size of the resulting files [27]. Users are typically
confronted by problems such as the following:

• Excessive storage requirements, especially during trace generation and in-
memory analysis

• Intrusion when flushing event data buffers to disk at runtime
• Costly file I/O when merging many potentially large process-local trace files

into a global file (if the analysis tool requires a single global trace file)
• Long processing times during analysis
• Failure, extended response times, and insufficient size of graphical displays

In most cases, tracing can only be applied to relatively short execution in-
tervals. Even a few minutes of program runtime can easily result in several
megabytes of trace data per process. In general, the size of an event trace is in-
fluenced by two dimensions: the number of processes (width) and the number
of events per process (length). Although we are also investigating solutions to
handle longer traces, the work presented here primarily addresses wide traces.

So far, a number of approaches have been developed to either avoid or im-
prove the handling of large traces. Freitag et al. [7] reduce the trace length of
OpenMP applications by avoiding the recording of repetitive behavior in the
first place. The underlying scheme is based on a dynamic periodicity detection
algorithm, which is applied locally and therefore assumes structural similari-
ties between concurrent control flows. The scalable visualization of inevitably
long traces can be facilitated by dividing the trace file into frames, as in the
SLOG format by Wu et al. [32], to represent intervals that can be separately
loaded and analyzed. Moreover, unlike common linear storage schemes for
event data, a tree-based main memory data structure called compressed Com-
plete Call Graphs (cCCGs) developed by Knüpfer et al. [14] allows potentially
lossy compression of long traces while observing previously specified deviation
bounds. Furthermore, Noeth et al. [22] apply section descriptors to perform
both intra-node and inter-node compression, thus addressing both long and
also wide traces. Although their scheme is able to reduce traces from ap-
plications employing more regular communication patterns to near constant
size independent of the number of nodes, it is not suitable for our analysis
because it ignores the interval length between individual events. Whether a
more recent extension that aims at retaining an approximation of the relative
event distance by introducing delta-time histograms [23] would be more suit-
able remains to be evaluated. Finally, Labarta et al. [15] describe a variety of
scalability-enhancing techniques applied in the Paraver project, covering all
steps of the trace analysis from instrumentation through post-processing to
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Fig. 1. KOJAK’s sequential analysis workflow.

visualization. One key method is a system of filters that performs a stepwise
transformation of larger traces into smaller ones both by eliminating dispens-
able features as well as by summarizing unnecessary details using a mechanism
they call soft counters.

In the KOJAK project [28], we developed the idea of searching event traces
of parallel applications for characteristic execution patterns indicating wait
states, such as a receiver being blocked while waiting for a message to ar-
rive. The KOJAK toolset offers a rich collection of patterns related to various
programming models including MPI 1 + 2, OpenMP, and SHMEM. Figure 1
shows the sequential trace-analysis workflow enacted by KOJAK. Traces are
written from the collection buffer of each process into process-local files, which
are then merged according to event timestamp order to produce a chronologi-
cally ordered global trace that the sequential trace analyzer can handle. This
is a notable bottleneck in the combined measurement and analysis process,
which is extremely sensitive to file-system performance. During the sequential
pattern search, the global trace file is traversed from beginning to end. To al-
low an efficient search despite the available memory usually being too small to
hold the entire trace data, the search component exploits the locality of event
accesses, following a sliding window approach [26]. While sequential access to
a global event trace simplifies the detection of patterns involving concurrent
events, the relative size of the search window shrinks in comparison to the
overall trace size as the number of target-application processes is increased,
making it more likely that locality of event accesses cannot be preserved. Our
experiences show that the sequential model becomes impractical for analyzing
traces from more than a few hundred processes [9]. In comparison, the parallel
model proposed in this article offers two major advantages. First, since the
process-local traces are accessed in parallel, there is no need for merged trace
files. Second, the memory and processing power available to the parallel anal-
ysis scales linearly with the number of application processes, allowing analyses
at much larger scales.

The parallel pattern search was inspired by the distributed trace analysis and
visualization tool Vampir Server by Brunst et al. [6], which provides parallel
trace access to non-merged traces, albeit targeting a ‘serial’ human client in
front of a graphical time-line browser as opposed to fully automatic and par-
allel trace analysis. In earlier work, Miller et al. [18] already used a distributed
algorithm operating on multiple local trace data sets in the parallel perfor-
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mance system IPS-2 to determine the critical path responsible for the length
of application execution.

As an alternative to detecting wait states by comparing timestamps of con-
current events, as advocated here, Vetter [25] extracts the occurrence of wait
states from event traces using machine-learning techniques. He traces individ-
ual message-passing operations and then classifies each instance using a deci-
sion tree, which has been previously trained for a particular hardware/software
configuration. Our approach, in contrast, draws conclusions exclusively from
runtime information and does not require any platform-specific training prior
to analysis. Alternative methods of identifying wait states in MPI applica-
tions that do not require event tracing at all include intercepting MPI-internal
events (e.g., the actual begin of message receipt) exposed by a call-back inter-
face such as MPI PERUSE [20], replacing non-blocking communication oper-
ations with their blocking counterparts and actively polling in between [3], or
piggybacking timestamps [19]. While relieving the user from the burden of col-
lecting space-intensive event traces, they may introduce other tradeoffs, such
as requiring a non-standard MPI implementation, incurring additional mea-
surement intrusion including expensive runtime bookkeeping when trying to
detect more complex patterns, or demanding a global clock. Also, they do not
share the potential of traces for more advanced analyses such as performance
prediction via trace-based simulation [11].

3 Parallel Trace-Analysis Architecture

Scalasca is a parallel trace-analysis tool specifically designed for large-scale
systems. It searches event traces of parallel applications for characteristic ex-
ecution patterns indicating various types of wait states. A distinctive feature
of Scalasca is that it achieves a high degree of scalability by analyzing the
trace data in parallel. Although Scalasca also offers call-path profiling as an
alternative performance-analysis mechanism, we concentrate our discussion
exclusively on its trace-analysis capabilities.

The current tracing infrastructure allows the measurement and analysis of
MPI 1 applications written in C/C++ and Fortran on a wide range of HPC
platforms [31]. Support for OpenMP and hybrid codes is already in progress.
Figure 2 illustrates the basic trace-analysis workflow and the role of the dif-
ferent components in transforming raw measurement data into knowledge of
application execution behavior. First, the instrumented application is linked
to the measurement library so that, when running it on the parallel machine,
every application process generates its local portion of the trace data in EPI-
LOG format [29]. After program termination, Scalasca loads the trace files
into main memory and analyzes them in parallel using as many processors as
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parallel.

used for the target application itself. In a preprocessing step, references to ob-
jects such as code regions or communicators that appear in event records are
made consistent across all processes, after unified object definitions and their
global identifiers have been computed at measurement finalization. Moreover,
on systems without a global clock, the timestamps must be retroactively syn-
chronized to allow precise measurements of temporal displacements between
concurrent events. During the actual analysis, Scalasca searches for character-
istic patterns indicating wait states, classifies detected instances by category,
and quantifies their significance. The results are collated into a single pattern-
analysis report similar in structure to an ordinary call-path profile but enriched
with higher-level communication and synchronization inefficiency metrics. In
the remainder of this section, we first provide background on the generation
of trace files, before we review our parallel trace-analysis approach in more de-
tail, emphasizing (i) the parallel event access during analysis, (ii) the parallel
analysis algorithm, and (iii) the collation of local analysis results.

3.1 Generation of Trace Files

An event trace is an abstract representation of execution behavior codified
in terms of events. Every event includes a timestamp and additional infor-
mation related to the action it describes. The event model underlying our
approach [29] specifies the following event types:

• Entering and exiting code regions. The region entered is specified as an
event attribute. The region that is left is implied by assuming that region
instances are properly nested.

• Sending and receiving messages. Message tag and communicator and the
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number of bytes are specified as event attributes.
• Exiting collective communication operations. This special exit event carries

event attributes specifying the communicator, the number of bytes sent and
received, and the root process if applicable.

MPI point-to-point operations appear as either a send or a receive event en-
closed by enter and exit events marking the beginning and end of the MPI
call, whereas MPI collective operations appear as a set of enter / collective
exit pairs (one pair for each participating process). Our event model currently
ignores other types of communication, such as RMA, and file I/O.

Before any events can be collected, the target application is instrumented,
that is, extra code is inserted to intercept the events at runtime, generate
appropriate event records, and store them in a memory buffer before they are
flushed to disk. Usually, this step is performed in an automated fashion during
compilation and linkage. In view of the I/O bandwidth and storage demands
of tracing on large-scale systems, and specifically the perturbation caused by
processes flushing their trace data to disk in an unsynchronized way while
the application is still running, it is generally desirable to limit the amount
of trace data per application process so that the size of the available memory
is not exceeded. This can be achieved via selective tracing, for example, by
recording events only for code regions of particular interest or by limiting the
number of timesteps during which measurements take place.

Since it is roughly proportional to the frequency of measurement routine invo-
cations, the execution time dilation induced by the instrumentation is highly
application dependent and therefore hard to quantify in general terms. We
will nonetheless present overhead numbers for the real-world example given in
Section 5. Moreover, if the communication frequency and with it the event fre-
quency rises with increasing numbers of processes, then the observable dilation
might also become a matter of scale.

Definition unification. Measured event data refers to objects such as source-
code regions, call paths, or communicators. Motivated by the desire to min-
imize storage requirements and avoid redundancy in traces, events reference
these objects using identifiers, while the objects themselves are defined sep-
arately. To avoid extra communication between application processes during
measurement acquisition, each process may use a different local identifier to
denote the same object. However, to establish a global view of the program
behavior during analysis, a global set of unique object definitions must be cre-
ated and local identifiers replaced with global identifiers that are consistent
across all processes. This procedure is called unification. Separate collection
buffers on each process are used for definition and event records, avoiding the
need to extract the definitions from a combined trace later. At measurement
finalization, each rank in turn sends its definition buffers to rank zero for uni-
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fication into a set of global definitions and an associated identifier mapping.
Although our current unification algorithm is predominantly sequential, the
distributed design takes advantage of message communication to facilitate the
exchange of object definitions and the generation of mapping information while
reducing expensive file I/O that would be otherwise prohibitive. Tree-based
unification of definitions might be beneficial, and such an approach using MR-
Net [24] is currently under investigation. The global definitions and mappings
are then written to two files, alongside the files for the dumped contents of
each trace buffer. The two auxiliary files are subsequently needed by the post-
mortem trace analyzer to translate local object identifiers in event records to
global identifiers used during analysis. While the sizes of process-local defi-
nition buffers, unified global definitions, and associated mappings are highly
dependent on application instrumentation and measurement configuration,
for the SMG2000 experiments considered later in Section 4 the size of each
process-local definition buffer was around 20 kB, and for 65,536 processes the
resulting global definitions and mappings consumed almost 5 MB and 82 MB,
respectively. Although the mapping data grows linearly with the number of
processes, the mappings for each process can be written immediately to file
after generation such that capacity is required for only one set.

3.2 Parallel Event Access

The low-level interface available for reading EPILOG traces offers only rudi-
mentary support for complex analysis tasks. First, the interface follows a se-
quential access model. In addition, the correct interpretation of certain events
may require knowledge of related events. For example, to save space, records of
exit events may not specify the region that was left. Instead, this information
must be obtained from the matching enter event, assuming that process-local
enter and exit events form a correct parenthesis expression. While necessary
for the correct understanding of individual events, finding matching events
is also an important prerequisite for the pattern analysis itself because pat-
terns are typically identified along a path of related events. To simplify the
analysis logic required for the pattern search, the trace analyzer accesses the
trace file through a high-level interface, which is provided as a separate ab-
straction layer [8] between the parallel pattern search and the raw trace data
stored on disk (Figure 2, bottom right). Implemented as a C++ class library
called PEARL, this layer offers random access to individual events as well as
abstractions that help identify matching events.

To maintain efficiency of the trace analysis process as the number of applica-
tion processes rises, PEARL follows a parallel trace access model, operating
on multiple process-local trace files instead of a single global trace file. The
main advantage of the parallel model is that it allows the size of the target
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system to be exploited by scaling the amount of memory and the number of
processors available for the analysis with the number of application processes
to be analyzed. As a consequence, the analysis algorithms and tools based on
PEARL are usually parallel applications in their own right with expected scal-
ability improvements compared to serial versions. Here we present a specific
application of PEARL to automated trace file analysis, although its utility is
far more general [4,11].

Usage model. Establishing truly parallel abstractions, such as complete mes-
sages or collective operation instances, that is, gathering all events belonging to
these structures, requires the matching of corresponding events across several
processes, which may incur costly communication. To minimize the communi-
cation overhead, the primary usage model of PEARL is that of a replay-based
analysis. The central idea behind a replay-based analysis is to reenact the
target application’s communication based on the trace information so that
each communication operation can be analyzed using an operation of simi-
lar type. For example, to analyze a message transfer in point-to-point mode,
the required event data is exchanged using a single point-to-point operation.
Exploiting MPI messaging semantics, this model offers the advantage that
matching related communication events occurs automatically while replaying
the corresponding MPI operations.

Event storage. The usage model of PEARL currently assumes a one-to-one
mapping between analysis and target-application processes. That is, for ev-
ery process of the target application, one analysis process responsible for the
trace data of this application process is created. Data exchange in PEARL is
accomplished via MPI. We currently require that the amount of trace data
per application process does not exceed the size of the memory available to
a single process on the target system. This offers the advantage that during
analysis PEARL can keep the entire event trace in main memory, which al-
lows performance-transparent access to individual events, but also limits the
trace size per process and may necessitate measures such as coarsening the
instrumentation or restricting the measurement to selected intervals.

Loading traces. To the programmer, PEARL offers classes to represent
process-local traces, events, and objects referenced by those events (e.g., re-
gions, communicators). When instantiating a trace object, PEARL reads the
trace data into memory while unifying all object references appearing in event
records based on the local-to-global identifier mapping mentioned in Section
3.1. This ensures that event instances created from event records point to the
correct objects. After unification, all objects carry a unique numerical identi-
fier that is consistent across all processes and that facilitates the exchange of
events and their object references between different analysis processes.

Timestamp synchronization. To allow accurate trace analyses on systems
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without globally synchronized timers, we also provide the ability to synchro-
nize inaccurate timestamps postmortem. Linear interpolation based on clock
offset measurements during initialization and finalization of the target pro-
gram already accounts for differences in offset and drift, assuming that the
drift of an individual processor is not time-dependent. This step is manda-
tory on all systems without a global clock, such as Cray XT and most PC or
compute blade clusters. However, inaccuracies and drifts that vary over time
can still cause violations of the logical event order that are harmful to the
accuracy of our analysis. For this reason, such violations can be compensated
by shifting communication events in time as much as needed to restore the
logical event order while trying to preserve the length of intervals between
local events [4]. This logical synchronization is currently optional and should
be performed if the trace analysis reports (too many) violations of the logical
event order.

Event access. Event access occurs through event objects that allow access to
all possible event attributes and that expose iterator semantics for navigating
through the local trace. In addition to the iterator functionality, event objects
also provide links between related events, which are called pointer attributes.
As a consequence of the parallel in-memory event storage, pointer attributes
can both point forward and backward, but not to remote events. Currently,
there are pointer attributes to identify the enter and exit events of the en-
closing region instance (i.e., enterptr and exitptr). Whereas enterptr points
backward, exitptr points forward in time. These two pointer attributes can
be used, for example, to determine the duration of the communication oper-
ation (i.e., region instance) for a given communication event. Another special
event attribute identifies the call path of an event by providing a pointer into
the global call tree. In this way, PEARL applications can easily determine
whether events have equivalent call paths, a feature used to automatically
associate patterns with the call paths causing them.

Exchanging event data between processes. To facilitate inter-process
analysis of communication patterns, PEARL provides means to conveniently
exchange one or more events between processes. Remote events received from
other processes are represented by remote event objects, which are similar to
local event objects, but without iterator semantics and attributes pointing to
other remote events, since we do not have full access to the remote event trace.
There are generally two modes of exchanging events: point-to-point and col-
lective. Point-to-point exchange allows a remote event object to be created at
the destination process with arguments specifying the source process, a com-
municator, and a message tag. To complete the exchange, the corresponding
source process invokes a send method on the local event object to be trans-
ferred. Collective exchange works in a similar fashion. Moreover, the exchange
of multiple events can be accomplished in one batch by first collecting local
events in an event set on the sender’s side and then instantiating a remote
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event set on the receiver’s side by supplying message parameters to the con-
structor. Each event stored in an event set is identified by a numeric identifier
that can be used to assign a role, for example, to distinguish a particular con-
stituent of a pattern. To reduce the amount of data being transferred, event
sets can transparently assign multiple roles to a single event.

3.3 Parallel Analysis Algorithm

The task of the parallel trace analysis is to locate patterns of inefficient behav-
ior and to quantify associated waiting times separately for every call path and
process. A pattern is typically composed of multiple potentially concurrent
constituent events with certain constraints regarding their relative order. The
associated waiting time, which we call the severity of the pattern, is usually
calculated as the temporal difference between selected constituents. To accom-
plish the search, the parallel analyzer component traverses the local traces in
parallel from beginning to end while exchanging information at synchroniza-
tion points of the target application using the infrastructure described in the
previous subsection. That is, whenever an analysis process sees events related
to communication or barrier synchronization, it engages in an operation of a
similar type with those analysis processes that see the corresponding source
or destination events. Currently, the parallel analysis employs one analysis
process per local trace file, which results in an equal number of application
and analysis processes. This allows the user to run it immediately after the
target application within the same batch job, thereby avoiding a second wait
in the batch queue. In future versions, we plan to also allow a smaller number
of analysis processes, which can be useful if the analysis is carried out on a
different machine.

In this subsection, we describe how the parallel replay can be used to search
for complex patterns of inefficient behavior at larger scales. A full list of the
patterns the parallel analyzer supports can be found online [13], illustrated
with explanatory diagrams. This set includes the full range of MPI 1 patterns
provided by KOJAK’s sequential analyzer [28], with the exception of Late
Receiver / Wrong Order, which, however, is rarely significant in practice. Be-
low, we illustrate the parallel analysis mechanism on a representative subset
of these patterns, which is shown in Figure 3.

3.3.1 Point-to-Point Communication

As an example of inefficient point-to-point communication, we first consider
the so-called Late Sender pattern (Figure 3(a)), where a receiver is blocked
while waiting for a message to arrive, that is, the receive operation is entered
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by the destination process before the corresponding send operation has been
entered by the source process. The waiting time lost as a consequence is the
time difference between the enter events of the two MPI function instances
that enclose the corresponding send and receive events.

Figure 4(a) illustrates the parallel detection algorithm for this pattern. During
the parallel replay, the detection is triggered by the communication events on
both sides (i.e., the send and receive event). Whenever an analysis process finds
a send event, a message containing this event as well as the associated enter
event is created, after the latter has been located via the backward-pointing
enterptr attribute. This message is then sent to the process representing the
receiver using a point-to-point message. When the destination process reaches
the receive event, the above-mentioned message containing the remote con-
stituents of the pattern is received. Together with the locally available con-
stituents (i.e., the receive and the enter event), a Late Sender situation can be
detected by comparing the timestamps of the two enter events and calculat-
ing the time spent waiting for the sender. The waiting time is ascribed to the
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Fig. 3. Patterns of inefficient behavior. The combination of MPI functions used
in each of these examples represents just one possible case. For instance, the syn-
chronous receive operation in pattern (a) can be replaced by an immediate receive
followed by a wait operation. In this case, the waiting time would occur during the
wait operation.
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call path of the send operation using the above-mentioned call-path attribute.
The correct matching of send and receive events is accomplished by replaying
the message traffic with equivalent tag and communicator information avail-
able in the event trace, ensuring that the messages are received in the original
order. In addition to being more scalable, the replay-based approach is also re-
silient with respect to insufficiently synchronized clocks because it is still able
to match send and receive events correctly even if the relative chronological
order between the two events is reversed.

Conversely, the Late Receiver pattern (Figure 3(b)) describes a sender that is
blocked while waiting for the receiver when a rendezvous protocol is used. This
can happen for several reasons. Either the MPI implementation is working in
synchronous mode by default, or the size of the message to be sent exceeds
the available MPI-internal buffer space and the operation is blocked until the
data is transferred to the receiver. The behavior is similar to an MPI Ssend()

waiting for message delivery. Valid instances of this pattern must satisfy the
following condition: the receive operation must have started after the send
operation has begun but before it has ended. Although this criterion does
not reliably prove that the sender was blocked, it is nevertheless a necessary
condition and it is the strongest that can be proved on the basis of our cur-
rent event model. A detailed discussion of the performance problem related to
this pattern can be found in [10]. The parallel detection of the Late Receiver
pattern follows a strategy similar to Late Sender. In this case, however, both
the enter and the exit event enclosing the send event are transferred to the
destination process. The exit event is located via the forward-pointing exitptr
attribute emanating from the send event. After the arrival of the two remote
constituents, the destination process compares their timestamps to the times-
tamp of the local enter event that marks the begin of the receive operation.
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As shown in the figure, the severity of the pattern is the difference between
the two enter events. Although the severity is calculated by the receiver, it is
attributed to the sender. To avoid the additional overhead of transferring the
calculated waiting time back to the sender every time this pattern occurs, it is
temporarily stored as a remote result by the receiver. The distinction between
local and remote results is resolved at the end of the analysis, as explained in
Section 3.4.

By contrast, detecting the Late Sender / Wrong Order pattern (Figure 3(c)) is
more difficult. This pattern describes a receiver waiting for a message, although
an earlier message is ready to be received by the same destination process
(i.e., message received in wrong order). The detection requires a global view
of the messages currently in transit (i.e., a global message queue), which is not
available in our parallel implementation. As a substitute, each analysis process
keeps track of the n last local occurrences of the Late Sender pattern using a
ring buffer. If a receive event is encountered during the replay, we compare the
timestamps of the matching send event with those of the buffered Late Sender
occurrences. If the Late Sender’s send operation starts after the send event
associated with the current receive, the Late Sender instance is classified as a
wrong-order situation and removed from the buffer. Although this approach
does not guarantee that all occurrences of this pattern will be found, empirical
results suggest that the coverage of our method is sufficient in practice.

To avoid sending redundant messages while executing the detection algorithms
for the different performance problems related to point-to-point communica-
tion, we exploit specialization relationships between patterns and reuse results
obtained on higher levels of the hierarchy. This is implemented using an event
notification and call-back mechanism similar to the publish-and-subscribe ap-
proach [30] used in KOJAK and requires every point-to-point message to be
replayed only once, even if it contributes to multiple patterns.

3.3.2 Collective Communication

The second type of communication operation we consider is MPI collective
communication. As an example of a related performance problem, we dis-
cuss the Wait at N×N pattern (Figure 3(d)), which quantifies the wait-
ing time due to the inherent synchronization in n-to-n operations, such as
MPI Allreduce(). A schematic view of how this pattern can be handled in
parallel is given in Figure 4(b). While traversing their local trace data, all
processes involved in a collective operation instance will eventually reach their
collective exit event marking the end of this instance. After verifying that it
belongs to an n-to-n operation by examining the associated region identifier,
the analyzer determines the latest of the corresponding enter events via a
maximum reduction using an MPI Allreduce() operation. After that, each
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process calculates the local waiting time by subtracting the timestamp of the
local enter event from the maximum timestamp obtained through the reduc-
tion operation. The group of ranks involved in the analysis of the collective
operation is easily determined by reusing the communicator of the original
collective operation.

Similar algorithms can be used to implement patterns related to 1-to-n, n-to-
1, barrier and scan operations. For n-to-n and barrier operations, the analyzer
also calculates asymmetries that occur when leaving the operation. As with
point-to-point operations, a single MPI call per collective operation instance
is used to determine all the associated waiting times, even if they belong to
different patterns.

3.4 Collation of Analysis Results

Whenever an analysis process finds a pattern instance, it measures the waiting
time incurred as a result of this pattern (i.e., its severity) and accumulates this
value in a [pattern, call path] matrix. At the end of the trace traversal, the
local results are merged into a three-dimensional [pattern, call path, process]
structure characterizing the whole experiment, which is then written to an
XML file.

To make this most efficient, we first have to separate truly local waiting times
from remote waiting times that have only been locally accumulated. As an
example of the latter, let us revisit the Late Receiver pattern. The waiting
time occurs at the sending process, but it is calculated and stored at the
receiving process. However, differentiating between local and remote waiting
times complicates the collation because the rank to which the time belongs
would then have to be made explicit. Hence, remote times are distributed
to their original locations using point-to-point messages before initiating the
merge procedure. Once all processes store only their truly local waiting times,
a designated writer process prepares the report header before it gathers the
aggregated metrics for each call path from each process and appends these to
the report body. Since the size of the report may exceed the memory capacity
of the writer process, the report is created incrementally, alternating between
gathering and writing smaller subsets of the overall data. The MPI gather
operation used for this purpose allows this procedure to take advantage of
efficient tree-based algorithms employed in most MPI implementations.
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3.5 Recent Optimizations and Extensions

Since implementing an initial prototype [9] of the parallel trace-analysis scheme,
we have applied a number of optimizations and extensions, substantially en-
hancing performance and scalability in comparison to the initial version. Be-
low we give a brief overview of the most important changes, while deferring a
quantitative evaluation to Section 4.

First, in the initial version of our parallel design, each process wrote its locally
collected results including remote results to a separate XML file, again incur-
ring costly I/O when thousands of files had to be created simultaneously. The
local results were then merged into a single global result file using a sequen-
tial postprocessing tool, significantly prolonging the total analysis time. The
present version employs the much more efficient collation scheme described in
Section 3.4. Taking advantage of MPI collective communication while directly
writing the gathered results to a single report file, the new collation mechanism
is mainly responsible for the performance improvements in comparison to our
initial parallel prototype. Moreover, after substituting non-blocking sends for
blocking ones and reducing the number of collective replays required for every
collective operation recorded in the trace to one, the replay engine now runs
significantly faster. To increase the engine’s processing capacity, the memory
footprint of event objects has been scaled down by calculating certain event
attributes on the fly and customizing the memory management. Furthermore,
logical timestamp correction capabilities have been added to deal with cases
where non-constant clock drifts render the linear method insufficient when
applied in isolation [4].

Finally, the optimized trace analyzer is now supported by a more efficient
measurement system. Eliminating the need for temporary local definition files
and combining rank-local mappings into a single file has reduced the number
of auxiliary files created by the measurement system in addition to the actual
trace files from 2 ∗ |ranks| + 1 to just 2 extra files, offering improved trace
generation performance. Additionally, serial optimizations have cut the time
required for identifier unification and map creation at measurement finaliza-
tion by a factor of up to 25 (in addition to savings from creating only two
global files).

4 Scalability

To evaluate the efficiency of the parallel trace analysis, a number of experi-
ments with our current prototype implementation have been performed at a
range of scales and compared with the initial parallel version. Measurements
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were taken on the IBM Blue Gene/P system (JUGENE) at the Jülich Su-
percomputing Centre, Germany, which consists of 16,384 quad-core 850 MHz
PowerPC 450 compute nodes (each with 2 GB of memory), 152 I/O nodes,
and p55A service and login nodes each with eight dual-core 1.6 GHz Power5+
processors [12]. The system was running the V1R2 software release with the
GPFS parallel file system. A dedicated partition consisting of all of the com-
pute nodes in virtual-node mode was used for the parallel analyses, whereas
serial components ran on the lightly loaded login node. Two applications with
quite different execution and performance characteristics were selected for de-
tailed comparison.

The ASC benchmark SMG2000 [2] is a parallel semi-coarsening multigrid
solver that uses a complex communication pattern. The MPI version per-
forms a large number of non-nearest-neighbor point-to-point communication
operations (but only a negligible number of collective communication opera-
tions) and can be considered to be a stress test for the memory and network
subsystems of a machine. Applying a weak scaling strategy, a fixed 64×64×32
problem size per process with five solver iterations was configured, resulting
in a nearly constant application runtime as additional processors were used.
Because the number of events traced for each process increases with the total
number of processes, the aggregate trace volume increases faster than linearly.

The second example, the benchmark code SWEEP3D [1], performs the core
computation of a real ASCI application and solves a 1-group time-independent
discrete ordinates (Sn) 3D Cartesian geometry neutron transport problem.
To exploit parallelism, SWEEP3D maps the three-dimensional simulation do-
main onto a two-dimensional grid of processes. The parallel computation im-
plements a pipelined wavefront process that propagates data along diagonal
lines through the grid using MPI point-to-point messages. Again, we used
a constant 32×32×512 problem size per process. In contrast to SMG2000,
the amount of trace data per process is independent of the total number of
processes.

Figure 5 charts wall-clock execution times for the uninstrumented applica-
tions and the analyses of trace files generated by instrumented versions with
a range of process numbers on JUGENE. The 9-fold doubling of the number
of processes necessitates a log–log scale to show the corresponding range of
times, to the extent that they remain practical. The figure shows the total
time needed for the parallel analysis when using both the initial and the new
design. The total analysis time includes loading the traces, performing the
replay, and collating the results. It can be seen that the total analysis time
has been reduced to below 20 minutes in both cases. The substantial improve-
ment in comparison to our initial parallel prototype is largely due to the new
collation scheme. Because file I/O can be subject to considerable variation de-
pending on overall system load, the time needed for the replay itself without
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file I/O is also shown separately for the new version.

While the set of compressed execution traces from 65,536 SWEEP3D pro-
cesses reached 79 GB aggregate size (13E9 events in total), the corresponding
execution traces from 65,536 SMG2000 processes were 1060 GB (over 178E9
events in total). File I/O commands increasing proportions of the analysis
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Fig. 5. Application execution times and trace analysis times using the the initial
parallel version and the improved parallel version for up to 65,536 processes on Blue
Gene/P. Linear scaling is represented by dashed lines.
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time. However, it is worth noting that with only one I/O node per 512 proces-
sor cores, our test system does not offer the most generous I/O configuration
possible on Blue Gene/P. A comparison with data from 16,384 processes ob-
tained on a Cray XT3/4 attached to a Lustre file system showed that a more
favorable replay-to-file I/O ratio is possible.

By contrast, the actual procedure of replaying and analyzing the event traces
exhibits smooth scaling behavior up to very large configurations. Although
the original prototype implementation demonstrated the same scalability, the
current version is twice as fast and requires 25% less memory. Because of its
replay-based nature, the time needed for this part of the analysis depends on
the communication behavior of the target application. Since communication
is a key factor in the scaling behavior of the target application as well, simi-
larities can be seen in the way both curves evolve as the number of processes
increases. Depending on the computation and communication characteristics
of the target application, the replay can be either faster (SWEEP3D) or slower
(SMG2000) than the application itself. Notably, the total time for the new
analysis approach scales much better and is orders of magnitude faster than
the original parallel analysis prototype even at modest scales, making it pos-
sible to examine traces at previously intractable scales in a reasonable time.

5 Example

In this section, we show that the problems Scalasca diagnoses do indeed appear
in real applications and that they can have significant performance impact es-
pecially at larger scales. As an example, we consider the XNS computational
fluid dynamics code being developed at the Chair for Computational Analysis
of Technical Systems at RWTH Aachen University. This engineering applica-
tion can be used for effective simulations of unsteady fluid flows, including
microstructured liquids, in situations involving significant deformations of the
computational domain. The algorithm is based on finite-element techniques
on irregular three-dimensional meshes using stabilized formulations and iter-
ative solution strategies [5]. The XNS code consists of more than 32,000 lines
of Fortran90 in 66 files. It uses the EWD substrate library, which fully encap-
sulates the use of BLAS and communication libraries, adding another 12,000
lines of mixed Fortran and C within 39 files. Here, we present results obtained
from an already tuned version of the code [33].

Performance was studied on the IBM Blue Gene/L system JUBL at the Jülich
Supercomputing Centre, consisting of 8,192 dual-core 700 MHz PowerPC 440
compute nodes (each with 512 MB of memory) and 288 I/O nodes. The sys-
tem was running the V1R2 software release with the GPFS parallel file sys-
tem configured with 4 servers. The test case consisted of a three-dimensional
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space-time simulation of the MicroMed DeBakey axial blood pump, which was
executed in virtual node mode on a dedicated partition. This data set requires
very high resolution simulation to accurately predict shear-stress levels and
flow stagnation areas in an unsteady flow in such a complex geometry. From
a comparison of simulation rates (and later analyses) for various numbers of
timesteps, it was determined that the first timestep’s performance was rep-
resentative of that of larger numbers of timesteps, allowing the analysis to
concentrate on simulations consisting of a single timestep.

Our observations using the Scalasca analysis are summarized in Figure 6 for
a range of scales between 256 and 4096 processors. The problem size was kept
constant across all configurations so that we could witness strong scaling.
For each configuration, we provide the simulation timestep rate as an overall
performance indicator as well as a breakdown of the total execution time into
percentages corresponding to various communication modes and wait states.
The columns to the left show the fraction of time spent in MPI function calls
and the inherent waiting time in each configuration. The columns to the right
split the MPI time further into different modes of communication (point-to-
point and collective) and synchronization. For each mode, we give the overall
percentage followed by relevant wait states caused by patterns discussed in
Section 3.3: Late Sender for point-to-point communication, Wait at N ×N for
collective communication, and Wait at Barrier for collective synchronization,

52

105

189

296

461

512 1024 2048 4096256
Processes

0

100

200

300

400

500

T
im

es
te

ps
 / 

ho
ur

P2P Communication
 - Late Sender
Coll. Communication
 - Wait at N x N
Coll. Synchronization
 - Wait at Barrier

Timesteps / hour

512 1024 2048 4096256
Processes

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 to

ta
l t

im
e

Total
 - Communication+Synchronization
 - - Wait States

Fig. 6. Performance behavior of XNS at a range of scales from 256 to 4096 processors.
The circles indicate the simulation timestep rate as an overall performance indicator
(higher is better). The bars show the percentage the application spent in various
communication modes including associated wait states.
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which is essentially a barrier version of Wait at N × N .

The application exhibits almost perfect scaling behavior with up to 512 pro-
cesses. However, as the number of processes is raised further, the parallel
efficiency is continuously degraded, although even at the largest configuration
of 4096 processes a noticeable speedup can still be observed. Beyond 512 pro-
cesses, as we can see, the communication and synchronization overhead grows
steeply, with point-to-point communication being the dominating factor. Yet
the primary result of our analysis is that the biggest fraction of this overhead
is actually waiting time, in the case of 4096 processes amounting to roughly
40% of the total time and 65% of the time spent in MPI, illustrating that the
wait states we are targeting can constitute principal performance properties at
larger scales. That is, the saturation of speedup observed for XNS with higher
numbers of processes is not only the result of communication demand growing
with the number of processes, but also to a larger extent the consequence of
the untimely arrival of processes at synchronization points, which can now be
classified and quantified using our analysis technique.

With 4,096 processes, the execution time for an uninstrumented XNS single

Fig. 7. XNS Late Sender bottleneck with 4096 processes in ewdscatter2i(). The
middle pane shows the distribution of Late Sender times across the call tree as
percentage of the time spent in the timestep loop. The right pane visualizes how
the time incurred by the selected call path is spread across the physical Blue Gene/L
torus topology.
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timestep simulation was 115 seconds, of which the timestep loop itself was
28 seconds. It took 692 seconds to collect an 82 GB trace (using a filter to
eliminate unimportant small functions), and parallel analysis of the 2.9E9
traced events took a further 216 seconds (including 51 seconds for the replay).

The measurement dilation in the timestep loop caused by our instrumentation
increases from a very small amount within measurement errors to about 14%,
as the number of processes is raised from 256 to 4096. The increase can be
explained with a growing fraction of communication, which represents the pri-
mary source of overhead, along with decreasing message sizes. Although in the
4096 case the 14% can already be regarded as significant, it is still reasonable
in proportion to the percentage of waiting time identified. Even if the entire
dilation was subtracted from the overall waiting time, the application would
still spend one quarter of the time in idle mode.

The largest contributor to the overall waiting time is Late Sender. The screen
shot of the Scalasca GUI in Figure 7 shows the analysis results for 4096 pro-
cesses and locates a major source of this pattern in a call path leading to
the function ewdscatter2i() (middle pane). The call tree has been re-rooted
to display only the timestep loop. As the mapping of waiting times onto the
physical Blue Gene/L torus topology illustrates (right pane), the distribution
of wait states across different processes is rather irregular and is presumably
an artifact of communication imbalance caused by the irregular mesh. Further-
more, it appears that a major fraction of the Late Sender time coincides with
message receipt in the wrong order (not shown in the screen shot). Work to
optimize the application based on the insights presented above is in progress.

6 Conclusion and Outlook

We have presented a parallel tool architecture for automatically detecting wait
states in event traces of massively parallel applications. Instead of sequentially
analyzing a single and potentially large global trace file, we analyze separate
local trace files in parallel by performing a replay of the target application’s
communication behavior. By exploiting the distributed memory capacity and
the parallel processing capabilities of the target system, the new trace-analyzer
architecture has delivered satisfactory performance for message-passing appli-
cations with up to 65,536 processes, offering wait-state diagnoses at previ-
ously impractical scales. Our current analyzer prototype, which is a parallel
application in its own right, is capable of detecting a variety of wait states
related to the use of the MPI 1 parallel programming interface, which, as we
have shown using a full-size engineering application, can present severe per-
formance problems at larger scales. We plan to add support for additional
parallel programming interfaces, such as OpenMP and MPI 2, in the future.
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Although we were able to significantly improve the performance of our analysis
in comparison to our initial prototype by employing a much more efficient
collation scheme, file I/O remains the dominating factor. On systems such as
Blue Gene/P that support the definition of memory segments persistent across
jobs, the transfer of trace data from the application to the analysis could be
accomplished at basically no cost, expanding the potential of our method to
much larger scales. Alternatively, the analysis could occur immediately during
measurement finalization, although then the additional data structures needed
to collect analysis results would have to compete with the application for the
available memory, reducing the space left to store event data. Finally, the
collation, which is still serialized through a single writer, could be parallelized
by having all analysis processes write their local results directly to a single or
at least a small number of physical files. Not using a separate file per process
avoids directory contention during file creation, an approach we are currently
testing to speed up the generation of trace files.

However, the most significant limitation of our trace-analysis approach is the
restriction imposed on the number of events per process: if too large, the trace
does not fit into the main memory available to a single analysis process. To
become more flexible in this respect, we are considering supporting selective
tracing in a more automated way, identifying classes of behaviorally equiva-
lent execution phases based on more space-efficient phase profiles, tracing only
representatives of each class, and extrapolating the analysis results back to the
full length of execution. A more far-reaching solution would be to consume the
trace data intermittently at runtime. In this context, it appears worthwhile
to evaluate the extent to which global synchronization operations can be ex-
ploited to process trace buffers on-line and how the inevitable perturbation
introduced by temporary suspensions of the execution can be compensated
for.

On a final note, the diagnostic method presented in this article will still require
substantial resources, even if all the optimizations outlined above become ef-
fective. Although it is not uncommon in science for the study of a phenomenon
to take as long or even longer than the phenomenon itself, as the evaluations
of particle collisions in high-energy physics or the simulation of protein folding
demonstrate, the yardstick should be whether the costs of obtaining an insight
outweigh the benefits. So far, our method has primarily been able to diagnose
only symptoms, which makes it hard to translate the results into measurable
profits. Simply knowing the locations of wait states in the program is often
insufficient to understand the reason for their occurrence. We therefore hope
to expand the potential of our approach in such a way that eventually it will
be possible to more easily turn the insights into improvements of application
performance. Building on earlier ideas by Meira, Jr., et al. [17], we plan to
extend the current Scalasca trace analysis such that it can distinguish be-
tween primary and secondary waiting times, with secondary waiting times
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being caused by primary ones. In addition, we are investigating the notion of
a delay, which would be the counterpart of a primary waiting time, allowing
us to determine why waiting occurred. A major challenge will be to make this
distinction at much larger scales than was possible before. Once reasonable
candidate optimization hypotheses have been derived from identified delays,
they could be efficiently evaluated using trace-based real-time simulation, a
scalable approach which we have already successfully demonstrated with a
limited set of examples [11].
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