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Abstract—Load imbalance is an important impediment on
the path towards higher degrees of parallelism—especially for
engineering codes with their highly unstructured problem do-
mains. In particular, when load conditions change dynamically,
efficient mesh partitioning becomes an indispensable ingredient
of scalable design. However, popular graph-based methods such
as those used by ParMetis require global knowledge, which
effectively limits the problem size on distributed-memory ma-
chines. On such architectures, space-filling curves (SFCs) offer
a memory-efficient alternative and many sophisticated schemes
have already been proposed. In this paper, we present a simple
strategy based on SFCs that is custom-tailored to the needs of
static meshes with dynamically changing computational load.
Exploiting the properties of this class of problems, it is not
only easy to implement but also reduces memory requirements
substantially. Moreover, exclusively relying on MPI collective
operations, our load-balancing scheme also offers portable
performance across a broad range of HPC systems. Experi-
mental evaluation shows excellent scaling behavior for up to
16,384 cores on a Nehalem-Infiniband system and up to 294,912
processes on a Blue Gene/P system.

Keywords-partitioning; space-filling curve; load balancing;
scalability

I. INTRODUCTION

Fluid dynamic applications in the field of industrial en-
gineering require high degrees of parallelism to achieve an
acceptable time to solution for large problem sizes. Typical
mesh-based approaches therefore rely on suitable partition-
ing strategies to distribute the computational load across
the set of processes. This partitioning is an optimization
task with two goals. The work load has to be distributed
evenly and at the same time the interfacing boundaries
between partitions should be as small as possible. The
first requirement is derived from the need to avoid waiting
times of processing units, while the second is imposed by
the need to minimize the time spent in communication.
Although this optimization problem is NP-hard in general,
several successful heuristics exist. A popular option for the
partitioning of meshes is provided by the ParMetis [10]
library, which uses a graph-based algorithm. This library
solved the partitioning problem for unstructured meshes very
well for a long time. However, with an increasing number

of processes, graph-based partitioning algorithms seem to
reach their scalability limits. In particular, one scalability
problem arises due to the required memory. As the sophis-
ticated graph-partitioning algorithms need information on
the complete graph of the unstructured mesh, their memory
consumption grows linearly with the graph size. Satisfying
this requirement becomes infeasible at large scale, raising
the need for alternatives which avoid this memory problem.

Such an alternative is offered by the second class of par-
titioning methods, which are based on space-filling curves
(SFCs). The basic concept of performing such a partitioning
of unstructured meshes using space-filling curves has been
described before [1]. SFCs map the one-dimensional unit in-
terval onto a higher dimensional space such that neighboring
points on the unit interval are also neighboring points in the
target space. Thus, SFCs also preserve some locality in the
inverse mapping from the higher dimensional space onto
the unit interval. This method ignores the edges of the full
graph information. Instead, it relies on the spatial properties
of the curve to ensure a reasonable partition shape. An
upper limit of expected remote accesses in SFC partitioned
domains has been shown by Tirthapura et al. for arbitrary
curves [11]. Their analysis demonstrates that the approach
behaves well and results in an acceptable communication
overhead, even for sparse meshes with complex embedded
geometries. Usually, the communication surface can be
improved by taking advantage of the full graph information.
However, this improvement is not guaranteed—the limited
communication surface of the SFC is usually good enough
for the class of applications considered here. For these
reasons, a partitioning based on SFCs appears attractive and
opens a path to low-memory partitioning strategies.

This work targets a dynamic solver for compressible flows
with p and t adaptivity. That is, the numerical approximation
of the flow field can be adapted by the chosen polynomial
degree p within each element, and the local time step of the
explicit time marching scheme is chosen ideally for each
element to fulfill the numerical stability criteria [5]. With
this numerical scheme, it is possible to avoid expensive
re-meshing (h-adaptivity), while the computation can still
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adapt dynamically to the simulated field. This adaptivity on
a rigid spatial mesh, which tries to allocate the computational
resources only to those spots where they are actually needed,
introduces computational imbalances. Different elements can
drastically vary in their individual computation times, due
to different time step sizes and the flow field seen by them.
This load imbalance can also be very volatile during the
overall running time of the simulation.

Commonly available partitioning implementations are of-
ten concerned with the more general case where re-meshing
is important, and therefore introduce additional computa-
tional complexity, which is not needed for the application at
hand. This work presents a specific and efficient balancing
solution for the problem of dynamically changing work
on a fixed mesh. Balancing of one-dimensional workload
distributions is also known as chains-on-chains partitioning
(CCP) in the literature [7]. With the help of a SFC, the
partitioning of three-dimensional unstructured meshes can
be reduced to this type of problem. The introduction of a
one-dimensional sorting for the unstructured mesh has also
some further advantages with respect to parallel distributed
simulations. With a known order of elements, neighbor iden-
tification becomes locally computable, and files can be read
and written completely in parallel when following the SFC-
induced layout. We implemented such a balancing solution
for distributed systems using the Message Passing Interface
(MPI) and the Morton curve ordering. Our evaluation shows
that this implementation is highly scalable with respect to the
required time and memory. As a reference, we compare the
SFC-based partitioning to ParMetis with the main focus on
the memory consumption for large scale simulations. Finally
the dynamic deployment of the algorithm in the adaptive
flow solver is described and the observed impact on the
application is analyzed.

II. PARTITIONING STRATEGY

With the advent of highly distributed parallel systems in
high performance computing, a major issue for algorithms
is the memory consumption per process when deployed on
many processes. Unfortunately, graph-based partitioning as
used in ParMetis, does not cope well in this respect and does
not work for applications on larger numbers of processes.
In contrast to that, partitioning schemes based on a SFC
ordering of elements yield the possibility to reduce the
memory consumption to a constant size, independent of the
number of processes. When a SFC is used to partition an
unstructured mesh, the order of the distributed elements must
be kept, to maintain the locality property of the resulting
partitions, leading to a CCP problem for the load balancing.
Common to all CCP algorithms is the need to compute prefix
sums of some weights [7]. In case of our application, these
weights represent the workload of single elements in the
unstructured mesh. Fortunately, the MPI standard already
provides the functionality to compute these prefix sums in

parallel. Although being quite powerful, these prefix sums
can be implemented efficiently within MPI libraries as has
been shown for example by Sanders and Träff in [9]. Though
algorithms to find optimal solutions for the CCP are known,
they are limited in their scalability. A very promising approx-
imate solution to the CCP problem was suggested by Miguet
and Pierson in [6]. It has the advantage, that splits between
partitions can be determined completely local. The only
global information required for this operation are the prefix
sums and the total amount of work. These are attractive
properties for a highly scalable parallel algorithm. Therefore,
this heuristic is used in the implementations presented in
this work. Various implementations of this SFC partitioning
algorithm (SPartA) are described in the following section,
afterwards the scalability of these implementations is inves-
tigated. Furthermore, we compare this method to ParMetis
with respect to three criteria: i) the balancing quality, ii) the
required memory, and iii) the running time.

A. Implementations

In the following subsection, the investigated implementa-
tions of SPartA are presented in detail and an example of
the general algorithm is provided.

We consider an arbitrary mesh serialized into an one
dimensional vector using a SFC. The vector has the length
N which corresponds to the number of mesh cells. Weights
are given as wi for each element, where i corresponds to
the global index of the element. These weights approximate
the computational effort of each element, and can be derived
from an on-line time measurement or a performance model.
To achieve a balanced workload, the elements need to
be moved between the partitions. It is the task of the
balancing step to find which elements have to be moved
to which process. In this paper, we use p to denote the
total number processes, and assume that every such process
can be uniquely identified by a process number called rank
in the range 0 ≤ rank < p. For the proposed chains-on-
chains approach on the serialized mesh, the partitions can
be determined with the help of a prefix sum. In particular,
we will use the exclusive prefix sum, which is defined as
follows:

prefix(I) =

N−1∑
i=0

wi (1)

for 0 < I ≤ N and with prefix(0) = 0. In order to calculate
the distributed prefix sum over all processes, local prefix
sums are computed, and the global offsets are adjusted af-
terwards using the MPI Exscan() collective with MPI SUM
as reduction operation. After this step, each process has the
global prefix sum for each of its local elements.

Under the assumption that the chosen weights correctly
represent the workload of each element, the ideal work
load per partition is given by wopt =

wglobsum

p , where
wglobsum is the global sum of all weights. Similar to the
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prefix sum, this global sum can be obtained by using the
MPI Allreduce() collective again with MPI SUM as reduc-
tion operation. As the last process inferred the information
on the overall sum already through the computed prefix
sum, an alternative uses MPI Bcast() with the last process
acting as root. Both options result in a similar running time
and memory complexity. Afterwards, the splitting positions
between balanced partitions can be computed locally for all
processes on each process. That is no further communication
is required for the decision on which elements should be
moved to which processes. Thus the complete information
necessary for the partitioning algorithm can be obtained with
only two collective operations in MPI. Both collectives can
be implemented efficiently using an asymptotic running time
and memory complexity of O(log p) (cf. [8], [9]).

The splitting positions for the new balanced partitions
in the local elements can be found efficiently using binary
search in the ordered list of prefix values. Assuming ho-
mogeneous processors, ideal splitters are multiples of wopt,
i.e., r · wopt for all integers r with 1 ≤ r < p. The closest
splitting positions between the actual elements to these ideal
splitters can be found by comparison with the global prefix
sums computed for all elements.

If the prefix(I) of a local element is larger than r ·wopt

and smaller than (r + 1) · wopt then this element needs to
be sent to the process with rank r. To obtain a partitioning
closer to the optimal balancing, the final splitting position is
decided by the minimal distance of the elements enclosing
the optimal splitter: min(|prefix(I)−r·wopt|, |prefix(I−1)−
r ·wopt|). Using this heuristic the load imbalance is limited
by wmax/wopt, where wmax is the maximum weight of a
single element in the complete domain [6]. In general, the
efficiency E of the distributed work load is limited by the
slowest process, and thus cannot be better than:

E =
wopt

maxp−1
r=0(wsum(r))

(2)

Where wsum(r) is the sum of all weights in partition r.
This efficiency metric is used as a quality criterion for the
resulting partitions.

Example: To illustrate the algorithm, a small domain
with N = 25 elements distributed across p = 5 processors
is used. The initial distribution corresponds to equally-sized
parts and is shown in Figure 1. The individual weights
attached to each of the elements result in load imbalance.
Such an initial load imbalance might for example arise
from the input data, without any a-priori information on
the computational costs for the individual elements. As the
overall work with the amount of 53 should be distributed
equally over 5 processes, the optimal work load for each
partition in this example is wopt = 10.6. The resulting ideal
splitters 10.6, 21.2, 32.8, and 43.4 are depicted in Figure 2.
The thick red lines show the final splitting positions that
are closest to these optimal splitting positions. The work-
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Figure 1. Decomposed domain with different workloads per process.
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Figure 2. Prefix sums of the weights and optimum prefix values between
the processes marked above. The resulting splitters are marked in red and
the destination process of each element is shown in the second row.

balanced distribution after the re-partitioning is shown in
Figure 3. The efficiency E (cf. Equation 2) in this example
improved from 66% in the initial distribution to 88% for
the final distribution. As such, it resembles the optimal
partitioning for the chains-on-chains problem in this case,
besides using a heuristic to find the partition splitters. The
missing gap to 100% efficiency results from two facts: i) the
unfavorable ratio of the maximum individual weight and the
optimal partition work load of 9/10.6, and ii) its unfortunate
positioning. This is intentionally chosen to exhibit the major
potential problem of this approach. However, such unlucky
work load distributions are not expected in continuously load
balanced flow simulations, where the optimal work load per
process is normally much higher than the maximal weight
of a single element. More realistic examples are analyzed
with respect to their quality in Section IV.

Exchange of Elements: After the information for a
better balanced partitioning is known, elements actually need
to be relocated. This relocation, or exchange of elements, is
done via communication between processes. Unfortunately,
so far only the senders know which elements need to be
sent to which processes. The receivers do not know that
they will eventually receive elements. When using message
passing, the receivers need to be informed prior to the
actual exchange of elements. Three different options to
realize this exchange are pointed out here. A first method
uses a regular all-to-all collective operation to inform all
processes about their communication partners before doing
the actual exchange of the elements with an irregular all-
to-all collective operation (e.g., using MPI Alltoallv). This
method is straightforward to implement and also the method-
of-choice used after a ParMetis partitioning. Since both all-
to-all variants are an essential part of many applications, they
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Figure 3. Final distribution of the elements onto the processes.
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have been optimized extensively for at least one of our target
architectures [4]. As such, they can be expected to perform
efficiently, especially in a dense case such as the initial
partitioning (i.e., many exchanges between many processes).
Alternatively, elements can be propagated only between
neighboring processes in an iterative fashion. The elements
are flagged with the destination process and forwarded in a
virtual ring topology until they reach their destination. This
approach can be benign when the re-partitioning modifies an
existing distribution of elements only slightly. This could be
expected if weights are changing slowly and re-partitionings
are done frequently. In a beneficial case, only few exchanges,
mainly between neighboring or at least “close” processes,
are required. Unfortunately, worse cases can lead to O(p)
forwarded messages, which becomes highly inefficient for
larger number of processes. This scheme avoids the usage
of O(p) memory needed for the input data of the all-to-
all operation at the expense of a serialized communication
pattern. It also reduces the required interconnect links to
two for the direct neighbors in the linear list of partitions.
Therefore, the iterative method offers a safe fallback if
memory consumption is so important that it would otherwise
inhibit the execution of the application. A third option fills
the gap between these two extremes and involves a more
sophisticated protocol involving a non-blocking barrier [2].
This approach for the dynamic sparse data exchange uses the
fact that each sender has all the required information to start
the communication. Therefore all processes begin to send
their data to the appropriate processes, whereas the receiving
parts just listen for messages from any source. However, this
procedure results in a termination problem, as the receiving
processes have no information, when to stop listening for
new messages. With the help of a non-blocking barrier acting
as a distributed marker, the authors solved this problem. This
enables a very efficient implementation, where each process
just sends its information to the appropriate target pro-
cesses, and thus minimizes memory requirements. It would
therefore combine the strengths of the previously described
options at the expense of implementation complexity.

Although the third option is most promising, the necessary
non-blocking barrier is only proposed for the upcoming MPI
version 3 and therefore not yet a standardized operation to
rely on. The first option is selected for the implementation
in this work, as the required memory for the all-to-all
communication is not yet a limiting factor. This choice also
allows a fair comparison with ParMetis, where this all-to-
all operation has to be done. Even when using all 294,912
available processes on the largest Blue Gene/P installation
“Jugene” at the Jülich Supercomputing Center (JSC), the
memory consumption is still well below 10 MB.

III. SCALING ANALYSIS

Two generic cases of load balancing are investigated. The
first one is an extremely imbalanced mesh, for which a

strong scaling analysis is performed. This mesh builds a
torus consisting of 30 million elements, where the small
weights are scattered across many small elements at the
inner ring, whereas to the outer side fewer larger elements
are found with large computational weights attached to
them. It has been intentionally designed to be especially
unsuited for space-filling curve approaches, though in real
application cases heavy loads are normally confined in
smaller local volumes. Therefore, the worst case scenario
for actual applications should be covered by this example.
The second test case is initialized with uniformly distributed
random numbers as weights for the elements. This is used
in a weak scaling analysis with 10, 000 random weights
per process, and represents a more realistic simulation
with smaller load imbalances. The algorithm is investigated
on two very similar Intel Nehalem based cluster systems:
one located at the High Performance Computing Center in
Stuttgart (HLRS) and the other at the JSC. To evaluate
the behavior of the presented methods on larger number
of processes, the Blue Gene/P system Jugene at JSC is
used. The proposed partitioning schemes are compared to
ParMetis. Two different graphs are fed into ParMetis, one
with the full graph of the real mesh (ParMetis on Graph),
and one with a pseudo-graph resembling the linear space-
filling curve only with links between immediate neighbors
on the curve (ParMetis on SFC).

A. Memory Usage

A major concern, especially on distributed systems with
limited main memory per core, is the memory required
for the algorithms used. This section presents an analysis
of the virtual memory usage per process. The necessary
information is gathered from the status information in the
pseudo file system proc, provided by Linux. A sleek memory
footprint for the proposed algorithm is considered a key
feature for the usage on future architectures on which the
shrinking memory per core will become an increasing bottle-
neck for most applications. As the memory consumption for
the partitioning algorithm is independent from the memory
consumption of the application, the results can be directly
used to judge the impact on the memory-footprint for any
application. Thus the amount of memory measured in this
analysis can be understood as an overhead cost attached
to the chosen partitioning strategy. Figure 4 shows the
memory usage of ParMetis, when it needs to handle the full
graph for the mesh with 30 million elements, compared to
the case where it has to handle only the simplified linear
graph. The third series in this graph shows the memory
consumption per core for the presented SPartA algorithm.
This measurement was done on the HLRS Nehalem cluster
Laki with OpenMPI 1.4.3 and an executable, compiled with
the Intel Fortran 11.1 compiler. As can be seen, the usage
of ParMetis with the simplified graph needs less memory
than the partitioning with the full graph. Figure 5 compares
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Figure 4. Memory consumption under strong scaling on Laki (OpenMPI)
and 30 million elements.

the memory behavior of ParMetis to SPartA partitioning
for the fixed mesh size of 30 million elements on the
Nehalem cluster Juropa at JSC with ParaStation MPI 5.0.
Unfortunately, the test with a complete graph of the mesh
in ParMetis required a pre-allocation of all possible com-
munication buffers beforehand on this machine, rendering
any useful memory measurement for this case impossible.
However, as already shown, the ParMetis partitioning with
the simplified graph provides a lower bound for the full
graph partitioning of ParMetis. It therefore can be used as
an approximation for the comparison with SPartA. Figure 6
shows the memory consumption in the weak scaling experi-
ment with 10, 000 elements per process. The strong scaling
behavior shows a linear decline in memory consumption for
both ParMetis and SPartA for smaller number of processes
but a significant memory overhead is needed by ParMetis
(up to a factor of 25). SPartA scales very well up to
4,096 cores before a memory increment gets visible. These
memory requirements arise from the necessary buffers for
all processes in the subsequent all-to-all operation. Contrary,
ParMetis scales only up to 1024 cores in memory, and
then starts to demand significantly more memory. It can
also be seen that the memory consumption of ParMetis
depends on the next higher power of two in terms of the
number of processes and therefore 6,144 cores already need
as much memory as 8,192. The same behavior is observed
for 12,288 cores which requires the same amount of memory
as 16,384. The weak scaling of SPartA behaves very well
with only a small slope and stagnation at around 10 MB
per core for large numbers of cores. In contrast, a more
than linear growth of memory consumption per core can be
observed with ParMetis. Both ParMetis and SPartA show
a jump in memory consumption from 8 to 16 cores where
communication between computing nodes has to be done
across the network. Both scaling results indicate excellent
scaling of SPartA even on highly parallel systems with a
small amount of memory per process.
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Figure 5. Memory consumption under strong scaling on Juropa.
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Figure 6. Memory consumption under weak scaling on Juropa.

B. Execution Time

Frequently repeated load balancing for highly dynamic
simulations demand a short execution time of the balancing
algorithm, especially on large numbers of cores. Figure 7
shows the execution times on Jugene for ParMetis both using
the full graph and the simplified one, and SPartA for the
fixed mesh of 30 million elements. Due to the limitation
of 500 MB of main memory per core on this Blue Gene/P
system, ParMetis simply fails at a certain number of cores
as it requires too much memory. With the full graph it does
not work with more than 16, 384 processes. Reducing the
problem to the simplified graph, ParMetis succeeds up to
65, 536 cores. It should be noted, that these experiments
are done without any real application data, which would
reduce the memory available to the balancing algorithm even
further. These memory issues are completely avoided by the
simpler algorithm based on the space-filling curve. It can be
seen that the execution time of SPartA is dominated by a
behavior according to O(p) starting from 16, 384 processes.
This is due to the allocation and initialization of arrays of
the size p for the subsequent all-to-all operations. The weak
scaling using 10, 000 elements on each process is shown in
Figure 8, and confirms the already described trends.

Overall, it can be observed in these measurements on
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Figure 8. Execution time under weak scaling on Jugene.

the different machines, that the simpler SPartA method
compared to the more complicated graph-based alternative
scales much better with respect to memory and time. For
the extreme scaling beyond 10 thousands of cores on su-
percomputing machines in the foreseeable future, this is
an important property. The memory restriction is a hard
constraint that decides if an simulation can be done at all
or not. The time consumption of the balancing influences
the overall application efficiency, especially when it needs
to be executed repeatedly such as in increasingly important
dynamic numerical simulations.

IV. LOAD-BALANCING QUALITY

Figure 9 and 10 show the resulting sum of workloads
wsum(r) for each process r after balancing the mesh with
30 million elements on 8, 192 processes using ParMetis and
SPartA, respectively. As this comparison focuses on quality
and neither on memory consumption nor on running time,
ParMetis was given the full graph information. Nevertheless,
the remaining load imbalance after re-partitioning induces
an efficiency E of only 95.8% with ParMetis, compared
to 99.9% for SPartA. As can be seen in the two figures,
the resulting workload distribution is much more regular
when SPartA is used instead of ParMetis. That is true for
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Figure 9. Workload distribution on 8,192 processes after ParMetis.
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Figure 10. Workload distribution on 8,192 processes after SPartA.

overloading as well as underloading, while ParMetis has
some processes, which are significantly underloaded. This
is due to the fact, that the important factor for the running
time is the bottleneck, that is the relation of largest load
share to the average. However, it is important to note,
that with such a strategy the achieved balancing is worse
then it could be. Also this difference in the achievable
overall efficiency has to be recovered in the graph-based
approach by an accordingly reduced communication effort.
However, with a highly local application as the fluid dynamic
solver considered in the next section, the computational load
is usually higher than the communication. Thus, potential
running time advantages by the graph-based approach are
diminished, and can be neglected in most scenarios.

V. DEPLOYMENT IN APPLICATION

SPartA and ParMetis are deployed within a compressible
Navier-Stokes solver to balance the load dynamically during
the simulation of a supersonic turbulent free stream. Both
methods are accessible from the same interface within the
application. The simulated problem is highly volatile and
propagates shocks through the computational domain, result-
ing in drastic changes of the computational effort between
time steps. We will analyze the dynamic behavior of this
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specific application and apply the two different partitioning
algorithms to it. As already mentioned, the application is
capable of adapting the time-step in each cell such, that
it is optimal in the sense of the stability criterium for
explicit time integration. This results in individual time-
steps for each element rather than a single global time step
for all. These time-steps are strongly dependent on the size
and form of the cell as well as the physical phenomena
within the cell. Besides this factor, there are several other
influences on the computational cost of a single cell, like
the adaptable order of the polynomial representation, usage
of geometrical conversions for curved walls and special
treatments of shocks within an element. To cover all the
various aspects accurately, a time measurement is performed
for the individual elements. These timings are then used as
the weights in the balancing algorithm.

MPI persistent communication is used during the simula-
tion to exchange data between adjacent elements on different
processes. The mesh handling is based on GEUM [3] which
employs a morton-curve to linearize the mesh and provides
the solver with an initial mesh distribution. This initial
distribution divides the number of elements equally on each
process, regardless of their respective loads.

The investigated flow simulation is a highly turbulent
super-sonic free-stream configuration using a hybrid mesh
with 4 million elements. This mesh has extreme differences
in the spatial resolution, and the ratio of the largest to
the smallest volume is around 100. Using just a second
order representation of the solution in the entire domain the
simulation will contain 16 million degrees of freedom.

As already pointed out, the best possible estimation of
the workload is important to obtain a balanced computa-
tion. However, this load depends on many different factors,
which can also change at run time. Therefore, additional
instrumentations were introduced into the code to measure
the amount of time required to actually compute each
element. These measurements also enable an evaluation of
the current partitioning efficiency during the simulation. To
avoid potentially needless re-partitioning at every step, this
efficiency indicator can be used to decide if a re-partitioning
is worthwhile or not. The measurement is done locally for
several iterations of each element, and does not require
any communication. However, there are some user-defined
intervals, at which all processes have to synchronize. At
these points output can be written to disk and additional
administrative tasks might be executed. These points in time
are natural choices to determine the current load distribution
across the complete domain, as well as to perform the actual
re-balancing if needed. The decision to perform a new parti-
tioning of the mesh is based on the bottleneck factor, limiting
the maximum parallel efficiency. A re-balancing is only done
if the ratio of maximal load to average load falls below a
user-defined threshold. While ParMetis gets the full graph
information to find a better partitioning, SPartA only uses

the measured weights. A fair comparison of the following
simulations is achieved by using identical input parameters
and the same test case on the Nehalem cluster at JSC
Jülich using 1024 cores. Non-deterministic behavior of time-
based re-partioning and scheduler-dependent mapping of the
processes onto the actual network layout leads to different
distributions of elements onto the processes. Therefore, all
comparisons show some unavoidable inaccuracies. However,
this error is negligible compared to the differences between
the two partitioning approaches.

A. Scaling of the Memory

The application itself is nicely scaling in memory, as the
required memory is directly attached to the elements in the
mesh. Thus, a reduced partition size leads to a reduced
memory footprint. Therefore, the main effects that can be
observed are those that are related to the balancing mecha-
nism. However, the application requires some more memory
for the data to be transferred for the moved elements. In
total, the quality of the already measured results for the
balancing method still holds for the overall application. For a
simulation with 1024 processes, we observed a peak memory
consumption of 1.79 GB with SPartA, while ParMetis leads
to a peak of 2.85 GB.

B. Communication overhead

Given the simple nature of the proposed partitioning
algorithm, the communication surface of each computational
domain is not actively optimized. It is rather based on the
inherent locality given by the SFC. Therefore, an additional
overhead in the communication time during the simulation is
to be expected. A comparison of the measured overall times
needed to simulate a given ∆t between two load balancing
steps shows however, that the overhead has little impact on
the consumed running time, when compared to the graph-
based partitioning from ParMetis. For the first five intervals
between load balancings, the ParMetis partitioning yields a
total running time of 2664 seconds without the balancing
itself. In contrast, the much simpler SPartA method yields
2700 seconds. Thus, the difference in running time between
the two approaches is less than 2%.

C. Dynamic behavior of the application

Due to the dynamic nature of the flow phenomena which
occurs in this particular simulation, dynamic load balancing
is a key feature to ensure a high parallel efficiency during
the complete simulation. Figure 11 illustrates the achieved
parallel efficiency over the simulation time induced by the
different load balancing methods. The same simulation is
done three times: once without any load balancing, and two
times with the different partitioning approaches. Partitioning
is applied dynamically when the efficiency falls below a
threshold of 80%. In the case of applied load balancing, an
a-priori estimation of the workload per element is done, and
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Figure 11. Efficiency of the simulation over the simulated time.

the mesh is distributed accordingly before the simulation
starts. Figure 11 does not depict the theoretical efficiency E
directly after the redistribution of the elements as the weights
wi on which the distribution is based on may no longer be
valid for the new distribution. The change of characteristics
of elements, e.g. communication cells can become inner cells
or vice versa, re-introduces new load imbalances. Therefore,
the resulting efficiency E for this application scenario is
lower than in the previous benchmark scenarios. Without
any load balancing, the initial equal distribution of elements
to all processes is used during the complete simulation. As
can be seen, the efficiency of the simulation is quite similar
for both partitioning methods, while only one third of the
optimum is achieved without any balancing.

VI. CONCLUSION

In this paper, we studied different re-partitioning methods
to balance dynamically changing workload on static but un-
structured meshes. We presented a simple but both efficient
and effective re-partitioning approach based on space-filling
curves and compared it to the popular graph-based method
used in ParMetis. An adaptable flow solver was chosen as
a benchmark.

Memory consumption was identified as the most critical
advantage of our method over ParMetis. While the graph-
based approach in ParMetis was not capable to run our
test case on more than 65, 536 processors, even with a
drastically reduced graph, our own approach was shown to
scale well up to 294, 912 processors. Potential for further
memory reductions was outlined, which would satisfy the
needs of future large-scale systems with lower memory-per-
core ratio. Disadvantages in comparison to ParMetis in terms
of suboptimal communication surface and locality during the
actual simulation were found to be rather small in the order
of 1-2%. On the other hand, the curve-based partitioning
operation itself is orders of magnitude faster, which allevi-
ates the above penalty to some degree. We expect to benefit
from this compensatory effect especially in highly dynamic

simulations where re-partitioning occurs frequently. Finally,
our implementation based on MPI collective operations is
supposed to deliver portable performance across a broad
range of architectures.
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