
1

Performance Analysis Techniques for Task-Based
OpenMP Applications ?

Dirk Schmidl1, Peter Philippen2, Daniel Lorenz2, Christian Rössel2,
Markus Geimer2, Dieter an Mey1, Bernd Mohr2, and Felix Wolf1,2,3

1 RWTH Aachen University, 52056 Aachen, Germany
2 Jülich Supercomputing Centre, 52425 Jülich, Germany

3 German Research School for Simulation Sciences, 52062 Aachen, Germany

Abstract.

Version 3.0 of the OpenMP specification introduced the task construct for the ex-
plicit expression of dynamic task parallelism. Although automated load-balancing ca-
pabilities make it an attractive parallelization approach for programmers, the difficulty
of integrating this new dimension of parallelism into traditional models of performance
data has so far prevented the emergence of appropriate performance tools. Based on
our earlier work, where we have introduced instrumentation for task-based programs,
we present initial concepts for analyzing the data delivered by this instrumentation. We
define three typical performance problems related to tasking and show how they can
be visually explored using event traces. Special emphasis is placed on the event model
used to capture the execution of task instances and on how the time consumed by the
program is mapped onto tasks in the most meaningful way. We illustrate our approach
with practical examples.

1 Introduction

To harness the available performance of today’s multi-core systems, applications need
to make efficient use of the available parallelism. Cores sitting idle, for example in
communication calls waiting for data to arrive or in synchronization operations due to
load imbalance, waste resources and reduce the overall performance of the application.
However, optimizing load balance is often a non-trivial undertaking, especially since
the behavior of the application may change when ported to a different architecture or
executed on a different number of processor cores.

To address this situation, the tasking construct was introduced with OpenMP 3.0 [3].
Using tasks, the programmer is able to express parallelism in his code at a much finer
level of detail. Instead of specifying a single command stream per thread, as with the
traditional parallel and work-sharing constructs, the programmer can now decompose
his program into smaller tasks and specify dependencies between creator tasks and their
children. The defined tasks are assigned to the available threads by the runtime system.
This approach is supposed to automatically improve load balancing, although it incurs

? This material is based upon work supported by the German Federal Ministry of Research and
Education (BMBF) under Grant No. 01IS07005 and by the Department of Energy under Grant
No. DE-SC0001621.

Published in “Proc. of 8th IWOMP 2012”, LNCS 7312, pp. 196–209, Springer, 2012.
The original publication is available at www.springerlink.com

http://dx.doi.org/10.1007/978-3-642-30961-8_15

2

additional overhead in the runtime system. Moreover, it poses new challenges not only
for developers, but also for performance-analysis tools used for tuning applications.

In our earlier work, we introduced a portable method to distinguish individual task
instances and to track their suspension and resumption using event-based instrumen-
tation [12]. A prerequisite for this approach is that tied tasks are used or untied tasks
which are only suspended at task scheduling points. Based on this method, we present
initial performance-analysis concepts in a trace-based analysis workflow. Specifically,
we make the following contributions:

– We define three performance problems related to tasking.
– We describe an extension of the Open Trace Format 2 (OTF2) [6] event model to

record constituents of these performance problems in event traces. This determines
how task instances are represented in the control flow of individual threads.

– We show how time or other performance-related metrics are attributed to tasks and
threads.

– We demonstrate our concepts using benchmarks and a real-world application.

The paper is organized as follows: We review related work in Section 2. After dis-
cussing typical performance problems in Section 3, we cover the OTF2 event model in
Section 4. Next, we explain the representation of task instances and the attribution of ex-
ecution time in Section 5. Practical examples follow in Section 6. Finally, in Section 7,
we discuss progress and limitations, and present future work.

2 Related Work

Since OpenMP is such a commonly used parallel programming interface, there is al-
ready a body of work addressing performance analysis and optimization. Many current
performance analysis tools support the measurement and analysis of performance data
related to OpenMP constructs. Tools based on instrumentation, such as Scalasca [8],
TAU [14], and Vampir [10], utilize the source-to-source instrumenter OPARI [13] to
capture OpenMP-specific events. However, currently none of them provides support for
tasks, mainly because the event stream of a thread may result in a sequence of task-
instance fragments, which can only be analyzed if the overall task instance to which
those fragments belong can be identified.

Fürlinger et al. [7] were the first who profiled tasks using instrumentation. However,
their initial work provides no mechanism to identify task instances. Lorenz at al. [12]
presented an instrumentation mechanism to identify task instances via source-code in-
strumentation of task-related constructs. This mechanism was demonstrated via a pro-
totypical extension of OPARI. In the meantime, the successor OPARI2 [2] was released,
which—among other improvements—contains a production version of this instrumen-
tation mechanism. Our work builds upon the OPARI2 instrumentation and uses it as a
prerequisite for performance measurements.

Instead of instrumenting the code directly, other tools such as HPCToolkit [1] apply
statistical sampling. In this way, they obtain the call-stack and hardware counters in
regular intervals. Moreover, Sun proposed a compiler interface [9] to obtain OpenMP-
related data for performance analysis. Lin and Mazurov [11] extended this proposal

3

to support tasking and implemented a prototype based on the Sun Studio Performance
Analyzer. However, whereas they focus on the acquisition of performance data, our
work focuses on their analysis.

3 Performance Problems Related to Tasking

In task-parallel programs, typically many more task instances than compute resources
exist. Consequently, we cannot expect all task instances to be executed in parallel. Tasks
which have to wait at a synchronization point do therefore not necessarily indicate a
performance drawback. In most HPC applications, the number of active threads is a
good indication for the number of available compute resources, as most applications
start one thread per core they want to use. Accordingly, all threads can be active at
the same time. What needs to be investigated, even in tasking programs, is whether
all threads are doing useful work all the time. Here, useful work means everything
except spending time in the OpenMP runtime or doing nothing. The following three
performance problems related to tasking can lead to situations where threads waste
compute resources.

Too Finely Grained Task Parallelism. Overhead spent in the OpenMP runtime to
create a task or to suspend and resume it should be avoided if possible. If the execution
time of a task is very small, this overhead can consume more CPU cycles than the
task’s actual execution. In this case, it would be more efficient to execute the task’s
body immediately without separating it into a task. The overhead to create and manage
a task, of course, depends on many different factors, such as the hardware, the compiler,
the data-sharing attributes of the task, and so on. Thus, we cannot quantify precisely
when it is beneficial to create a task.

Too Coarsely Grained Task Parallelism. In contrast to the previous situation, creating
only a few very large tasks may result in load imbalance. For example, if 12 equally
sized large tasks are created and eight threads are used, half of the threads will execute
two tasks and the rest will only execute one. Even if there is a task for every thread,
sometimes there might not be enough to smooth differences in the runtime of individual
tasks, which can depend on dynamic conditions.

Task-Creation Bottleneck. When a lot of threads execute tasks while only a few
threads create them, the creation of tasks can become the bottleneck. This can hap-
pen, for example, when tasks are created in a single region by just one thread. For
n worker threads, the master thread must produce the tasks at least (n-1) times faster
than they are executed by workers. This situation is commonly known in master-worker
approaches where the master can become the performance bottleneck if the number
of workers is too large. Another reason why not enough tasks are created might be a
shortage of available parallelism in dynamic algorithms.

4

4 The OTF2 Task Event Model

Before any performance analysis of an application can be done, information about its
runtime behavior has to be collected. For this purpose, the work presented in this pa-
per leverages the Score-P [2] instrumentation and measurement system. To instrument
OpenMP directives, Score-P utilizes the source-to-source instrumenter OPARI2, us-
ing the technique presented in [12] for task-related constructs. In tracing mode, which
forms the basis of this work, the instrumentation hooks inserted by OPARI2 trigger the
generation of events in the Open Trace Format 2 (OTF2) [6]. But before describing its
task-specific details, we first give a brief overview of OTF2.

OTF2 stores concurrent events in separate event streams per thread of execution,
representing its runtime behavior. Common event types are entering/leaving a func-
tion, sending/receiving a message, or creating/destroying an OpenMP thread team. Each
event includes a timestamp as well as additional event-specific data, such as the source-
code region being entered or the number of bytes being transferred. To avoid redun-
dancy in the data being stored, static entities (so-called definitions) such as information
about source-code regions are stored only once and referenced using numerical identi-
fiers. In addition, OTF2 uses an efficient encoding scheme for these identifiers and other
attributes to compress the event data on-the-fly.

To encode task-specific behavior, the “traditional” records provided by OTF2,
for example, Enter/Leave for entering or leaving a source-code region and
OmpFork/OmpJoin for creating or destroying an OpenMP thread team, do not suffice.
Therefore, new event types need to be introduced. A careful analysis of the performance
deficiencies presented in Section 3 reveals that two types of actions are relevant to an-
alyze the efficiency of task parallelism: the creation as well as the execution of a task.
In the following, we describe which events are generated by those actions and which
event attributes are required for our analyses.

When a task is created, the OpenMP runtime system basically has two choices: the
task can either be executed immediately or queued for later execution. In both cases, it
is essential for a measurement system to be able to identify each task instance. That is,
for each task being created, we generate a corresponding OmpTaskCreate event and
attach a unique numerical task identifier to it. The task identifier zero is reserved for the
implicit task for which no OmpTaskCreate event is generated.

When a task starts its execution—either immediately or when dequeued from the
task queue—the measurement system needs to be notified in order to be able to map all
following events onto the task which generates them. For this purpose, we use the task
identifier assigned during task creation. Obviously, the same notification is required
when the execution of one task is suspended and another task is resumed, that is, a task
switch occurs. As the begin of a task’s execution is basically also a task switch (either
switching from the implicit task or from another task which was suspended or finished
its execution), we use only a single event to encode this behavior. As the identifier of
the task previously being executed is implicitly known, the OmpTaskSwitch event
carries only the task ID of the task being started or resumed, respectively.

Finally, to allow the measurement system to clean up its internal task-specific
data structures, the completion of a task needs to be identified. For this reason, the

5

1 Enter("OMP task", metrics, timestamp);
2 OmpTaskCreate(new_task_id, timestamp);
3
4 #pragma omp task
5 {
6 OmpTaskSwitch(new_task_id, timestamp);
7 Enter("OMP task structured block", metrics, timestamp);
8
9 // Do some useful work...

10
11 Leave("OMP task structured block", metrics, timestamp);
12 OmpTaskComplete(new_task_id, timestamp);
13 }
14
15 if (current_task_id != old_task_id)
16 OmpTaskSwitch(old_task_id, timestamp);
17 Leave("OMP task", metrics, timestamp);

Fig. 1. OTF2 events generated for an OpenMP task construct.

OmpTaskComplete event is introduced, also providing the task identifier of the task
that has just finished its execution.

As can be seen, the identification of task instances via task identifiers is essential for
our event model. However, the OpenMP standard does not yet require runtime systems
to provide such identifiers. We therefore rely on the task instrumentation provided by
OPARI2, which implements a portable method to track task identifiers for tied tasks, as
well as untied tasks that are suspended only at implied scheduling points.

Figure 1 illustrates when the different events will be generated for an OpenMP
task construct. As can be seen, task creation is surrounded by a conventional
Enter/Leave event pair (lines 1 and 17). Inside, the task creation is recorded by
the generating task, assigning a new task identifier (line 2). The OmpTaskSwitch
event before leaving the creation region is only generated in the case one or more tasks
have been executed at the implicit task scheduling point during creation (lines 15/16).
The task execution itself is surrounded by an (unconditional) OmpTaskSwitch and
an OmpTaskComplete event (lines 6 and 12), as well as an Enter/Leave pair for
the task’s structured block (lines 7 and 11).

For other task switching points (i.e., taskwait as well as implicit and explicit
barriers) the event generation is depicted in Figure 2, using the taskwait directive as
an example. Here, a conventional region is created for the construct itself (lines 1 and
7), and optionally an OmpTaskSwitch event is generated in case another task was
executed in between (lines 5/6).

Note that time spent in either a task creation, barrier, or taskwait region is
not necessarily a bottleneck, as these regions can also include the execution of tasks.
Therefore, the time spent executing other tasks needs to be subtracted from the total
time spent in these regions to compute the real waiting time.

6

5 Task Interruption

During the analysis of tasks, special care has to be taken when tasks are suspended and
resumed. In this section, we discuss how analysis tools can handle OmpTaskSwitch
events. The example code in Figure 3 illustrates problems regarding task suspension and
resumption. Note that the taskwait statements in Figure 3 serve only as additional
task scheduling points.

Both functions f1 and f2 in the example do exactly the same, they call do work
and run into a taskwait statement. A thread executing this code could create both
tasks and push them into the task queue. At the barrier it might execute them in the
order shown in Figure 3. First, it starts the execution of task1 and suspends it in the
taskwait statement, then completely executes task2 before it resumes task1.

The rectangles in Figure 3 illustrate the times spent in every function. The length
of the rectangles is directly proportional to the time spent in the region. Although both
tasks actually do the same, the execution of task1 and f1 takes much longer than
the execution of task2 and f2, because task1 was suspended in between. This
is misleading to the programmer. Actually, the suspension of task1 also suspended
the execution of f1, so the time for f1 should not include the execution of task2.
We decided to virtually suspend all functions and regions in the task when the task
is suspended and resume them later along with the task. Figure 4 shows the resulting
event stream. Task1 is split in two intervals by the suspension. This clearly shows that
task2 is not part of task1.

As a proof of concept, we implemented a post-processing tool to apply this ap-
proach to OTF2 traces. The tool duplicates the trace and inserts at task switch regions
corresponding leave events for the suspended task and region enter events for the re-
sumed task. Of course, rewriting the trace is too much overhead for traces of realistic
size but it is sufficient to further investigate the concept. Later on, an analysis tool can
generate the events on-the-fly when reading the trace.

6 Evaluation

As mentioned earlier, the tracing capabilities described in this paper were implemented
as part of Score-P, while the handling of task switches was implemented in a post-
processing tool for OTF2 traces generated by Score-P. Here, we demonstrate that our

1 Enter("OMP taskwait", metrics, timestamp);
2
3 #pragma omp taskwait
4
5 if (current_task_id != old_task_id)
6 OmpTaskSwitch(old_task_id, timestamp);
7 Leave("OMP taskwait", metrics, timestamp);

Fig. 2. OTF2 events generated for an OpenMP taskwait construct.

7

event model is adequate to allow the identification of the performance problems intro-
duced in Section 3. Our evaluation is based on both kernel benchmarks as well as a
real-world application.

Kernel-Benchmarks To show that the performance problems outlined ealier can be
detected, we wrote artificial test programs for all three performance problems:

– A program that creates 10 very large tasks and represents the problem of coarsely
grained tasks.

– A program that creates many finely grained tasks.
– A program that uses a master-worker approach. Here the master produces tasks

sufficiently fast for a few threads but becomes a performance bottleneck for a larger
number of threads.

After instrumenting these kernels and measuring their execution behavior using
Score-P configured in tracing mode, we applied our post-processing tool to the gen-

#pragma omp parallel
{
#pragma omp task

f1();

#pragma omp task
f2();

#pragma omp barrier
}

void f1(){
do_work();

#pragma omp taskwait
}

void f2(){
do_work();

#pragma omp taskwait
}

-en
ter(task1

)

-leave(task1
)

-en
ter(f1

)

-leave(f1
)

-en
ter(d

o
_w

o
rk)

-leave(d
o

_w
o

rk)

-en
ter(taskw

ait)

-leave(taskw
ait)

-en
ter(task2

)

-en
ter(f2

)

-en
ter(d

o
_w

o
rk)

-leave(d
o

_w
o

rk)

-en
ter(taskw

ait)

-leave(task2
)

-leave(f2
)

-leave(taskw
ait)

-en
ter(b

arrier)

-leave(b
arrier)

barrier

task1

f1

do_work

taskwait

task2

f2

do_work tw

-TaskSw
itch

(1
)

-TaskSw
itch

(0
)

-TaskC
o

m
p

lete
(1

)

-TaskSw
itch

(2
)

-TaskSw
itch

(1
)

-TaskC
o

m
p

lete
(2

)

Fig. 3. Top: Code to generate two tasks, one calling f1 and the other one calling f2.
Both functions do exactly the same. Bottom: Example execution sequence for this code
with active functions shown as rectangles. Task1 is interrupted when task2 begins.
The rectangles indicate, that task1 and f1 have a much longer execution time than
task2 and f2.

8

barrier

task1

f1

do_work

task2

f2

do_work tw

task1

f1

-en
ter(task1

)

-leave(task1
)

-en
ter(f1

)

-leave(f1
)

-en
ter(d

o
_w

o
rk)

-leave(d
o

_w
o

rk)

-en
ter(taskw

ait)

-leave(taskw
ait)

-en
ter(task2

)

-en
ter(f2

)

-en
ter(d

o
_w

o
rk)

-leave(d
o

_w
o

rk)

-en
ter(taskw

ait)

-leave(task2
)

-leave(f2
)

-leave(taskw
ait)

-en
ter(b

arrier)

-leave(b
arrier)

-TaskSw
itch

(1
)

-TaskSw
itch

(0
)

-TaskC
o

m
p

lete
(1

)

-TaskSw
itch

(2
)

-TaskSw
itch

(1
)

-TaskC
o

m
p

lete
(2

)

tw tw

Fig. 4. Execution sequence of the above-mentioned example code with one thread only.
Here all functions are interrupted when task1 is interrupted. Task1 and task2 seem
to take the same time, now.

erated OTF2 traces. The resulting modified trace files were then visualized using the
graphical trace browser Vampir [10]. In the following, regions called task X Y in-
dicate a task that was created by thread X and whose identifier is Y. Regions named
!$omp task indicate task creation overhead.

Figure 5 shows a Vampir screenshot for the first test program creating very large
tasks. In the timeline view at the top, it is clearly visible that two threads execute two
tasks, whereas the rest of the threads only execute a single task. Therefore, six threads
spend a significant amount of time in the !$omp implicit barrier region, wait-
ing for the two remaining threads to finish. The function summary view at the bottom
displays the exclusive execution time spent in different regions, highlighting the perfor-
mance bottleneck of this kernel. The program spends 0.6 seconds from a total of 1.6
seconds in the barrier which can be considered substantial overhead.

The corresponding displays for the second test program generating many finely
grained tasks is shown in Figure 6. Here, we zoomed in on a smaller interval to see
more details. The function summary chart gives again a first indication of suboptimal
performance. It can be seen that a significant fraction of the wall-clock time is used for
task creation (i.e., spent in OMP TASK), while the fraction of actual workload execution
seems to be minor. Looking closer at the timeline view, we can see that the individ-
ual tasks take about 50 µs, while the creation of one task takes about 5 ms or more.
The program could therefore be optimized since immediate execution of the task body
would be much faster than creating separate tasks.

The third kernel implements a master-worker approach where one thread creates
many tasks and all other threads execute them. Figure 7 shows the timeline views
for two different thread-team sizes. At the top, the timeline of an execution with four
threads is shown. Thread 0 is continuously creating tasks and the other threads are ex-
ecuting them. Since threads 1-3 are busy executing the tasks and spend only a very
small fraction of time in the barrier between task executions, the overhead spent in the
OpenMP runtime is quite low.

9

Fig. 5. Vampir screenshot illustrating how too coarsely grained tasks can be detected. In
the timeline view two threads execute two task whereas the other threads execute only
one task and wait in the barrier.

At the bottom, the timeline of an execution with 16 threads is shown. Here, a dif-
ferent behavior can be observed. Thread 0 is still creating tasks all the time, but many
of the other threads are waiting in the barrier without executing any tasks. Immediately
after a task has been created, a thread starts executing it. For example, after thread 0 fin-
ished creating task 0 102, thread 10 stops idling and executes it. Shortly afterwards,
thread 6 picks up task 0 103 and thread 4 executes task 0 104. This demonstrates
that there are not enough tasks available for all threads. In this situation, the developer
should think about a different task-creation approach, such as creating tasks in parallel
or switching to larger tasks to fully utilize all available threads.

FIRE Finally, we want to examine how our approach allows task execution to be rep-
resented in call trees using a real-world example. The Flexible Image Retrieval Engine
(FIRE) [4] was developed by the Human Language Technology and Pattern Recogni-
tion Group of RWTH Aachen University. FIRE is used to compare k query images to
an image database, identifying those images that are close to the query images. The first
parallelization of the FIRE code used nested parallelism with two levels [15]. Here, we
are using a modified version using tasking instead. For every query image, a separate
task is created. Inside these tasks, every comparison of a query picture and one ele-
ment of the database constitutes another task. This approach is a bit more flexible than
the nested OpenMP version since every thread can work on any task. For nested par-
allelism, it was necessary to assign a fixed number of threads to the inner regions. Our
test case requires searching for two query images in a database of 1000 images.

Similar to the approach used for the kernel benchmarks, we instrumented the task-
based FIRE code and generated an OTF2 trace using Score-P. After applying our post-
processing tool, however, we analyzed the resulting trace files using a prototype of the

10

Fig. 6. Vampir screenshot illustrating how too finely grained tasks can be detected.
The task creation (!$omp task) regions consume more time than the task execution
(task X Y) regions.

automatic trace analyzer of Scalasca [8] which is capable of handling OTF2 traces. The
analysis result is shown in the CUBE display in Figure 8. The left column shows differ-
ent metrics derived from the trace data, with the visit count being selected, whereas the
right column shows the system tree, i.e., the machine, the process, and all the threads
being used. In the middle column, the call tree of the application is shown.

The call tree shows a parallel region in main -> Server::batch. Inside the
parallel region, there is a single construct where tasks are created and an implicit
barrier at the end where the tasks are executed. The visit count indicates that only two
tasks are created in the single construct, that is, one task for every query image. If we
take a closer look at the tasks executed in the implicit barrier, we can identify these two
tasks there (task 0 1 and task 0 2). All the other subtasks, which were created by
these two tasks, also appear under the implicit barrier, since the threads waiting in this
barrier executed them.

Overhead Analysis After having shown that our approach is capable of identifying the
performance problems discussed in Section 3 and that it is also applicable to real-world
application codes, we now examine the measurement overhead introduced by our in-
strumentation. For this purpose, we use the Barcelona OpenMP Task Suite (BOTS) [5],
a set of benchmark codes for OpenMP tasking developed by Duran et al. We performed
several test runs of these benchmarks on the Juropa1 cluster at Jülich Supercomputing
Centre, consisting of dual-sockel boards with Intel Xeon X5570 quad-core processors.
We compared the runtime of the instrumented and uninstrumented versions of the BOTS
benchmark codes using eight threads and determined the overhead introduced. The run-
time of each benchmark was measured 10 times and the minimum runtime out of these
runs is shown in Table 1.

1 http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA node.html

11

Fig. 7. Vampir screenshot illustrating how a task-creation bottleneck can be detected.
Both timelines show the same program where a single thread creates tasks for all other
threads. Top: With four threads every worker thread is busy, executing tasks. Bottom:
With 16 Threads some threads are idle and wait for tasks from the master thread.

Obviously, there are differences in the overhead observed. Some tests show nearly
no overhead, for example the strassen or sparselu benchmarks. Others, like
sort, floorplan of fft, show an overhead of 5-25%. This overhead can still be
considered acceptable, since the measurements provide very detailed information on
the runtime behavior of the program. For some of the benchmarks, a negative overhead
of up to -9% (fib.omp-tasks-tied) was observed. Since this phenomenon was
consistent across all ten test runs, it is unlikely to be an artifact of run-to-run variation.
Our current assumption is that for very small tasks, the executing threads are compet-
ing for some shared data structures in the OpenMP runtime. Since our instrumentation
enlarges the computational part of the task, lock competition effects might diminish,
leading to a reduction of the overhead time spent in the OpenMP runtime. However,
since we cannot investigate runtime internals, we are unable to proof this assumption.

As an exception, we observed an overhead of roughly 500% for the
fib.omp-tasks-if clause-tied benchmark. The tasks executed by the fib
code recursively spawn two child tasks, perform a taskwait, and then add the two
values returned by the child tasks. In the if clause variant, tasks are only spawned up to
a fixed recursion depth, reducing the task creation overhead enormously. Our measure-
ment approach does not instrument tasks not being spawned, but we still instrument and
record all the taskwait statements for all recursion levels. However, the ratio of one
taskwait statement for one addition in the code is quite artificial and unrealistic for
real-world applications.

12

Fig. 8. Scalasca analysis result of the FIRE code. The middle column shows the call
tree of the program run, with tasks being executed inside the implicit barrier at the end
of a parallel region.

7 Conclusion

In this paper, we described potential performance problems that might emerge when
utilizing OpenMP tasks. To capture the constituents of these performance problems in
event traces, we presented the event model developed for OTF2, and described its imple-
mentation as part of the measurement infrastructure Score-P. Furthermore, a mechanism
to attribute performance metrics to tasks taking their possible interruption into account
has been prototyped as a post-processing tool which rewrites OTF2 event traces. With
this infrastructure in place, we were able to detect the previously specified performance
problems in synthetic benchmarks. Applying our approach to a real-world code like
FIRE, we could show how tasks can be represented in more complex call trees.

In the future, we plan to integrate our concepts fully into Score-P, omitting the trace
rewriting step, and into the supported performance analysis tools Vampir, Scalasca,
TAU and Periscope. By gaining experience with our approach, for example, by an-
alyzing real-world user codes, we will look out for typical task-related performance

13

Original Runtime Instrumented Runtime Overhead
alignment.omp-tasks-tied 2,77 sec. 2,77 sec. -0,08%
fft.omp-tasks-tied 5,49 sec. 6,25 sec. 13,77%
fib.omp-tasks-if clause-tied 0,12 sec. 0,75 sec. 525,81%
fib.omp-tasks-tied 36,29 sec. 32,97 sec. -9,16%
floorplan.omp-tasks-if clause-tied 2,89 sec. 3,10 sec. 7,22%
floorplan.omp-tasks-tied 43,04 sec. 41,21 sec. -4,25%
health.omp-tasks-if clause-tied 3,24 sec. 4,00 sec. 23,51%
health.omp-tasks-tied 23,01 sec. 22,30 sec. -3,05%
nqueens.omp-tasks-if clause-tied 5,82 sec. 6,58 sec. 13,04%
nqueens.omp-tasks-tied 270,69 sec. 294,45 sec. 8,78%
sort.omp-tasks-tied 3,09 sec. 3,28 sec. 6,14%
sparselu.single-omp-tasks-tied 14,74 sec. 14,74 sec. 0,00%
strassen.omp-tasks-if clause-tied 25,85 sec. 25,76 sec. -0,36%
strassen.omp-tasks-tied 25,85 sec. 26,03 sec. 0,72%
Table 1. Runtime of the BOTS benchmarks with eight Threads. The original runtime
and the runtime of the instrumented benchmark, when only OpenMP constructs were
instrumented (no function instrumentation by the compiler) is shown as well as the
overhead due to instrumentation in percent.

problems that have not been addressed yet and whose detection and analysis might be
of value to the user.

References

1. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel programs
http://hpctoolkit.org. Concurr. Comput. : Pract. Exper., 22:685–701, April 2010.

2. D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A. Knüpfer,
D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S.
Shende, M. Wagner, B. Wesarg, and F. Wolf. Score-P–A unified performance measurement
system for petascale applications. In Proc. of the CiHPC: Competence in High Performance
Computing, HPC Status Konferenz der Gauß-Allianz e.V., Schwetzingen, Germany, pages
1–12. Gauß-Allianz, Springer, June 2010. (to appear).

3. OpenMP Architecture Review Board. OpenMP application progam interface version 3.0.
Technical report, OpenMP Architecture Review Board, May 2008.

4. T. Deselaers, D. Keysers, and H. Ney. Features for Image Retrieval - a quantitative com-
parison. In 26th DAGM Symposium, Pattern Recognition (DAGM 2004), number 3175 in
Lecture Notes in Computer Science, pages 228 – 236, Tübingen, Germany, 2004.

5. Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguadé.
Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task
Parallelism in OpenMP. In 38th International Conference on Parallel Processing (ICPP
’09), pages 124–131, Vienna, Austria, September 2009. IEEE Computer Society, IEEE Com-
puter Society.

14

6. D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W.E. Nagel, and F. Wolf. Open Trace
Format 2 - The next generation of scalable trace formats and support libraries. In Proc. of
the Intl. Conference on Parallel Computing (ParCo), Ghent, Belgium, 2011. (to appear).

7. K. Führlinger and D. Skinner. Performance profiling for OpenMP tasks. In Evolving
OpenMP in an Age of Extreme Parallelism, volume 5568 of Lecture Notes in Computer
Science, pages 132–139. Springer, May 2009.

8. M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The Scalasca
Performance Toolset Architecture. Concurrency and Computation: Practice and Experience,
22(6):702–719, 2010.

9. M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. An OpenMP runtime API for profiling.
Technical report, Sun Microsystems, Inc., 2007.

10. A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.S. Müller, and
W.E. Nagel. The Vampir Performance Analysis Tool Set. In Tools for High Performance
Computing, pages 139–155. Springer, July 2008.

11. Y. Lin and O. Mazurov. Providing observability for OpenMP 3.0 applications. In Evolving
OpenMP in an Age of Extreme Parallelism, volume 5568 of Lecture Notes in Computer
Science, pages 104–117. Springer, May 2009.

12. D. Lorenz, B. Mohr, C. Rössel, D. Schmidl, and F. Wolf. How to reconcile event-based per-
formance analysis with tasking in openmp. In Mitsuhisa Sato, Toshihiro Hanawa, Matthias
Müller, Barbara Chapman, and Bronis de Supinski, editors, Beyond Loop Level Parallelism
in OpenMP: Accelerators, Tasking and More, volume 6132 of Lecture Notes in Computer
Science, pages 109–121. Springer Berlin / Heidelberg, 2010.

13. B. Mohr, A.D. Malony, S.S. Shende, and F. Wolf. Design and prototype of a performance
tool interface for OpenMP. The Journal of Supercomputing, 23(1):105–128, August 2002.

14. S. Shende and A. D. Malony. The TAU Parallel Performance System, SAGE Publications.
International Journal of High Performance Computing Applications, 20(2):287–331, 2006.

15. C. Terboven, T. Deselaers, C. Bischof, and H. Ney. Shared-Memory Parallelization for
Content-based Image Retrieval. In ECCV 2006 Workshop on Computation Intensive Meth-
ods for Computer Vision (CIMCV), Graz, Austria, May 2006.

