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Abstract. Wait states in parallel applications can be identified by scanning event
traces for characteristic patterns. In our earlier work, we have defined such pat-
terns for MPI-2 one-sided communication, although still based on a trace-analysis
scheme with limited scalability. Taking advantage of a new scalable trace-analysis
approach based on a parallel replay, which was originally developed for MPI-1
point-to-point and collective communication, we show how wait states in one-
sided communications can be detected in a more scalable fashion. We demon-
strate the scalability of our method and its usefulness for the optimization cycle
with applications running on up to 8,192 cores.

Keywords: MPI-2, remote memory access, performance analysis, scalability, pat-
tern search.

1 Introduction

Remote memory access (RMA) describes the ability of a process to access all or parts
of the memory belonging to a remote process directly, without explicit participation
of the remote process in the data transfer. Since all parameters for the data transfer
are determined by a single process, it is also called one-sided communication. This
programming model is made available to the programmer often in the form of platform-
or vendor-specific libraries, such as SHMEM (Cray/SGI) or LAPI (IBM). In 1997, one-
sided communication was added to the portable MPI standard with version 2 [1], and
since then has been adopted by the majority of the available MPI implementations.

Although it has been shown that the use of MPI-2 RMA can improve application
performance [2], it has not yet been widely adopted among the MPI user community.
But we believe that the availability of suitable programming tools, in particular for
performance analysis, can encourage more developers to exploit the benefits of this
model. However, since increasing demand for compute power in combination with re-
cent trends in microprocessor design towards multicore chips forces applications to
scale to much higher processor counts, such tools must be scalable to be useful.

A non-negligible fraction of the execution time of MPI applications can often be at-
tributed to wait states, which occur when processes fail to reach synchronization points
in a timely manner, for example, due to load imbalance. Especially when trying to scale
communication-intensive applications to large processor counts, such wait states can
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present severe challenges to achieving good performance. In our earlier work [3], we
have shown how wait states related to MPI-2 RMA can be identified by searching event
traces for characteristic patterns. However, the search algorithm applied was sequential
and intended to operate on a single global trace file, offering only limited scalability. In
the meantime, we developed a general framework to make pattern search in event traces
more scalable [4]. Instead of sequentially analyzing a single global trace file, the frame-
work analyzes multiple process-local trace files in parallel while performing a parallel
replay of the target application’s communication behavior. In this paper, we present a
synthesis of the two approaches, making the search for wait states in the context of MPI-
2 RMA more scalable by enacting a parallel replay of one-sided operations, which had
previously only been tried for two-sided and collective operations. The new scalable
detection scheme for one-sided communication has been integrated into Scalasca [5], a
performance analysis toolset specifically designed for large-scale systems.

The remainder of this paper is organized as follows. Section 2 gives a brief overview
of the work done on this topic so far. Afterwards, the semantics of the MPI RMA pro-
gramming model are explained in Section 3, before specifying the supported MPI RMA

inefficiency patterns and their replay-based detection algorithms in Section 4. More-
over, results with two RMA-based applications running on up to 8,192 cores demonstrate
the scalability of our method and its usefulness for the optimization cycle in Section 5.
Finally, Section 6 concludes the paper and gives a brief outlook on future work.

2 Related Work

The number of portable performance-analysis tools supporting MPI-2 RMA is quite lim-
ited. The Paradyn tool, which conducts an automatic on-line bottleneck search, supports
several major features of MPI-2 [6]. To analyze RMA operations, it collects process-local
statistical data (i.e., transfer counts and time spent in RMA functions). Yet, it does not
take inter-process relationships into account. By contrast, the TAU performance sys-
tem [7] supports profiling and tracing of MPI-2 one-sided communication, though only
by monitoring the entry and exit of RMA functions. Therefore, it does not provide RMA

transfer statistics nor does it record the transfers in tracing mode. Recently, the trace
collection and visualization toolset VampirTrace/Vampir [8] was extended to provide
experimental support for MPI-2 one-sided communication [9].

In our previous work [3], we defined a formal event model as well as a number of
characteristic patterns of inefficient behavior that can arise in the context of MPI-2 RMA

communication. The detection of these patterns was implemented as an extension of the
serial trace analyzer KOJAK [10] and constitutes the foundation for our new, scalable
bottleneck detection algorithm.

The Parallel Performance Wizard (PPW) [11] is an automatic performance tool
specifically designed for partitioned global address space (PGAS) languages, which
provide the abstraction of shared memory to the user while internally converting all re-
mote accesses to one-sided communication calls. Some PGAS languages, such as UPC,
also support explicit one-sided communication. PPW supports the analysis of programs
written in such languages by providing so-called generic operation types that are de-
fined on top of an RMA event model.
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3 MPI-2 Remote Memory Access

The interface for RMA operations defined by MPI differs from vendor-specific APIs
in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms, even if a platform does not provide any direct hardware
support for RMA. The design behind the MPI RMA API is similar to that of weakly
coherent memory systems: correct ordering of memory accesses has to be specified by
the user with explicit synchronization calls; for efficiency, the implementation can delay
communication operations until the synchronization calls occur.

MPI does not allow RMA operations to access arbitrary memory locations. Instead,
they can access only designated parts of the memory, which are called windows. Such
windows must be explicitly initialized with a call to MPI Win create and released
with a call to MPI Win free by all processes that either want to expose or to access
this memory. These calls are collective between all participating partners and may in-
clude an internal barrier operation. By origin MPI denotes the process that performs
an RMA read or write operation, and by target the process the memory of which is
accessed.

There are three RMA communication calls in MPI: MPI Get to read from and MPI Put
and MPI Accumulate1 to write to the target window. MPI-2 RMA synchronization falls
in two categories: active target and passive target synchronization. In active mode both
processes, origin and target, have to participate in the synchronization, whereas in pas-
sive mode explicit synchronization occurs only on the origin process. MPI provides
three RMA synchronization mechanisms:

Fences: The function MPI Win fence is used for active target synchronization and is
collective over the communicator used when creating the window. RMA operations
need to occur between two fence calls.

General Active Target Synchronization (GATS): In this scheme, synchronization oc-
curs between a group of processes that is explicitely supplied as a parameter to
the synchronization calls. A so-called access epoch is started at an origin pro-
cess by MPI Win start and terminated by a call to MPI Win complete. The start
call specifies the group of targets for that epoch. Similarly, an exposure epoch is
started at a target process by MPI Win post and completed by MPI Win wait or
MPI Win test. Again, the post call specifies the group of origin processes for that
epoch.

Locks: Finally, shared and exclusive locks are provided for the so-called passive target
synchronization through the MPI Win lock and MPI Win unlock calls, defining the
access epoch for this window at the origin.

It is implementation-defined whether some of the above-mentioned calls are block-
ing or non-blocking, for example, in contrast to other shared memory programming
paradigms, the lock call may not be blocking. In the remainder of this paper, we exclu-
sively focus on active target communication. However, as part of our future work, we
plan to address also passive target communication.

1 A generalized version of MPI Put with the possibility of using a reduction operator.
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4 Automatic Detection of RMA Inefficiency Patterns

In this section, we describe how the MPI RMA-related inefficiency patterns defined in [3]
can be automatically detected in a scalable way within the framework of the Scalasca
performance-analysis toolset. Scalasca is an open-source toolset that can be used to an-
alyze the performance behavior of parallel applications and to identify opportunities
for optimization. As a distinctive feature, Scalasca provides the ability to identify wait
states in a program that occur, for example, as a result of unevenly distributed work-
loads, by searching event traces for characteristic patterns. To make the trace analysis
scalable, process-local traces are analyzed in parallel without prior merging. The cen-
tral idea behind Scalasca’s parallel trace analyzer is to reenact the application’s com-
munication behavior recorded in the trace, analyzing communication operations using
operations of the same type. For example, to detect wait-states related to point-to-point
message transfers, the events necessary to analyze such a communication are exchanged
between the participating processes in point-to-point mode as well. This techniques re-
lies on reasonably synchronized timestamps between the different processes. On plat-
forms without synchronized clocks, a software correction mechanism is applied post
mortem [12]. The scalability of the parallel replay mechanism has already been demon-
strated for up to 65,536 cores [13].

Here, we apply the same methodology to MPI RMA operations, that is, RMA transfers
are used to exchange the data required for the analysis. For this purpose, our analy-
sis creates a small buffer window for every window created by the application itself.
The buffers are used by origin and target processes to exchange the timestamps needed
for the calculation of waiting times. Earlier, during trace acquisition (i.e., at applica-
tion runtime), Scalasca’s measurement layer keeps track of all windows being created
and records the window definitions plus all synchronization and communication oper-
ations acting on these windows. When the replay is performed in the analysis step, all
those windows can be recreated using the same set of processes based on the recorded
window definitions. The timestamps are subsequently transferred using MPI Get and
MPI Accumulate operations.

To ensure that the access and exposure epochs are available at the time when the an-
alyzer processes the corresponding part of the event trace, the synchronization pattern
used by the original application is reconstructed during the replay. That is, synchro-
nization on the exchange window is triggered by the exit events recorded for the RMA

synchronization calls involved. The exit event for MPI Win fence collectively synchro-
nizes the exchange window, whereas the exit of MPI Win start opens an access epoch
for the recorded group of processes, which is closed whenever the exit event of the cor-
responding MPI Win complete call is found. Similarly, an exposure epoch is opened
and closed at the exit events of MPI Win post, MPI Win wait, and MPI Win test re-
gions completing an exposure epoch. Please note that the analysis relies on correctly
applied synchronization, which is why it may deadlock in cases of erroneous synchro-
nization by the application.

During the replay, specific call backs are triggered for RMA-related events to de-
tect the different inefficiency patterns, as described below. For the sake of simplic-
ity, the individual actions taken are described in the context of the respective pattern.
However, our implementation actually combines all these actions using a sophisticated
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Fig. 1. The Early Transfer and Late Post (in two variants) inefficiency patterns. The waiting time
attributed to each pattern is marked in dark gray. Origin and target roles are isolated in different
processes—process C is the target for processes A, B, and D.

notification and call-back mechanism not to transfer the same data twice, thereby min-
imizing the communication costs of the analysis.

Late Post. The Late Post inefficiency pattern refers to waiting time occurring during
general active target synchronization (GATS) operations of an access epoch that block
until access is granted by the corresponding exposing process as depicted in Figure 1.
Depending on the MPI implementation, this may happen either during MPI Win start
(proc. B and C) or MPI Win complete (proc. D and C). However, the exact blocking
semantics are usually not known. Therefore, we use a heuristic to determine which
calls are blocking. If and only if the enter event of the call to the latest MPI Win post
on the exposing processes (15) occurs within the time interval of the MPI Win start
call on the accessing process (8,9), we assume that the call to MPI Win start is block-
ing, and the waiting time is determined by the time difference between entering the
MPI Win post operation (15) and entering MPI Win start (8), to which the waiting
time is finally ascribed. Likewise, waiting time during the call to MPI Win complete is
determined on the accessing process, where the enter event of the complete call (24) is
used to calculate the waiting time. In the case one of these calls is falsely assumed to be
blocking, the overall time spent in the call will be very small, resulting in a negligible
inaccuracy with respect to the overall severity of this pattern.

To detect the Late Post pattern, the following MPI RMA operations occur during the
replay: The exit event of the MPI Win post call (16) triggers the start of the exposure
epoch on the target process after initializing the exchange buffer with the timestamp of
the post enter event (15) and default values for all other fields. At the
origin processes, the exit events of the call to MPI Win start (2,9,20) trigger the start
of the access epochs for the exchange window and the post enter timestamp of each
target process is retrieved using MPI Get. Accordingly, the exit events of the calls to
MPI Win complete (7,14,25) close the access epoch and the post enter timestamps can
be accessed to locally determine the latest post. This timestamp can then be compared
to the timestamps of the locally available events to determine the Late Post variant and
finally calculate the waiting time if applicable. On the target processes, the end of the
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Fig. 2. The Early Wait (dark gray+hatched) and Late Complete (hatched) inefficiency patterns

exposure epoch is ensured by calling MPI Win wait when reaching the corresponding
exit event (18).

Early Transfer. The Early Transfer pattern occurs when an RMA operation is blocking
because the relevant exposure epoch has not yet been started (Fig. 1, proc. A and C). It is
therefore similar to Late Post, and in fact requires exactly the same data to be transferred
(i.e., the post enter timestamps), but the waiting time is attributed to the remote access
operation. As before, it can not easily be determined whether the RMA transfer call
was actually blocking. However, we assume this to be the case if the corresponding
MPI Win post (15) call was issued on the target side within the time interval of the
remote access in question (3,5). Since the post enter timestamps are only accessible after
closing the access epoch, a backward traversal of the event data is required, comparing
the timestamps recorded for each RMA operation with the post enter timestamp of the
corresponding target process. If the RMA operation was non-blocking in reality, the time
falsely classified as waiting time would again be very small.

Early Wait. This pattern refers to the situation where the exposing process is waiting
for other processes to complete the remote accesses of their access epoch (Fig. 2). As
the call to MPI Win wait cannot return until all access epochs have been finished, the
time span between the enter event of the call to MPI Win wait and the latest enter event
of the corresponding calls to MPI Win complete on the accessing processes is counted
as waiting time.

To detect the Early Wait pattern, the timestamps of the enter events of calls to
MPI Win complete (6,13) are transferred to the target processes via MPI Accumulate
using the MPI MAX operator just before closing the access epoch, thereby storing the
latest complete enter timestamp in the target’s exchange buffer. The waiting time can
then be determined by subtracting the timestamp of the wait enter event (17) from the
latest complete enter timestamp (6) stored in the exchange buffer. As can be seen, the
one-sided model naturally lends itself to perform this type of analysis.

Late Complete. To allow for efficient synchronization, access epochs should be as com-
pact as possible. As the target process can close the exposure epoch only after all access
epochs have been completed, waiting time in the Early Wait pattern that occurs between
the last RMA operation and the completion of the respective access epoch is attributed
to the Late Complete pattern (Fig. 2, hatched area), a sub-pattern of Early Wait.
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Fig. 3. The Wait-at-Fence (dark gray+hatched) and Early Fence (hatched) inefficiency patterns

During the detection, each origin caches the exit event of the latest RMA opera-
tion (5,12) separately for each target. If no RMA operation is present in the access
epoch, the exit timestamp of the MPI Win start call is taken. Then, all the origins
of a given target transfer their cached timestamp to the target via MPI Accumulate us-
ing the MPI MAX operator just before closing the access epoch while processing the exit
events of the calls to MPI Win complete (7,14). There the maximum value obtained
can then be subtracted from the timestamp of the latest complete enter event, which is
already available from the Early Wait detection algorithm.

Wait at Fence. This pattern refers to a wait state during the completion of a fence oper-
ation as shown in Figure 3. Although MPI Win fence is a collective call, it may not be
synchronizing, depending on given assertions or MPI-internal window status informa-
tion. However, as potentially all processes of the communicator may access the local
window, a confirmation is needed from the remaining processes that their access epoch
on this window has ended. Thus, at least a partial synchronization is required. We as-
sume a collective call of MPI Win fence to be globally synchronizing if the timestamps
of all associated enter events occur before any exit event of the same fence call. Unfor-
tunately, this heuristic does not detect and attribute time to the Wait at Fence pattern if
only some of the processes synchronize. However, waiting time due to partial synchro-
nization is detected, if the sub-pattern Early Fence is present (see below).

To detect the Wait at Fence pattern, the latest enter and earliest exit timestamps of
the fence (4,7) are determined with a single MPI Allreduce call using a user-defined
operator. If the above-mentioned overlap criterion is met, the difference between the
latest enter event (4) and the local enter event (6) is counted as waiting time.

Early Fence. Waiting time for entering a fence before all remote accesses have finished
is attributed to the Early Fence pattern, a sub-pattern of Wait at Fence (Fig. 3, hatched
area). It will always be accounted as waiting time, even in situations where only a subset
of the processes are synchronizing.

Here, all processes locally determine the latest exit timestamp of their remote ac-
cesses (3) for each target and transfer them to the matching target processes via accu-
mulate, again using the MPI MAX operator. These transfers are surrounded by two calls
to fence to ensure correct synchronization. In this way the earliest possible completion
of the latest RMA operation of all accessing origin processes is determined and used
to calculate the waiting time of this pattern as the time difference between leaving the
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Table 1. Event statistics and analysis times for the red-black SOR Poisson solver. The last column
shows the analysis time in percent of the application runtime.

# cores # events trace size [MB] analysis time [s] analysis time [%]

128 12,681,376 106.78 2.19 0.75
256 26,130,816 217.13 2.22 0.79
512 53,029,696 437.63 2.78 0.77

1,024 107,595,520 883.25 2.37 0.84
2,048 216,727,168 1,774.63 2.54 0.86
4,096 436,536,592 3,565.63 2.91 1.01
8,192 876,125,440 7,151.25 3.60 1.19

latest RMA operation (3) and the local enter event for the fence (6). Time attributed to
the Early Fence pattern is also attributed as time in Wait at Fence, even if due to our
heuristic the analyzer was unable to detect the Wait at Fence pattern directly.

5 Results

In this section, we present early results for two different MPI-2 RMA codes. We took
our measurements at the Jülich Supercomputing Centre on the IBM Power6 575 clus-
ter “Jump” and an IBM Blue Gene/P system at IBM Rochester. Based on the results
collected with up to 8,192 processes on the two-rack Blue Gene/P so far, and the ex-
periences with our replay-based analysis method in general, we believe that the RMA

analysis scales well beyond this point.

5.1 SOR Solver

With the first code, SOR, we verify the scalability of our analysis. SOR solves the
Poisson equation using a red-black successive over-relaxation method. The two main
communication steps are halo-exchange and scalar reduction operations. The former
was adapted to use MPI RMA instead of the original non-blocking point-to-point com-
munication. The latter still uses MPI collective communication as before. The global
domain is a three-dimensional grid of size Nhoriz ×Nhoriz ×Nvert , which is partitioned
along the two horizontal dimensions using a 2D process mesh. The communication pat-
tern of this application is typical for grid-point codes used in earth and environmental
science.

A series of experiments was collected and analyzed at different scales on a two-
rack IBM Blue Gene/P system at IBM Rochester. The solver was configured to run
for approx. 5 minutes using weak scaling and a problem size where no convergence
was reached within the maximum number of 1000 iterations. The key numbers are
given in Table 1. As can be seen, the total number of events increases linearly with the
number of cores, as is the case for the total size of the compressed trace data. The time
exclusively needed for the replay analysis (i.e., without loading the traces and writing
the results, which together took less than 16 seconds for the 8,192-core run) is only
mildly ascending, as expected for weak scaling.
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5.2 BT-RMA

To evaluate the usefulness of our analysis for application optimization and to verify that
the inefficiency patterns described earlier appear in practice, we incrementally devel-
oped a version of the BT benchmark from the NAS Parallel Benchmark Suite 2.4 [14]
that uses one-sided instead of non-blocking point-to-point communication named BT-
RMA. The BT benchmark solves three sets of uncoupled systems of equations in the
three dimensions x, y, and z. The systems are block tridiagonal with 5 × 5 blocks.
The domains are decomposed in each direction, with data exchange in each dimension
during the solver part, as well as a so-called face exchange after each iteration. Those
exchanges are implemented using non-blocking point-to-point communication in BT.
Due to a known problem with fence synchronization on Blue Gene/P systems with
V1R3M0 runtime environments, we measured, analyzed and subsequently optimized
the BT-RMA code on our IBM Power6 575 cluster “Jump” using the “class D” problem
size on 256 cores in ST mode. For measurement, five purely computational subroutines
were excluded from instrumentation, lowering the runtime intrusion to about 1% and
keeping the trace size manageable.

For simplicity, our initial version of BT-RMA used fence synchronization for both
data exchanges. The analysis results (Tab. 2) showed that more than 44% of the over-
all runtime was spent in active target synchronization calls, that is, MPI Win fence.
Approximately 6% of the total time was found to be waiting time attributable to the
Wait at Fence pattern. Further investigation revealed that most of this time was spent in
synchronizing the solver exchanges.

We subsequently modified the code to use GATS synchronization in the solver, while
still using fences in the face exchange. This version shows a dramatic reduction of the
overall execution time to only 57% of the runtime of the fence-only variant. Although
significantly faster, active target synchronization still accounts for about 4.2% of the
application runtime, with Wait at Fence requiring 1.3% and Early Wait about 0.9%. In
addition, this variant uses 2.5× more time for remote access operations compared to
the fence-only version, now spending 1.6% of the total time in the Early Transfer wait
state.

Table 2. Performance metrics for different variants of BT-RMA in CPU seconds (first number) and
percent of total CPU seconds (second number). All values are inclusive, that is, they include the
time for sub-patterns (indicated through indentation).

Metric fence only GATS/fence GATS only GATS only (opt)
Total time 109,361.7 100.0 61,888.9 100.0 61,248.7 100.0 60,504.0 100.0
MPI time 51,252.5 46.9 7,156.5 11.6 6,882.5 11.3 6,284.3 10.4
RMA sync. 48,703.8 44.5 2,585.9 4.2 2,177.9 3.6 3,476.0 5.8

Wait at Fence 6,080.0 5.7 805.9 1.3 0.0 0.0 0.0 0.0
Early Wait 0.0 0.0 568.5 0.9 950.1 1.6 1,923.8 3.2

Late Complete 0.0 0.0 1.2 0.0 289.6 0.5 2.0 0.0
Late Post 0.0 0.0 2.9 0.0 4.4 0.0 0.9 0.0

RMA comm. 1,324.9 1.2 3,246.6 5.3 3,507.4 5.7 1,603.2 2.7
Early Transfer 0.0 0.0 980.5 1.6 2,299.6 3.8 848.6 1.4
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As a next step, we completely eliminated the calls to MPI Win fence by adapting
the face exchange to also use GATS synchronization with individual windows for each
of the six neighbors. Although the Wait at Fence wait state disappeared, the waiting
time almost entirely migrated to the Late Complete (mostly in the face exchange) and
Early Transfer patterns (predominantly in the solver), thus only providing an additional
speedup of approximately one percent.

Based on these analysis results, we finally rearranged the GATS synchronization calls
slightly, starting the exposure epochs as early as possible and shortening the access
epochs by moving the start/complete calls close to the RMA transfers, decreasing the
overall runtime again. BT-RMA is now almost 45% faster than the first fence-based
version and marginally faster than the original BT code.

6 Conclusion

MPI-2 remote memory access is a portable interface for one-sided communication on
current large-scale HPC systems. To better support developers in using this interface,
we have presented a scalable method for identifying wait states in event traces of RMA

applications. A particular challenge to overcome was the availability of the communi-
cation parameters on only one side of an interaction between two processes, requiring
one-sided transfers of analysis data during the parallel replay. We have shown the scala-
bility of our method using one application kernel with up to 8,192 cores and incremen-
tally optimized a second and more complex code guided by results of our analysis.

Future research will evaluate the scalability on even larger process configurations.
In addition, we plan to investigate further inefficiency patterns for MPI-2 RMA such as
passive target lock competition. We also consider leveraging our method for the scalable
automatic analysis of applications written in PGAS languages such as UPC.
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