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ABSTRACT
The performance behavior of parallel simulations often
changes considerably as the simulation progresses — with
potentially process-dependent variations of temporal pat-
terns. While call-path profiling is an established method
of linking a performance problem to the context in which
it occurs, call paths reveal only little information about the
temporal evolution of performance phenomena. However,
generating call-path profiles separately for thousands of iter-
ations may exceed available buffer space — especially when
the call tree is large and more than one metric is collected.
In this paper, we present a runtime approach for the seman-
tic compression of call-path profiles based on incremental
clustering of a series of single-iteration profiles that scales in
terms of the number of iterations without sacrificing impor-
tant performance details. Our approach offers low runtime
overhead by using only a condensed version of the profile
data when calculating distances and accounts for process-
dependent variations by making all clustering decisions lo-
cally.

1. INTRODUCTION
As numerical simulations model the temporal evolution

of a system, their progress occurs via a series of discrete
points in time. According to this iterative nature, the core
of such an application is typically a loop that advances the
simulated time step by step — the entire loop often pre-
ceded by initialization and concluded by finalization proce-
dures. However, the performance behavior may vary be-
tween individual iterations, for example, due to periodically
re-occurring extra activities [1] or when the state of the
computation adjusts to new conditions in so-called adap-
tive codes [2]. As we have shown in a recent performance
study of the SPEC MPI2007 benchmark suite [3], temporal
variations are wide-spread and may appear in highly diverse
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patterns ranging from gradual changes and sudden transi-
tions of the base-line behavior to both periodically and ir-
regularly occurring extrema. To complicate matters further,
the temporal behavior can be subject to significant process-
dependent variations, that is, the performance behavior can
be a function of both time and space. However, recogniz-
ing the relationship between temporal and spatial patterns
can be crucial for the understanding of performance prob-
lems. For example, the PEPC Coulomb solver was found to
suffer from a gradually increasing communication imbalance
caused by a small group of processes with time-dependent
constituency [4]. Sometimes, behavioral deviations may also
be caused by outside influences, such as operating system
jitter or application interference, which may limit their re-
producibility.

Call-path profiling [5, 6, 7, 8, 9], which aggregates perfor-
mance metrics across the entire execution broken down by
call path, is a widely-used method of linking a performance
problem to the context in which it occurs. Especially when
investigating the use of library functions, call-path informa-
tion can be critical in tracking performance problems back
to their roots in the user code. For example, in the analysis
of MPI programs, call-path information is often essential to
decide where in the program a communication bottleneck oc-
curs. However, the context expressed in the call path usually
reveals little about the temporal evolution of a performance
phenomenon. As a result, important insights as to how and
why certain behaviors develop may be lost.

On the other hand, writing a separate call-path profile for
every iteration of the timestep loop, a special use case of a
technique commonly referred to as phase profiling [8], may
pose scalability problems in terms of the number of itera-
tions that can be captured and analyzed. The most severe
restriction arises from the buffer space required to store such
a time-series call-path profile measurement because adding
a time dimension multiplies the amount of data by the num-
ber of timesteps. If flushing of profile data buffers is to be
avoided during measurement, due to its disruptive impact
on the behavior to be observed, time-series call-path pro-
files can exceed available buffer space — especially when
the call tree is large and more than one metric is collected.
Moreover, even if the perturbation caused by flushing can
be tolerated or compensated for, the aggregate size of the
profile across a potentially large number of iterations and
processes may hinder post-processing and interactive end-
user analysis, which often occurs on a front-end node or



desktop with moderate processing and memory capacity.
In this paper, we present a runtime approach for the

(lossy) semantic compression of time-series call-path profiles.
Our approach of incremental on-line clustering of single-
iteration profiles enables the collection of multi-metric call-
path-level data for thousands of iterations, while consuming
only a few times the space of a single-iteration profile to cir-
cumvent the need to intermittently flush the data to disk.
Exploiting repetition in the time-dependent behavior of the
target application, we achieve good compression rates with-
out sacrificing important performance details or introducing
major artefacts. Since calculating the similarity between
two iterations based on one or more metrics and a poten-
tially large number of call paths may be prohibitively time
consuming, we keep the runtime overhead low by calculating
the separation distance based on only a condensed version
of the profile data. At the same time, this measure also
improves the quality of the clustering algorithm by reduc-
ing the dimensionality of the distance operator. Moreover,
to account for the fact that different processes may exhibit
different temporal patterns, the clustering is a purely local
operation, resulting in a custom-tailored process-local par-
titioning of the iteration space, not requiring any communi-
cation or synchronization at runtime.

The article is structured as follows: We start with a review
of related work in Section 2. Then, we provide a brief de-
scription of our general profiling methodology together with
an outline of the key data structures in Section 3, before
explaining our compression algorithm along with our design
choices in Section 4. In Section 5, we offer a quantitative
evaluation of our approach based on the SPEC MPI2007
benchmark suite in terms of (i) the accuracy of the com-
pressed data, and (ii) the runtime overhead incurred. A de-
tailed large-scale application example with the PEPC code
presented in Section 6 demonstrates the value of our solu-
tion for the performance analysis of long-running applica-
tions with significant time-dependent behavior. Finally, in
Section 7, we conclude the paper and discuss future work.

2. RELATED WORK
Our approach builds on the concept of phase-based per-

formance characterization. The execution of a program can
be naturally divided into phases, which form the building
blocks of its performance behavior. Since phases have dif-
ferent execution characteristics and may react differently to
external stimuli such as changes in the execution configura-
tion or the input problem, it seems reasonable to analyze
their performance behavior independently instead of look-
ing at the execution only as a whole. While phases provide
a general concept to represent arbitrary logical and run-
time aspects of the computation, our approach concentrates
only on major timestep loop iterations to allow comparisons
between execution intervals that occur on the same logical
level.

Phase profiling in the performance system TAU allows
the user to obtain a separate profile for every marked pro-
gram interval, distinguishing between static and dynamic
phases [8]. Whereas performance metrics are aggregated
across all executions of a static phase, a separate profile
object is created for every instance of a dynamic phase. Ac-
cording to this distinction, the time intervals we consider
can be classified as instances of a dynamic phase. Simi-
lar in spirit, incremental profiling in the OpenMP profiler

ompP takes a separate profile for every fixed-sized execu-
tion time interval, using elapsed wall-clock time instead of
the dynamic program structure as the delimiter between
phases [10].

The principle of dividing the execution of a program into
intervals and grouping them into phases according to their
performance characteristics has already been studied by
Sherwood et al. in the context of microprocessor hardware
simulation [11]. Using clustering algorithms, they identified
representative subsections of the instruction stream of a pro-
gram that can be used as input for simulations that would
otherwise be too slow if fed with the complete stream. The
results of these shorter simulations can subsequently be ex-
trapolated to reflect the execution of the entire program.
In the context of large-scale parallel applications, various
statistical and data mining techniques have been employed
to reduce the size and improve the understanding of per-
formance data. While projection pursuit [12] and cluster-
ing [13] have been applied to improve the understanding of
real-time performance data, Ahn et al. have shown that
multivariate statistical techniques provide a useful means
of identifying correlations among different hardware perfor-
mance metrics and of highlighting clusters of similar behav-
ior in process topologies [14]. Moreover, PerfExplorer [15]
structures profile data of parallel programs post-mortem by
performing hierarchical and k-means clustering on vectors
of metric values whose elements correspond to program re-
gions.

Space limitations of highly-structured performance data
sets that include a time dimension are most apparent for
event traces containing timestamped records for a huge num-
ber of program actions. Complete call graphs are able to
compress event traces by exploiting repetitive patterns [16],
but require their prior existence at full length, as runtime
overhead prevents the method from being applied on-line.
Similarly, automatic structure extraction starts from very
large trace files, explores their internal structure using sig-
nal processing techniques, and selects meaningful parts [17].
Whereas the previous approaches target the time dimension,
Gamblin et al. lower the overall trace volume by tracing only
a subset of the processes [18], with sample size periodically
readjusted based on summary performance data sent to a
central client process at runtime. Finally, application sig-
natures provide a way of summarizing the time-dependent
behavior expressed in historical trace data in a much more
compact representation [19]. Here, the temporal evolution
of a metric vector is described as a metric trajectory using
curve fitting as a compression mechanism, simplifying the
comparison between two signatures.

3. PROFILING METHODOLOGY
While our general approach is independent of a particu-

lar parallel programming model, we chose single-threaded
MPI applications as a starting point, which finds its ex-
pression in our selection of test cases and profiling metrics.
In the remainder of the paper, we therefore always use the
term process to denote an independent locus of execution,
which may be translated to thread in a multithreaded con-
text. Our compression algorithm is intended to be used in
the runtime measurement system of Scalasca [20], an open-
source toolset for diagnosing inefficiencies in parallel appli-
cations written in C, C++ and Fortran on a wide range of
HPC platforms. Since in addition to pure MPI, Scalasca



also supports measurement and analysis of OpenMP and
hybrid OpenMP+MPI codes, we plan to evaluate our algo-
rithm with respect to those programming models in the near
future. Users of Scalasca can choose between two types of
performance data: (i) call-path profiles summarized during
measurement, and (ii) call-path profiles derived from pat-
terns in event traces. Whereas the former are needed to
identify the most resource-intensive call paths in the pro-
gram, the latter can be used to identify call paths that ex-
hibit a significant fraction of idle time. The result of such a
trace analysis is therefore similar in structure to a runtime
call-path profile but enriched with higher-level communica-
tion and synchronization inefficiency metrics. While in prin-
ciple our algorithm applies to those data sets as well, we will
consider only runtime call-path profiling for now.

3.1 Call-Path Profiling
When configured for runtime profiling, Scalasca aggre-

gates performance metrics such as execution time, mes-
sage statistics, and hardware counters individually for every
thread and call path encountered during the entire program
execution.

The metrics collected during measurement of MPI appli-
cations are listed in Table 1 with indentation representing
the hierarchical relationship between them. They are di-
vided into a subset M = {M1, . . . , Mm} that is directly
measured and another subset D = {D1, . . . , Dd} derived by
later analysis (set in italic). Major measurement overhead
and MPI initialization and finalization are typically one-off
expenses outside the primary computational loop. Optional
hardware counter metrics and specific MPI metrics related
to file I/O, collective communication, etc., may not exist or
be entirely zero-valued in certain measurements.

Different from sampling-based approaches, all measure-
ments are obtained via the direct instrumentation of func-
tion or region entries and exits, either via PMPI library in-
terposition, compiler-generated instrumentation, or source-
code preprocessing. During program finalization, Scalasca
collates all process-local measurement data sets into a global
profile report and writes it to disk.

Scalasca defines call paths as lists of visited regions (usu-
ally starting from the main function) and maintained in a
tree data structure. Thus, a new call path is specified as
an extension of a previously defined call path to the new
terminal region. When a region is entered from the current
call path, any child call path and its siblings are checked to
determine whether they match the new call path, and if not
a new call path is created and appropriately linked (to both
parent and last sibling). Exiting a region is then straightfor-
ward as the new call path is the current call path’s parent
call path. When execution is complete, a full set of locally-
executed call paths are defined, which are merged into a
global set during program finalization, serving as a basis for
later call-tree visualizations.

3.2 Time-Series Profiling
To measure time-dependent application behavior,

Scalasca was equipped with phase instrumentation capabili-
ties based on TAU’s dynamic phase model [8], which implies
that performance data are stored separately for every phase
instance. With such instrumentation it becomes possible
to distinguish the performance data produced by different
iterations after enclosing the timestep loop body with enter

Category Metric

Time Total
Measurement overhead
Execution

MPI
MPI init/exit
MPI synchronization

MPI collective synchronization
MPI communication

MPI point-to-point communication
MPI collective communication

MPI file I/O
MPI collective file I/O

Counts Call path visits
Hardware counters (optional)
MPI synchronizations

MPI point-to-point synchronizations
MPI point-to-point send synchronizations
MPI point-to-point receive synchronizations

MPI collective synchronizations
MPI communications

MPI point-to-point communications
MPI point-to-point send communications
MPI point-to-point receive communications

MPI collective communications
MPI collective communications as source
MPI collective communications as dest’n
MPI collective exchange communications

MPI bytes transfered
MPI point-to-point bytes transfered

MPI point-to-point bytes sent
MPI point-to-point bytes received

MPI collective bytes transfered
MPI collective bytes incoming
MPI collective bytes outgoing

MPI File operations
MPI File individual operations

MPI File individual reads
MPI File individual writes

MPI File collective operations
MPI File collective reads
MPI File collective writes

Table 1: Summary metrics collected and derived by
Scalasca.

and exit markers. Translated to a call-path profile, this
means that every iteration populates the call tree with its
own set of metric values.

Let C be the set of call paths reached from within the
timestep loop body (those outside can be ignored because
they are irrelevant to draw comparisons between iterations),
I the set of loop iterations, P the set of application processes,
and M the directly measured metrics among the ones listed
in Table 1. Then we can define a time-series call-path profile
as a mapping

s : (c, i, p) 7→ ~m

which maps a call path c ∈ C, an iteration i ∈ I , and a
process p ∈ P onto a vector of metric values ~m ∈ M1 ×
. . . × Mm (e.g., the time spent by process p in call path c

while executing iteration i). Note that the derived metric
values are implied in this definition. The process dimension
P can be omitted when considering the data of only a single
process, which will often be the case as our compression is
a purely process-local operation.

3.3 Analysis
In Scalasca, a time-series call-path profile can be ana-

lyzed in several ways. The most common methods are listed
below, and illustrated in Figure 1 with one of the SPEC
MPI2007 benchmark applications, 129.tera tf.
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(a) MPI point-to-point com-
munication time iteration
graph with maximum (red),
median (blue), and minimum
(green) values.

(b) MPI point-to-point com-
munication time value map
with the red end of the color
spectrum indicating higher
values.

(c) Scalasca analysis report explorer with MPI point-to-point
communication time metric selected (left pane). With 6.55
seconds, iteration 232 of 942 (middle pane) is one of the more
expensive ones, and the marked call path to the MPI Send
operations is distinguished by a particularly pronounced im-
balance across the 32 processes, with times varying from only
0.01s for rank 24 to 0.41s for rank 27 (right pane).

Figure 1: Different ways of analyzing a 32-process
129.tera tf experiment with Scalasca.

• 2-dimensional iteration graphs, which for each itera-
tion (x-axis) show the maximum, median, and mini-
mum values of a given metric (y-axis) calculated from
all processes (Fig. 1(a)).

• Value maps, which display the value of a given metric
color-encoded as a rectangular block in a 2-dimensional
grid with the x-axis representing iterations and the y-
axis representing processes (Fig. 1(b)).

• A multi-dimensional tree browser [21] that allows a
user to interactively explore the entire performance
space spanned by mapping s including the derived met-
rics and, in particular, to examine the performance
behavior of individual call paths separately for each
iteration (Fig. 1(c)).

The quantitative evaluation of our algorithm presented in

Section 5 assesses the influence of the compression on the
expressiveness of these three analysis methods.

4. COMPRESSION ALGORITHM
Our compression algorithm is based on the idea of in-

cremental clustering. Clustering is the process of grouping
a set of physical or abstract objects into classes of similar
objects. A cluster is a collection of data objects that are
similar to others within the same cluster and dissimilar to
the objects in other clusters [22]. In our case, the objects to
be clustered are the metric profiles collected for individual
iterations as they are generated while the target applica-
tion progresses. As the goal is to achieve the best over-
all characterization, clustering is performed independently
for each iteration without considering sequence order. To
accurately cover process-dependent variations of temporal
patterns, each application process makes independent clus-
tering decisions, which has the additional advantage that
neither communication nor synchronization among different
processes are required at runtime. Thus, we can restrict our
discussion to the actions performed by a single process. The
algorithm is lossy in the sense that the compressed data no
longer contains all the information necessary to restore the
original data, although we will show that the result of such a
reverse-transformation comes very close to the original data.

4.1 Clustering
With every new iteration i, a new process-local iteration

profile si : c 7→ ~m is created, which maps a call path onto
a vector of directly measured metric values and which can
be stored as a matrix Si

c,m. The clustering occurs incre-
mentally because every new iteration initially constitutes a
new cluster. Once a predefined maximum number of clus-
ters has been exceeded, the two clusters closest to each other
are merged. For each cluster, we store only the iteration in-
dices assigned to it and the mean profile, which is obtained
by performing an element-wise arithmetic mean operation
on the constituent matrices Si, exploiting the associativity
of the mean operator when merging clusters that represent
more than one iteration. Using the disjoint-set forest data
structure [23] makes cluster creation and merge plus retrieval
of the constituent index set an asymptotically constant-time
operation as opposed to a naive linear-time implementation.

4.2 Distance Function
Which clusters are closest to each other is determined

based on the distance between cluster means. However, cal-
culating a distance function based on entire profile matrices
is inefficient and may also adversely affect the clustering
quality, which is sensitive to the dimensionality of the dis-
tance function (|C| ∗ |M | if the full matrix is considered). If
too large, similarities between objects may be hidden. For
this reason, the distance is computed based on a condensed
version of the profile matrix. The condensed version is a
vector

~e = (m1, . . . , mm, d1, . . . , dd)

composed of an extended set of metric values aggregated
across the entire iteration, such as the total time spent in
that iteration. The values m1, . . . , mm represent the directly
measured metrics, whereas d1, . . . , dd represent the derived
metrics, together comprising the full set of metrics listed in
Table 1. The idea behind the condensed profile is that ~e still



carries enough information to characterize the performance
behavior of an iteration accurately enough although it no
longer refers to individual call paths, thus eliminating the
need to compare full matrices Si

c,m. Instead differences with
respect to individual call paths are approximated by adding
more specific derived metrics. At the same time, the con-
densed profile lowers the runtime overhead by making the
distance calculation much more efficient and enables more
conclusive clustering decisions by drastically reducing the
dimensionality of the distance function (|M | + |D| usually
≪ |C| ∗ |M |).

The distance between two vectors ~e1 and ~e2 is then calcu-
lated using the Manhattan distance. Whenever a new clus-
ter is created from a fresh iteration profile, we calculate the
distance between the new cluster and those that already ex-
ist. In addition, we need to calculate the distance between a
cluster formed via merging and all remaining clusters, over-
all still leading to linear computational complexity O(n) in
terms of the maximum number of clusters n. Note that the
calculation of derived metrics has to be done at most twice
for every new iteration (i.e., once for every new cluster). In
contrast, the space complexity is O(n2) because we need to
store the distance between every pair of clusters.

Since metrics may have different domains and their val-
ues may cover different ranges of magnitude, we face the
question of how much weight to assign to an individual met-
ric when calculating distances. Table 1 shows how Scalasca
metrics are organized in tree hierarchies defined by subset
relationships, with general metrics as tree roots and more
specific metrics as leaves in the tree (e.g., total time → ex-
ecution time → MPI time → MPI communication time →
MPI collective communication time). On the one hand, the
subset relationship implies that more general metrics have
higher values than more specific metrics. On the other hand,
more specific metrics are typically more indicative of per-
formance problems, such as communication overhead. We
therefore decided to assign metrics equal weights and nor-
malize the vector elements accordingly.

As reference value for the normalization, we chose the
process-local running average for all preceding iterations be-
cause it is relatively stable with respect to noise-induced
outliers. Where necessary, the average over all iterations
could be obtained from a prior run, and can be expected
not to vary substantially in the presence of minor run-to-
run variations. The first distance calculation is performed
only after the desired number of clusters has been reached,
therefore a fair number of iterations have passed before the
current average is determined for the first time. In principle,
the first distance calculation could be delayed even further,
depending on the availability of memory to hold iteration
profiles representing unmerged clusters. Although the use
of the running average may lead to premature distance cal-
culations, which would be hard to redo without incurring
substantial runtime overhead, we show in Section 5 that the
inaccuracy resulting from this limitation has little influence
on the fidelity of our compression. We therefore believe that
in most cases a single measurement will be sufficient.

4.3 Emphasizing the Baseline
The algorithm discussed so far has a serious shortcoming.

It emphasizes noise and extrema much more than it char-
acterizes the baseline behavior. For example, in some ap-
plications the algorithm might blur periodic low-amplitude

changes in the baseline by merging their constituent clusters,
while preserving a number of prominent but noise-induced
extrema that are distinct enough to have dedicated clusters
reserved for them. The problem occurs whenever the dis-
tance between extrema is large compared to the distances
within the small-scale repetitive pattern. However, baseline
changes often carry valuable information on general perfor-
mance trends and are therefore desirable to keep, whereas
extrema often turn out to be irreproducible noise and a mi-
nor contribution to overall performance.

To better accentuate the baseline in comparison to ex-
trema, we exploit the fact that the number of iterations
that stand out is usually much smaller than the number
of iterations on the baseline level. Using a heuristic, we
distort the distance metric in such a way that the distance
among larger clusters becomes greater, whereas the distance
between smaller clusters with only a few elements becomes
smaller. Two small clusters are then much more likely to
be merged than two larger clusters representing many itera-
tions. Using this method, distances between clusters remain
valid until one of the clusters is merged with another one,
leaving the complexity linear in terms of the maximum num-
ber of clusters.

4.4 Call-Tree Equivalence
The algorithm explained so far is based on an elastic dis-

tance criterion, allowing iterations with very different call
trees to be merged. This property may allow the occurrence
of phantom call paths in the compressed profile, which are
call paths associated with an iteration, although they have
never been visited during this iteration. Since phantom call
paths may lead to wrong conclusions, they are a serious
problem and should be avoided whenever possible. Further-
more, call-tree equivalence between two iterations is often
a good indicator of similar performance characteristics. For
these two reasons, we only merge iterations with equivalent
call trees. Call-tree equivalence between two iterations i1
and i2 can be defined in two ways:

• Weak equivalence: every call path visited in i1 has also
been visited in i2 and vice versa.

• Strong equivalence: every call path has been visited as
many times in i1 as it has been visited in i2.

Weak equivalence excludes phantom call paths, while
strong equivalence also considers quantitative similarity. To
enforce call-tree equivalence between clusters before they are
merged, we partition the clusters into call-tree equivalence
classes. Then every new iteration profile either forms a new
class or is added to an existing one, depending on whether
there is already a cluster whose call tree is equivalent to the
new one. If the maximum number of clusters is exceeded,
the two clusters closest to each other that are located within
the same partition are merged.

Since call-tree equivalence is no longer an elastic crite-
rion, the number of equivalence classes is not configurable.
Especially when strong call-tree equivalence is used, the to-
tal number of clusters may exceed the predefined threshold,
resulting in a large number of partitions each with only a sin-
gle cluster, increasing storage requirements and also poten-
tially degrading the compression fidelity as distance-based
clustering is then suppressed. On the other hand, if their
number is small enough, enforcing call-tree equivalence can



Call paths Call-tree
Execution per iteration MPI per iteration equiv. classes

Application time (s) Iterations total min. avg. max. min. avg. max. weak strong
104.milc 765 - - - - - - - - - -
107.leslie3d 847 2,000 30,802 15 15.4 17 4 4.2 5 2 2
113.GemsFDTD 1,051 1,000 46,001 46 46.0 47 1 1.0 2 2 2
115.fds4 427 2,363 86,346 36 36.5 45 2 2.1 5 13 19
121.pop2 242 2,000 182,233 84 91.1 103 20 23.0 28 3 11
122.tachyon 3,905 - - - - - - - - - -
126.lammps 930 500 38,397 76 76.8 96 36 36.9 56 23 24
127.wrf2 1,282 1,375 158,075 111 115.0 489 3 3.1 37 7 348
128.GAPgeofem 376 235 5,641 24 24.0 25 8 8. 8 2 7
129.tera tf 1,217 942 10,369 11 11.0 18 4 4.0 8 2 2
130.socorro 391 20 49,820 933 2491.0 2609 28 77.4 81 8 19
132.zeusmp2 998 200 22,399 111 112.0 112 56 56. 56 2 2
137.lu 554 180 2,881 16 16.0 17 7 7.0 8 2 2
PEPC 13,643 1,300 67,470 51 52.0 66 28 29.0 35 4 1298

Table 2: Application characteristics: execution times and iteration, call-path and equivalence class counts

Figure 2: Incremental on-line clustering of iteration
call-tree profiles into a maximum of four clusters.
(i) The call-tree profiles for the first four iterations are stored
directly, yet distinguished into two equivalence classes. (ii)
The call-tree profile for iteration 5 is matched to the equiv-
alence class of iteration 1. (iii) The pair of clusters with the
shortest separation distance (here 3 and 4) are merged to
retain only the desired number of clusters.

improve the compression fidelity with respect to call-tree
structure and count-based metrics, as we will see in Sec-
tion 5. Whether and to which degree call-tree equivalence
should be enforced is therefore highly application dependent.
A decision must be made based on the total number of call-
tree equivalence classes, which would have to be determined
from a prior measurement. To avoid this extra measure-
ment, a dynamic scheme can be employed that starts with
strong equivalence and switches to weak equivalence after
re-grouping the existent clusters if the number of partitions
becomes too large in comparison to the desired number of
clusters, thus keeping the number of clusters in check. Since
in our test cases the number of weak equivalence classes
never exceeded 23 (as will be seen in Table 2), we expect at
least weak equivalence to be a viable option for most appli-
cations.

While enforcing call-tree equivalence adds the cost of com-
paring potentially large call trees to determine the equiva-
lence class of an iteration (i.e, O(log(n)) comparisons for n

existent classes), it also reduces the number of distance cal-

culations because distances are calculated only within each
class. The performance disadvantage therefore diminishes
as the number of clusters is increased. Figure 2 illustrates
the basic steps of our algorithm for one process using a max-
imum number of four clusters.

4.5 Reconstructing Aggregate Profiles
Although our algorithm performs a lossy compression, we

can accurately reconstruct an aggregate profile that summa-
rizes across all iterations. Adding up all clusters weighted by
the number of iterations they represent will yield an exact
profile without any errors introduced by the lossy compres-
sion, as if obtained without phase instrumentation. While
small differences between an original and a reconstructed
summary profile may be caused by clustering overhead, com-
pression errors manifest only when considering individual
iterations.

5. EVALUATION

5.1 Measurements Used
For evaluation purposes, we focus on the applications of

the SPEC MPI2007 benchmark suite [3, 24] in the medium-
sized reference configuration with 32 MPI processes on a
dedicated 32-core IBM p5-575 SMP node. Execution char-
acteristics of the 13 applications are summarized in Ta-
ble 2, along with the PEPC application run on an IBM Blue
Gene/P rack that will be considered in Section 6. Only 10
of the 13 applications in the suite were evaluated, as in two
of the applications no suitable main loop could be identi-
fied for phase instrumentation (due to code complexity for
104.milc and the absence of such a loop for the farming-
based 122.tachyon), and one application (130.socorro) had
too few iterations in the supplied test case. In the medium-
sized reference configuration, the 121.pop2 application ex-
ecutes 9,000 iterations, however, we reduced this to 2,000
iterations due to memory limitations for storing measure-
ment data because our reference data sets were obtained
without compression, as explained in Section 5.2.

In addition to the wall-clock execution time and num-
ber of iterations (or timesteps) in the main computational
loop of each application, full summary measurements with



instrumentation distinguishing each iteration allow analysis
of the call-path complexity, which is included in Table 2.
Call paths for each iteration are further distinguished to
consider only those ending with MPI communication and
synchronization functions, and minimum, average and max-
imum call-path count statistics calculated. (The number of
call paths included in a summary profile depends on function
in-lining by the compiler and filtering applied during mea-
surement [3].) Furthermore, by enforcing call-tree equiva-
lence among the sets of call paths, the number of classes re-
sulting from weak and strong equivalence were determined.
Where strong equivalence resulted in an excessive number
of equivalence classes, weak equivalence was used instead
(i.e., for 127.wrf2 and PEPC ). The SPEC MPI2007 bench-
mark suite and the PEPC application are seen to have a
rich variety of execution and call-tree characteristics.

Based on the numbers of iterations and call-tree equiva-
lence classes found in these application executions, we chose
to compare clusterings using powers of two from 8 to 256.
Eight clusters offer a relatively small storage overhead but
require aggressive compression, and can be expected to only
coarsely represent complex execution characteristics. On the
other hand, 256 clusters should provide improved fidelity,
but at a corresponding storage cost factor for the results.

5.2 Off-line Version
Evaluating the quality of the compressed data based on

the on-line approach would not be feasible by simply tak-
ing measurements with and without compression and com-
paring the results. Differences due to run-to-run variation
could not be distinguished from those due to the lossiness
of the compression. Additionally, accurate time and mem-
ory usage measurements of the algorithm could not be taken
while it ran together with the actual application measure-
ment. Evaluation is therefore based on an off-line version of
the algorithm which works on already collected full phase-
instrumented measurement results. The compression algo-
rithm is applied to this input data to create measurement
results which are equivalent to those that would be collected
by the on-line version of the algorithm. We ran the algo-
rithm on the same system where the original measurements
were collected to make timings comparable. The effective-
ness of different configurations of the compression algorithm
can also be readily compared, as they are all based on the
same real measurement data.

5.3 Quality Assessment
A variety of quality characteristics were investigated for

PEPC and the SPEC MPI2007 applications with different
numbers of clusters. Due to space limitations, only the most
important and illustrative assessments are shown and eval-
uated, with discussion of results from associated analysis
concisely summarized.

Erroneous call paths
All execution call paths are accurately captured when call-
tree equivalence is enforced, however, without it call paths
can be erroneously associated to clusters of iterations where
they do not actually occur by the merging operation on dis-
tinct call trees. Figure 3 shows that there are indeed signifi-
cant numbers of ‘phantom’ call paths added for 107.leslie3d,
115.fds4, 127.wrf2 and PEPC. While four of the applica-
tions never had ‘phantom’ call paths introduced, the remain-
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Figure 3: Proportion of erroneously added ‘phan-
tom’ call paths in reconstructed profiles when call-
tree equivalence is not enforced during clustering.

ing three applications each had a few erroneous call paths
(sometimes only with smaller numbers of clusters), which
are also potentially a serious concern. Although many of
the ‘phantom’ call paths are not MPI call paths, and there-
fore less of a concern, ‘phantom’ MPI call paths are found for
107.leslie3d, 115.fds4 and 121.pop2 with smaller numbers of
clusters, and predominate for PEPC even with 256 clusters.
Since the call trees often differ, and can differ significantly
especially at low cluster counts, enforcing call-tree equiva-
lence is therefore essential for accurate time-series call-path
profiling. In the remainder of our evaluation, call-tree equiv-
alence is therefore always enforced. The equivalence relation
was determined based on the number of resulting classes, as
indicated by the bold numbers in the rightmost two columns
of Table 2. In most cases, we were able to apply strong equiv-
alence. Only for 127.wrf2 and PEPC did we have to resort
to weak equivalence.

Error rates for entire iterations
In this subsection, we evaluate error rates with respect to
the mean and maximum values shown in the 2-dimensional
iteration graphs (blue and red bars in Figure 1(a)), consid-



ering only aggregate metric values for entire iterations. We
skip the discussion of the minimum values (green bars), as
they are rarely influenced by outliers and therefore usually
suffer the smallest compression-related distortion among the
three. Figure 4 shows the error rates of mean values, aver-
aged across iterations and metrics. Error rates for individual
metrics are normalized using the average value from all iter-
ations. Average error rates are high for 115.fds4 and PEPC
with only a few clusters, but improve, as larger numbers of
clusters are used, down to around 1% and 3% respectively
with 64 clusters, while the other applications have negligi-
ble errors in their mean values. Errors in maximum values
for iterations are generally only marginally worse, though
PEPC is again an exception with an average error for the
maximum metric values reaching 10% for 64 clusters and 6%
for 256 clusters. Average error rates for count-based metrics
are considerably better than those for time-based metrics,
since call-path visits and bytes transfered are usually not
subject to noise and small measurement variations such as
the time-based metrics. For PEPC, however, the count error
rates remain comparably high.

Error rates for individual call paths
Even though the call-tree equivalence verification ensures
that no false call paths are reported in the data recon-
structed from the compressed representations, errors are still
inherent in the metric values reconstructed for every true
call path. In this subsection, we therefore evaluate the qual-
ity of the compressed data at the level of individual call
paths. The metric values we consider refer to a call path
exclusively, that is, they do not cover its children. For each
data point in the profile, the magnitude of the error can be
determined from the difference of values between the full-
fidelity and reconstructed call-path profiles. To emphasize
the most significant call paths, the error rates under the
same combination of process and metric are normalized us-
ing the maximum across all iterations and call paths under
that combination. Figure 5 shows the average error rates of
time-based metrics. Error rates are generally low (well be-
low 0.1%) especially with larger numbers of clusters which
suggests good characterization, and while 129.tera tf is seen
to be particularly error prone with small numbers of clus-
ters, it improves rapidly with more clusters. 129.tera tf has
a continuously changing performance behavior, as evident
in Figure 1. This makes it a much more challenging case
than the other SPEC MPI2007 applications. As before, the
count-based metrics (not shown) have even lower error rates,
and a zero error rate for 8 of the 10 applications (notably
including 129.tera tf ), apart from PEPC where error rates
are somewhat higher than for the time-based metrics.

Quantized call-path error rates
In spite of low average error rates at the call-path level, in-
dividual data points of the reconstructed profile may still
exhibit significant deviations from the original data. To as-
sess the likelihood of higher deviations, we histogrammed the
normalized error rates for individual data points in buckets
for orders of magnitude. Figure 6 summarizes the results for
the case using 64 clusters. (Call paths which actually have
zero-valued metrics are not included in this comparison to
avoid dilution.)

With 64 clusters, only three of the studied applications
have any error in their count-based metrics, and while less
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Figure 4: Average error rates of mean values of all
metrics for entire iterations.
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Figure 5: Average error rate of time-based metrics
for each call path.

than one in a million 127.wrf2 call paths have errors of more
than 0.1% (which is negligible), for 126.lammps around one
in every thousand call paths have errors exceeding 1%, and
with PEPC around one in every two hundred call paths have
more than 10% error. The 127.wrf2 errors only occur on
non-MPI call paths, where they are less of a concern. How-
ever, the count-based errors in the latter two applications
are serious since they are for MPI metrics and around 10%
of all call paths are affected by such errors to a lesser degree.
These same two applications are further distinguished from
the others in sometimes having marginally lower errors in the
time-based metrics, which is unusual. Entirely error-free re-
constructions are rare for time-based metrics, and call-path
error rates over 10% for the time-based metrics are found for
PEPC and half of the SPEC MPI2007 applications. Such
large errors affect less than one in every thousand call paths
in these applications, with MPI call paths somewhat more
frequently impacted. The largest call-path errors are found
to have a magnitude of 64% for PEPC and around 33% for
121.pop2 and 132.zeusmp2. On the other hand, all appli-
cations (except 113.GemsFDTD) have call paths with more
than 1% error in the time-based metrics, which affects one in
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Figure 6: Proportion of call paths in profiles re-
constructed from 64 clusters having quantized error
rates for MPI time-based and count-based metrics.

five of 129.tera tf MPI call paths. Larger numbers of clus-
ters can be employed to reduce the magnitude and frequency
of these errors.

5.4 Cluster Processing Overheads
The cost of determining call-tree equivalence and cluster-

ing costs were measured on the same systems used when run-
ning the applications themselves, so that they can be related
to the average duration of iterations to indicate processing
overhead that would be introduced. Figure 7 shows that
on average this overhead is around 6% for 121.pop2, around
1% for 115.fds4 and 127.wrf2, and less than 0.5% for PEPC
and the other SPEC MPI2007 applications. Overheads for
particular iterations and processes were found to be twice
as large as the average overhead. Where application itera-
tions are short and the call tree relatively large, processing
time overhead therefore becomes considerable. While the
processing time increases only slightly for larger numbers of
clusters, storage requirements for the cluster distances grow
as O(n2), but remain less than 4MB with 256 clusters and
are therefore negligible.
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of iteration execution time.

6. DETAILED EXAMPLE
As a large scale example, we chose the PEPC Coulomb-

solver run with 1024 processes on an IBM Blue Gene/P,
in which we were able to find the root causes of a serious
performance problem using our phase-instrumentation ap-
proach [4]. It is an adaptive code, re-balancing the work-
load after every iteration, which makes its time-dependent
behavior crucial in understanding its performance. This
also makes PEPC much harder to characterize than the
previously considered SPEC MPI2007 applications, in that
its performance is completely different in each process, its
baseline for many metrics increases continually, and the few
bottleneck processes with very different communication be-
havior from all the others are constantly relocated by the
computational load-balancing algorithm. (As it turned out
from our analysis, the algorithm balancing the computa-
tional load is highly effective, but makes the communication
load increasingly imbalanced over time.)

It is therefore no surprise that the quality analysis and
comparison in the previous section show PEPC to be much
more susceptible to ‘phantom’ call paths (Fig. 3), especially
‘phantom’ MPI call paths, and substantial error rates re-
quiring 256 or more clusters for reasonable accuracy of both
entire-iteration aggregate metric values (Fig. 4) and individ-
ual call-path exclusive metric values (Figs. 5 and 6). On the
other hand, even with 256 clusters, processing overheads are
reasonable (Fig. 7).

Figure 8 gives an impression of the quality of the data
produced by different maximum cluster counts. It shows the
iteration graphs and value maps of two of the key metrics,
MPI point-to-point communication count and time recon-
structed from compressed data with a selection of different
cluster counts, and compares these to the full-fidelity orig-
inals. (Related graphs and maps for 8, 32 and 128 clusters
are omitted for lack of space.) This shows that PEPC is a
good example of an application where the count-based met-
ric graphs and value maps (in the leftmost two columns) are
complex, yet the reconstructions are surprisingly good and
with 32 or 64 clusters all the main features of the originals
are already present.

MPI point-to-point communication time metric graphs
and value maps (in the rightmost two columns), however,
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Figure 8: Comparison iteration graphs and value maps of MPI point-to-point communication count (left)
and MPI point-to-point time (right) for PEPC with reconstructions from different cluster counts.

show that 64 clusters are clearly insufficient to reconstruct
this application execution behavior. While 128 clusters was
relatively close (especially for the average values), 256 clus-
ters are needed for a really good characterization of the max-
imum values. The maximum value is difficult to characterize
perfectly, as a single outlier on any of the processes changes
the maximum for a given iteration. The value map of the
same metric reconstructed from 128 clusters was also very
close to the original, however, and the important features
needed to find the performance problem in this application
(the dark diagonal lines and the growth of the point-to-
point communication time with the process rank) are al-
ready clearly visible with 64 clusters.

Figure 9 compares the MPI time profile of the full 1300-
iteration PEPC analysis report with a reconstruction from
128 clusters. Aggregate metric values for entire timesteps
are in broad agreement, with up to 5% error for timestep
1292. Even the detailed call-path profiles show good agree-
ment with the selected MPI Waitany call path in the penul-

timate timestep 1299 having only 9% error. The distribu-
tion of the selected call-path metric values over the 1024
processes of the Blue Gene topology has also been reason-
ably characterized, although significant differences for cer-
tain processes are evident.

At least 256 clusters therefore seem to be required to char-
acterize all important features of PEPC. This means that
we need less than 20% of the buffer space to store the call-
path profile data at run-time, and still get sufficiently high
quality data. This is especially important for PEPC on a
Blue Gene machine with limited per-core memory: the de-
velopers naturally optimize their code using as much of the
machine’s memory as possible, leaving only a small amount
for Scalasca measurement data.

7. CONCLUSION
A method for time-series call-path profiling was outlined

and evaluated based on incremental clustering of call trees
with similar metric values for space-efficient storage. While



Figure 9: Scalasca analysis reports of the full PEPC measurement (left) and that reconstructed from 128
clusters (right), showing the MPI time metric, and with the call path selected for MPI Waitany in the
tree_walk routine of the penultimate timestep.

the use of a distance function based on aggregate metric
values allows efficient clustering decisions, accuracy of the
compressed call-path profiles can be ensured by enforcing
call-tree equivalence based on visited call paths and heuris-
tics that reduce the impact of extrema. An implementa-
tion was demonstrated with acceptable processing time and
memory overheads.

Whereas the call-tree and execution characteristics of
SPEC MPI2007 applications 113.GemsFDTD, 121.pop2,
and 137.lu lend themselves to accurate representation with
as few as 8 clusters, the more complex applications 115.fds4
and 129.tera tf are found to need 128 clusters (with 32 or
64 clusters sufficient for the others). For the local PEPC
application, however, at least 256 clusters are required for
good time-series call-path characterization of its complicated
execution behavior. 64 clusters therefore generally seems
to be a reasonable default setting for a first measurement,
as this value is usually high enough to ensure good-quality
clustering, and still has relatively low time and memory re-
quirements. If considered insufficient, measurements can be
repeated with a larger number of clusters.

On-line application of our method will open the possibility
of time-series call-path profile analysis of long-running codes

consisting of thousands of iterations or timesteps. While
this will offer benefits for many important applications, as
demonstrated by 10 of the 13 SPEC MPI2007 benchmark
codes, 121.pop2 and PEPC are particular examples where
it will become practical to measure and analyze full-length
executions for the first time.

With on-line implementation it will be necessary to study
the variation of processing costs on each process in each iter-
ation, and associated execution perturbation. Where global
synchronizations by the application are identified, these may
be exploited for intermediate analysis processing with re-
duced execution disruption. It is also desirable to automati-
cally determine the required number of clusters, and whether
enforcing call-tree equivalence can be safely omitted to lower
processing overheads. OpenMP and non-MPI metrics, such
as from hardware counters, will also be incorporated to en-
rich the analysis.
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