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Abstract

In message-passing applications, the temporal or spasiteinte between cause and
symptom of a performance problem constitutes a major diffidn deriving helpful con-
clusions from performance data. So just knowing the locatmf wait states in the program
is often insufficient to understand the reason for their agnce. We therefore present
a method for verifying hypotheses on causal connectionsd®at temporally or spatially
distant performance phenomena without altering the agiptin itself. The verification is
accomplished by modifyingipi event traces and using them to simulate the hypothetical
message-passing behavior. By performing a parallel need-teenactment of the commu-
nication to be simulated using the original execution canfigion, we can achieve high
scalability and satisfactory predictive accuracy in iielato the measured behavior. Not
relying on a potentially complex model of the message-passiibsystem, our method is
also platform independent.

1 Introduction

World-wide efforts to build supercomputers with perforroanevels in the petaflops range ac-
knowledge that the requirements of many key applicationsocdy be met by the most advanced
custom-designed large-scale computer systems. Howevarpeerequisite for their productive
use, thedpc community needs powerful and scalable performance-d&grools that make the
optimization of parallel applications both more effectawgd more efficient [10].

One major difficulty application developers are confrogtinith traditional performance
tools is that the tools often diagnose only the symptoms dbpmance problems but not nec-
essarily their causes. In fact, the symptoms may appearughnater than the event causing
it, (i) on a different processor, or (iii) both. The tempboa spatial distance between cause
and symptom constitutes a substantial challenge in derikelpful conclusions from a set of
performance data. Especially in message-passing appiisaload imbalance may create wait
states at the next synchronization point following the itabee. Since some processes arrive



later at this point due to a higher share of the overall watt|ahose arriving earlier have to
wait. Especially when trying to scale communication-iisiga applications to large processor
counts, such wait states can present severe challengdsdwgiag good performance. Of course,
these effects are not necessarily confined to load imbakamdenay be initiated by a large vari-
ety of behaviors including disparate communication regagnts or coordination activities that
are performed only by designated processes. Additiomaligsages may propagate wait states
from one process to the next, creating potentially complekfar-reaching propagation chains.
Finally, the individual contribution of a performance pbemenon to a given wait state is hard
to quantify because wait states may occur as a superpositegveral influences.

In our earlier work on thesCALASCA toolset [6], we have shown that wait statesmnl
message passing can be identified by searching event t@ogsafracteristic patterns — even at
very large scales. Here, we present a complementary appeaed at better understanding
their causes. Drawing from earlier ideas on trace-basddmpeance prediction [9, 7, 16, 17], we
have designed and implemented a simulator cadleds (Simulation of LArge-Scale parallel
applications) that can be used to verify hypotheses on ta&osmections between different
performance phenomena at very large scales. The verificaiaccomplished by modifying
event traces according to a hypothesis and using them tdateniine hypothetical message-
passing behavior. The predicted behavior can then be sd¢donesait states to investigate how
the modification would influence (and hopefully reduce)tioeicurrence in various parts of the
program. Typical questions the simulation can answer deloow the performance behavior
changes if a specific computation is more evenly distribatgdss the machine or if a specific
communication operation is replaced or eliminated.

As a distinctive property, the simulator performs a pala#ial-time reenactment of the com-
munication to be simulated using the original executionfigomation. Supporting conclusions
with respect to the same hardware and an identical numbepoégses, our approach offers the
following advantages:

e Scalability — Since the simulation is carried out at the ioagjscale, that is, on as many
CPUs as have been used to generate the traces, processindittapdbé., both processors
and memory) grow proportionally with the number of applicatprocesses, allowing us
to simulate execution configurations with thousands of gsees.

e Accuracy and platform independence — The real-time reglayireates the need fanod-
eling communication and, thus, removes a major source of predidgtiaccuracy. At
the same time, using the communication substrate of thettaygtem automatically in-
tegrates the most important platform-specific parametebasically no additional per-
platform design cost. Porting the simulator to a new systetharefore straightforward.

The simulator has been designed to enhance the trace-andilyxtionality of the
SCALASCA toolset by adding accurate and scalable predictive cafedil Our ultimate ob-
jective is to go beyond the present localized wait statergiag by automatically identifying
and evaluating hypotheses on how the detected wait statdseaamost effectively removed. The
current prototype of the simulator has been tested and a&ealwn Blue GenelL.

In this article, we give an overview of the simulator and sl it can be used to accurately
predict the effects of very fine-grained changes in the agptin behavior. We start with a
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review of related work in Section 2. In Section 3, we descthmbasic workflow of verifying
optimization hypotheses, outlining the usage of the sitoul@ the context of thescALASCA
toolset. In Section 4, we illuminate fundamental desigm@gles, explain key mechanisms,
and discuss limitations. Experimental evidence of aceupaédictions at larger scales using
both synthetic benchmarks and real applications is predantSection 5. Finally, in Section 6,
we conclude the paper and outline future directions.

2 Related Work

The principle of trace-driven performance prediction Hasaaly been intensively studied. Sev-
eral approaches have addressed questions about perferingpiccations when varying archi-
tectural parameters, such agu speed and network latency and bandwidth, and to a lesser
extent also when introducingynthetic perturbation§3] that reflect modified application-level
behavior.

Mendes transforms event traces of message-passing djgpigcaccording to a prediction
model based on relative processor speed, optionally difteated by code section, and message
transfer times previously obtained from benchmark measengs as a function of the message
size [9]. Since the order in which messages are received magebsitive to changes in the
execution configuration and an unstable message order maysatly affect simulation fidelity,
the stability of the order is verified prior to the simulatioynrepeatedly introducing short delays
(i.e., perturbations) into the code and comparing the ngesseder recorded in trace files to the
original order.

An early performance-analysis toolkit offering trace-dxhsimulation capabilities as one
element of a comprehensive feature catalogiigs [16], which estimates the scalability of
parallel applications by extrapolating previously geteataexecution traces to higher numbers
of processors and larger problem sizes. The extrapoladeddrcan be subsequently analyzed
using standard trace-analysis modules provided by th&itool

Originally motivated by the need to study the sharing of ipuitcessors among multiple
applications,DIMEMAS [7] provides the ability to simulate the execution behawbparallel
programs based on previously generated event traces. dbegses used to generate the traces
match the number of simulated processes, but may share lesmahber of physical processors
during the instrumented run. The underlying prediction ei@dlows the adjustment of relative
processor speeds, network bandwidth and latency withiraarmks nodes, the number of input
and output links, and the processor scheduling policy. #althlly, DIMEMAS can distinguish
between networks with full connectivity and bus-based nét& with potential bus access con-
flicts. While DIMEMAS itself is a sequential tool, traces used as inputfmEMAS stem from
message-passing or multithreaded programs. The tracdsqao as output can be analyzed
using the Paraver [7] trace browser, taking advantage gddtgerful time-line visualization
and rich statistical functionality. Besides simple aretitral parameter studies|MEMAS has
been used to investigate the effects of scaling individuajam states and to develop analyt-
ical models as functions of latency, bandwidth, procespeed, and the number of processors
by extrapolating simulations from multiple traces [11]. ®over, it has been instrumental in
designing cooperative caches [4] and predictury application behavior in grids [2]. An ap-



proach similar in spirit to the one takeninMEMAS has also been used in tk@JAK project to
compensate for perturbation errors caused by instrunientaverhead [13].

Predicting application performance for emerging architexs larger than those at one’s dis-
posal is the focus of BigSim [18]. Based on Charm++, an odjased and message-driven
parallel programming language, BigSim combines an emuthtd is capable of running larger
numbers of virtual processes on a smaller number of phypitalessors with a postmortem
simulator that uses traces generated during an emulated Ingrsimulation occurs in two steps:
At runtime, the emulator already corrects timestamps d¥iddal messages. After program ter-
mination, the simulator accounts for network contentiod &pological characteristics. If the
memory requirements of the application are larger than temany available to the emulator,
data may be swapped out to the file system while not being used.

Compared to the approaches described above, our workycteartentrates on the effects of
fine-grained alterations of application-level behaviothwiespect to the performance under an
identical execution configuration. Typical use cases mheline balancing of individual functions
or the elimination or replacement of communication opereti The most important method-
ological difference is the use of a parallel real-time rg@éthe simulated communication at
the original scale, which offers scalability advantages rmaieves us of the burden of modeling
the extremely complex communication infrastructures tban today’s large-scale machines.

3 Hypothesis Verification

In this section, we describe the typical usage scenario pfspaulator in the context of the
SCALASCA toolset. SCALASCA has been specifically designed for use on large-scale system
includingiBM Blue Gene and CrayT, but is also well-suited for small- and medium-scakec
platforms. A distinctive feature is the ability to identifyait states in event traces mP1 appli-
cations with very large numbers of processes using a phrapiay of the target application’s
communication behavior [6]. During the wait-state anaySCALASCA searches process-local
event traces in parallel for characteristic patterns iilg) wait states and related performance
properties, classifies detected instances by categorywandities their significance. The result
is a pattern-analysis report similar in structure to a tgpuall-path profile but enriched with
higher-level communication and synchronization ineffiche metrics that provide information
on the type, location, and severity of wait states. The rtegam be interactively examined in a
visual report explorer (Figure 4).

Looking for ways to extend our trace analysis toward a bettelerstanding of the relation-
ship between imbalanced execution and wait states, we sadinad that finding the cause of a
given wait state by searching the trace backward in time evbel much harder than verifying
whether a suspected cause can be held responsible. Thilézelidea of designing a trace-
based simulator, capable of operating at very large scalésaecurate enough to predict the
long-range effects of potential optimizations on the falioraof wait states later in the program.
Since no source code madification is required, we hope thallibecome possible to automat-
ically test a larger number of optimization hypotheseswerifrom the original trace data and
rank them according to the expected performance benefietuifg the most promising ones.

Figure 1 illustrates the role of the simulator in the progedof verifying hypotheses on
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Figure 1: Workflow for verifying optimization hypotheses. Grey rectangles denote pro-
grams, white rectangles with the upper right corner turned down denote files, and white
rectangles with rounded corners denote data objects residg in memory. Stacked symbols
indicate multiple instances of programs, files, or data objets running or being processed
in parallel. The target application generating the event tiace is the entry stage of the work-
flow. Judging the difference between normal execution and # predicted outcome of the
optimization displayed in the report explorer is the final stage.

causal connections between temporally or spatially digtarformance phenomena. The gen-
eral objective of the process is to generate pattern refroms both the measured and the pre-
dicted behavior and compare the results to allow conclgsmnthe effects of hypothetical pro-
gram moadifications with respect to wait states and otheropmdnce metrics. The workflow
starts with running the instrumented target applicatiothim execution configuration we want
to make predictions for and generating an event trace dorgsisf one trace file per applica-
tion process. During all subsequent steps, access to tmt gaee occurs through a parallel
object-oriented high-levedri [5]. The primary usage model of thePl assumes a one-to-one
mapping between application and tool processes, thatrigyiry process of the target applica-
tion, one tool process is created that loads the correspgricce data into main memory and
offers random access to individual events. In addition,AbReprovides abstractions allowing
the convenient exchange of event objects. At a lower leatf dxchange among tool processes
is accomplished viaPI communication.

A hypothesis includes the specification of a trace transétion, which may prescribe the
adjustment of event timestamps, the deletion of existirentsy or the insertion of new events to
model changes in the application’s source code. As alreathqa out, our ultimate objective
is the automatic derivation of suitable hypotheses fromottiginal trace data, for example, af-
ter identifying local or global load imbalances or othempdisties among application processes
(shown in Fig. 1 using dashed lines). Currently, a set ofipatarized standard transformations
including the scaling of functions or the elimination of rmages can be specified via a configu-
ration file and provided as input to the trace-transfornmasitage. Arbitrary transformations can
be implemented as hand-written programs utilizing theeaf@antioned trace-accesas!, which



has been extended for this purpose by adding an interfacedifyrthe trace data.

After the transformation has been applied, the simulatdiopms a parallel real-time replay
of the events stored in the trace. Computation intervalsseneillated simply by elapsing the
time in between using busy wait, whereas communicationsiarelated by reenacting the com-
munication operations recorded in the trace. Thus, the sitiecommunication is determined
by the time needed to execute the correspondirg call under modified conditions. As the
simulation progresses, event timestamps are adjustefigotrine time elapsed since simulation
start. Obviously, keeping all the trace data in memory isssemtial prerequisite for performing
the simulation in real time because reading the trace damafite in the course of the replay can
severely compromise simulation accuracy unless suclrupigons are appropriately accounted
for.

Finally, a pattern search is performed on both the origimal #he simulated event trace.
The main target of the search is the classification of wafestand their quantification broken
down by call path and process. The results of the two anaysesubtracted using a difference
operator [12] defined over the set of potential search ositpbr every type of wait state, the
operator essentially calculates the element-wise diif@¥ebetween corresponding (call path,
process) matrices, taking into account that the simulaiadway exhibit call paths not present
in the original run and vice versa. The difference data seteavisually explored to assess the
changes the modified behavior has brought about, in paatieuith respect to the reduction or
migration of wait states (Figure 4). Propagating the eff@ftchanges starting from the point of
their injection onwards through the entire execution aisd ahrrying influences over to remote
processes, our simulator allows the verification of causahections between temporally or
spatially distant performance phenomena within the contiddimits our simulator offers.

4 Replay-based Simulation

In this section, we examine the core simulation workflow @&tharea in Fig. 1) in more detail.

Using the simple example depicted in Figure 2, we illustthtetwo elementary steps of trace
transformation and simulation. We explain fundamentalgeprinciples of the simulator and

discuss techniques applied to ensure satisfactory siiomlatcuracy.

4.1 Trace Transformation

An event trace is an abstract representation of executibaviier codified in terms of events.
Every event includes a timestamp and additional infornmatedated to the action it describes.
The event model underlying our approach [14] specifies theWing event types:

e Entering and exiting code regions. The region and the cdh pee specified as event
attributes.

¢ Sending and receiving messages. Message tag, communigadbsize are specified as
event attributes.



e Exiting collective communication operations. This spkeit event carries event at-
tributes specifying the communicator, the amount of datet aad received, and the root
process if applicable.

MPI point-to-point operations appear as either a send or aveeeient enclosed by enter
and exit events marking begin and end of tim call, whereasipi collective operations appear
as a set of enter / collective exit pairs (one pair for eacligipating process). Our event model
currently ignores other types of communication, suchms, and filel/o.

At a lower level, the event trace can be modified by alteringne¥imings, deleting exist-
ing events, inserting new events, and otherwise changbityany event attributes relevant to the
replay. Since all events carry absolute timestamps, thefioaitbn of a timestamp may necessi-
tate modifying the timestamps of subsequent events. Mindjfhe end times of communication
operations is not necessary because these times will bestmeall during the simulation, as we
will see in Section 4.2. As preliminary model of a higherdewnechanism, we have imple-
mented a few sample hypotheses, such as scaling regionkaciog regions among processes
both globally and on a per-instance basis. Moreover, messean be removed depending on
their tag and whether their size exceeds or falls below aicethireshold. Further hypotheses,
such as substituting communication operations or modifynessage parameters, will be added
as we gain more experience with application test cases. 3@a®fua higher-level mechanism,
which is currently accessible via a configuration file suggblas input to the simulator, has the
advantage that consistency constraints ensuring thealogitegrity of the trace (e.g., avoiding
dangling messages sent without matching receive evenf)eamore easily enforced.

Figure 2(a) shows an event trace generated frommMwo processes. After executing the
functionsfoo() andbar () in a row, both processes engage in two message commungation
via matching pairs ofPlI _Send() andMPl _Recv(). Whereas the first time the message is sent
from A to B, the second time the message is sent in the oppdisgetion. Apparently, function
foo() exhibits an imbalance because process B spends less tire(ij than process A does.
Functionbar (), in contrast, is entirely balanced. The imbalancd én() indirectly causes
process B to wait for the message sent by A during the first canication, a situation also
known asLate SenderNo wait state can be observed during the the second comatiamic

Our obvious hypothesis is that the wait state in the f#&t_Recv() can be removed by
balancing functiori oo() with expected benefits for the overall performance. Batamtoo()
during trace transformation yields the trace shown in Fedi(b), with the timestamps of events
& andes, being modified and the timestamps of all subsequent evejustad accordingly. Of
course, the lengths of the communication intervals now sdistarted because theri calls are
simply shifted to the left or to the right without accountifay changes that would occur if the
MPI calls were carried out under these new conditions. Notethigateceive event of process
A (&) now happens before the matching send even),(violating the causal event order. The
task of rectifying this distortion is left to the actual sitation.

4.2 Simulation

As event traces model only a very restricted view of the aptithn behavior, the simulator faces
the challenge of having to approximate both computationcangimunication accurately enough
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Figure 2: Original event trace (a), event trace after trace tansformation (b), and simulated
eventtrace (c). Circles denote enter and exit events, squzs denote send and receive events.

to produce realistic events timings in the output trace.aBse input and output of the simulator
are on the same abstraction level, our primary focus is thgtheof intervals between events but
not necessarily what happens inside.

The general principle of the simulation is to traverse thenétrace in parallel, each simula-
tion process being responsible for a different applicatimtess, whose trace data resides in the
memory of the simulation process. During the traversalhesmulation process examines the
events assigned to it in chronological order and takesrdiffieactions depending on the type of
the event and its associated interval. The traversal iopagd in real time, that is, an event is
reached at the time it is supposed to occur during the sieulfain. For the purpose of the simu-
lation, we regard everything that occurs outside a comnatioic operation as computation. As
a general rule, computation intervals are simply elapséeiréas communication intervals are
filled by reenacting the corresponding communication dperaln the course of the simulation,
timestamps are successively changed to simulated time.



Startup. Thewmpi standard neither specifies a certain order in which indalidup| processes
must be initialized, nor can we assume that the relative giatewhichmpPi processes leave
MPI _I nit() remain stable across runs. Although it is hard to assessighdicance of this
effect on the performance behavior on a general level, we ligeided to recreate the orig-
inal conditions for our simulated run. Initially, all pragses wait in a barrier. The earliest
timestamp recorded in the event trace, which is collegtiiddntified via a minimum reduction,
defines the starting point. At the beginning, all processait until the time difference between
their own local and the global minimum timestamp has expirEke initial temporal offset is
thus treated like a computation interval, as explainedviael®his procedure ensures that the
simulated trace will show process initialization in the eradf the original trace, keeping the
perturbation caused by non-deterministic startup as sasaflossible. Likewise, the original
time spent invPl _I ni t () along with any overhead introduced by the tracing librametained.
The influence of the overhead, however, is later removed frenpattern-search output.

Computation. A computation interval is simulated by elapsing the coroesling time span,
whether it is still the original one or whether it has been ified during trace transformation.
This is accomplished by calling a wait function, supplyifg trequested time interval as an
argument to a simple busy wait, implemented using highbueate timers available on the
target system. We have found this to be a portable solut®thetimer functionality is already
provided by thesCALASCA infrastructure in a platform-independent way.

Communication. To accurately replay the communication, we use the comnatioit oper-
ations specified in the modified event trace with identicaldsand receive buffer sizes. Since
the data type is not recorded in the trace, we always traasfays of typevPl _BYTE. The cur-
rent event model used b§CALASCA already provides enough information to simulate most
synchronousipi point-to-point and collective operations. Since the datoatents transferred
during the simulation has generally no direct influence anglrformance behavior, reusable
message buffers can be allocated in advance after detegrimé buffer requirements of each
process, eliminating the allocation overhead at runtimeteiisions to cover a wider range of
operations including non-blocking communications thdt e sufficient to support most of to-
day’s MPI codes are straightforward and already in progress. Emgldtie way typicaPmpI
wrapper functions are implemented, the clock value beforafter performing the communi-
cation determine a send operation’s send and exit timestama receive operation’s enter and
receive timestamps, respectively. The remaining everdstafring the send operation or leaving
the receive operation are processed as part of the precedihg following computation phase.
Figure 2(c) shows the simulated trace based on the assumibtid functionf oo() can
be perfectly balanced. Since evemtsand e;5 how occur simultaneously, the waiting time
inside the first receive operations disappears, leavingteeg ande;; at the same position on
the time axis. As a consequence, both processes enter thredseammunication at the same
time (eg and e;g), correcting the causality violation still visible in 2(b)As a net result, our
simulation predicts that balancing functiboo() reduces the overall execution time by the time
indicated in the diagram. Note that the simultaneous cotigpleof matching communication
operations has only been chosen to keep the example simpldoas not represent an inherent



assumption of our simulator. Of course, the communicateenactment would account for
potential completion offsets occurring under real coodii

4.3 Small Intervals

One potential source of inaccuracy in our approach is thelatin of small intervals — espe-
cially of those that are smaller than the resolution of ouit fusction. Every call to this routine
incurs a certain overhead, as it requires querying the syBtaer at least once. In general, the
relative error introduced by this function is indirecthyoportional to the length of the interval to
be simulated. It is therefore preferable to reduce the dgaityi of the time measurements and
make the time spans spent waiting as long as possible.

For this reason, adjacent computation intervals are gobtgugether in a preprocessing step
and later simulated in one chunk. After the replay, the tiamaps of events delimiting indi-
vidual parts of this super-interval are readjusted acogydb their relative distance. While this
technique works well for consecutive computation intesyalommunication intervals imme-
diately following each other (e.gMPI calls in a tight loop) still pose a challenge. The time
interval between individualipi calls can be smaller than the minimum time interval that can
be simulated by our wait function. As a remedy, such interaak approximated without call-
ing the timer. To further reduce the per-event replay ovadhéhe decision whether an interval
gualifies for approximation is made in advance. Currentlg, dpproximation is based on con-
figurable thresholds, but a more automated calibration am@sm that calculates the thresholds
at simulator startup is already under development.

4.4 Limitations

Below we discuss limitations of our approach, distinguightemporary ones that can be re-
solved in the future by extending our event model from funeiatal and ones that are inherent
to the approach itself.

Currently, our simulator is not capable of correctly reflgyasynchronousipi point-to-
point communication, as information on communication exis is not yet properly recorded
in the trace data. Likewise, the non-determinism expreseewildcard receives using
MPI _ANY_SOURCE and/orMPlI _ANY_TAG is not retained. Instead, the replay uses source and tag
information identified during trace acquisition, thus trieting the order in which messages are
received during the simulation to the order previously ob=g However, the required infor-
mation can in principle be recorded in event traces to ctiyrecodel these two aspects. An
appropriate extension of the event model is currently bpumgued.

FurthermoreMmPI collective operations transferring a different amount afadper process,
such adfPl _Gat herv() orMPlI _Al I toal | v(), can only be approximated using their less specific
counterparts, as only the aggregate amount of data seneaatved is currently recorded for
these routines. The additional space requirement of gtatata sizes broken down by source
or destination process would have to be weighed againsteegaccuracy benefits. Also, our
current approach is oblivious of data types, which may migsent the computational overhead
associated with reduction operations. Especially pracgsand transferring user-defined data
types would be hard — and in some instances even impossibleimtilate exactly.
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Moreover, filel/o is currently not distinguished as such and treated in theesaanner as
computation intervals are, that is, it is simulated usirgthsy wait function. Although in theory
it would be feasible to replay this as well by tracing the tgpéle operation and the amount of
data read or written, the large variationsiio performance usually observed (e.g., in response
to the overall load of the file system) render this option aoeutain alternative. Finally, we
are aware that just spinning during computation inteng®ies potential interactions between
processes through the memory subsystem. By shifting tlagiveltime at which concurrent
memory accesses of processes co-located on the sameode take place, the overall memory
bandwidth requirements may change. Please note, howhaembst of these issues reach far
beyond the fidelity of analytical approaches our method eacdmpared to.

Another fundamental issue touches the question to whahiettie hypotheses expressible
within the limits of our event model can reflect real code gem For example, redistributing
load in reality might also alter the communication requiesnts and influence number and size
of messages that must be sent and received. While such cheagen principle be addressed
by our simulation scheme, the challenge lies in managing-timeplexity of specifying these
dependencies when defining optimization hypotheses. Weeatypwever, that as a first hint
at potential optimizations, the simple hypotheses we atlgresupport can already deliver a
sufficiently accurate picture.

5 Examples

In this section, we report on the experiences gained so fdr ovir simulator using both syn-
thetic benchmarks, where the code can be more easily motifietonstruct the hypothetical
behavior in reality, and more complex real-world applicasi. After validating the overall accu-
racy of the simulation using unmodified trace data, we verifiptimization hypotheses related
to load balancing and improved communication behavior.effleriments were performed on
the 8-rackiBM Blue Gene/L systemuBL at Forschungszentrum Julich in coprocessor mode.

5.1 Identity Simulation

One way of validating the overall simulation accuracy is éofprm anidentity simulation that

is, replaying an recorded event trace without applying argr pransformation, and comparing
the predicted to the original behavior. For this purposechase theasc SWEERBD benchmark
code [1], anvPI application which calculates the flux of neutrons througthezell of a three-
dimensional grid along several possible directions ofdrtaWe conducted measurements at a
range of scales from 32 to 4,096 processes. The applicattmncanfigured to run for a few
minutes, with the problem size per process being roughlgteon (i.e., weak scaling).

In our experiments, the deviation of the overall executiametpredicted by the simulator
from the execution time measured during an actual run wasramall, typically in the order of
less than 0.5 percent. As positive and negative errors oogun different parts of the program
may compensate each other, we determined the aggregatetabmswor across all (call path,
process) combinations. The deviation in relation to theltexecution time was less than 0.8
percent in all configurations, demonstrating that a redsenavel of accuracy was sustained
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throughout the entire program. The instrumentation owstheeated during trace acquisition
was negligible for all configurations.

5.2 Load Balancing

Load imbalance is a common source of wait states in messaggiAg applications. Here, we
present two synthetic benchmark programs with wait stag#sgbindirectly induced by load
imbalance, propagating to the affected communicationsscadlonger range of execution time
through a phase of balanced behavior (Figure 3). Using ttresexamples, we demonstrate
our simulator’s ability to accurately predict the reduntaf waiting time after removing the im-
balance, thus verifying a causal connection between thasdistant performance phenomena.

The first example is calleds-coLL and generates\Wait at Nx N inefficiency pattern, where
a load imbalance induces waiting times at the next synchirmgicollective communication.
Figure 3(a) shows one possible incarnation of this patesnt appears in our example. In this
program, a sequence of three function calls is executeddrssioop of 100 iterations. The first
routine is called 0o(), emulating a load imbalance by making the execution timesdéent
on the rank number. The last function call in each iterat®iFl _Al | reduce(), implicitly
synchronizing all processes involved due to the all-tceblracter of the communication. To
show the long-range effects of the perturbation introdumgthe imbalance, a routirtaar () is
executed in between, taking the same amount of time for eladegs.

The second example is calleg-P2pP and generates laate Sendeinefficiency pattern, as
depicted in Figure 3(b). Load imbalance between processibsodd and even rank numbers
causes processes A and C to wait in a later point-to-poieiveoperation. In this more complex
case, not only computational phases (i.e., callstdq ) ) appear between cause and symptom of
the imbalance, but also additional communications inv@vother combinations of processes.
Again, 100 iterations of the illustrated behavior were parfed.

In both cases, the simulator was used to verify the hypattibat the imbalance in function
foo() is mainly responsible for the later occurrence of wait stabed that balancing it would
substantially contribute to their reduction. To validdie accuracy of our prediction, the result
was compared to measurements with a version of the prograrhdk been previously modified
according to our hypothesis. Like in the previous case, ¥pe@ments were performed on a
range of scales from 32 to 4,096 processes. In relation toethdts obtained for the identity
simulation ofSWEEFD, the overall prediction accuracy was even better for bodmgies (in
the order 0f+0.002%, i.e., showing only measurement noise). Contigistia pattern search
results of the original runs with the results of the simudadgtimized runs using the difference
operator introduced in Section 3 revealed that the simdilaédancing of functiorioo() indeed
eliminated the majority of the Late Sender pattern instanas was expected. This result was
also confirmed by the measured optimized runs.

5.3 Altering Communication Behavior

XNS [3], a computational fluid dynamics application based ortdiglement techniques on ir-
regular three-dimensional meshes, serves as an exampledéoy substantial alteration of com-
munication behavior. The code consists of roughly 45,008sliof mixed Fortran and C in more

12



imbalance

processes

waiting time

time

(a) LB-COLL. Load imbalance in functiohoo() induces wait states at the next synchronizing collective
communication. White circles with black borders denotdembive exit events.
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>
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imbalance
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(b) LB-P2P. Load imbalance between even and odd ranks irtifumicoo() induces wait states at the next
point-to-point communication operation between pairsvefreand odd ranks.

Figure 3: One iteration of each of the two synthetic examples.B-COLL and LB-P2P,
illustrating the long-range effects of load imbalance in function foo().

than 100 files and has already been subject to performanbesisrend subsequent optimization
using thescALAsCA toolset [15]. During this work, the unnecessary use of zéred point-to-
point message transfers has been identified as a major ditaladittleneck. With respect to our
simulation approach, this application example was eslhedideresting as it not only allowed
us to show the contribution of a single performance problerié formation of wait states in
point-to-point communication, but also the accurate mtszh of secondary effects, such as the
migration of wait states after eliminating the point of thieitial materialization.

The basis of our investigation was an event trace acquiredrie simulation time step
during a run with 1,024 processes using a version of the progrhere thé/Pl _Sendr ecv()
calls responsible for the zero-sized messages had alremhyrbplaced with pairs of individual
calls toMPl _Send() andMPI _Recv() . In future work, we plan to utilize the trace modification
API outlined in Section 4.1 to perform this step automaticallyinly the trace-transformation
stage without touching the source code itself. Accordinpdtiern search results obtained for
the original trace, the application suffered from a higkcfien of time spent irvpP1 (59.9%)
with roughly half of it attributable to Late Sender wait sist

Our transformation consisted of eliminating all transfefzero-sized messages occurring

13
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Figure 4: The SCALASCA report explorer displaying the distribution of execution-time
savings in XNS after removing zero-sized messages. All vas are percentages of the orig-
inal total execution time. Positive values (icons with raied reliefs) denote savings whereas
negative values (icons with sunken reliefs) denote losseSxpanded nodes represent only
the fraction not already covered by their children.

inside two problematic routines identified during an earliace analysis to assess their contri-
bution to the wait states observed. Although conceptuathpke, applying the transformation
meant eliminating more than 1.2 billion messages from taeetr which corresponds to more
than 90% of the total number of message transfers.
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Figure 4(a) shows the difference between the pattern seescitts for the original run and
the simulated optimized run. The predicted overall impmeat (not shown) was 46.9% com-
pared to a measured improvement of 49.4%. The simulatoigtsatbt only significant savings
with respect to Late Sender wait states (22.6% of the origikecution time), but also the mi-
gration of a smaller amount of waiting time to barrier symehzations (2.6%) as a secondary
effect. For comparison, Figure 4(b) depicts the equivatetput for the difference between the
original run and the measured optimized run. As can be seemliviously small deviations
mostly affect the Late Sender metric, with the actual sae@xgeeding the prediction by about
2% of the original execution time. On the other hand, theipted extent even of the relatively
small secondary effect of wait state migration to barridisagosely matches the measured ex-
tent. Thus, our simulator was able to establish a causaioeship between zero-sized messages
and Late Sender wait states as well as to foresee a small ambwait-state migration after
their removal with reasonable accuracy.

6 Conclusion

We have presented a novel approach to verifying hypotheseausal connections between dis-
tant performance phenomenanim®l message-passing applications without altering theircsour
code. Using trace-based simulation in the original exeoutionfiguration, we can accurately
assess long-range effects of a variety of behaviors retatedmputation and communication.
Since the simulation correctly propagates the influencessged by an optimization transforma-
tion even across process boundaries via message comnamj¢he initial cause and the final
symptom may also be separated along the space dimensiométhedological key difference
to earlier approaches is a parallel real-time reenactnetiecsimulated communication at the
original scale, allowing the efficient simulation aP1 applications with thousands of processes.
Moreover, since the reenactment eliminates the need to Intoelextremely complex commu-
nication infrastructures found on today’s large-scale mivaes, our approach is also platform
independent. Accurate predictions were shown for exangfl@screasing complexity with up
to 4,096 processes.

As a next step, we plan to incorporate support for asynchusmoemmunication and wild-
card receive operations, as anticipated in Section 4.4eaaldate our simulator with a broader
range of realistic codes. As our ultimate goal is autombgicdentifying suitable optimization
hypotheses, the simulator is intended to form the core coemtoof a more universal tuning
framework, where it will be used to verify optimization hyheses derived from the original
trace data. For this purpose, our future work will include tlevelopment of new trace-analysis
algorithms with emphasis on the characterization of loatiGmmunication imbalance.
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