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Abstract. We study different approaches to implement an optimal, sta-
ble two-way merge algorithm for distributed-memory parallel architec-
tures. The algorithm takes as input two ordered sequences, which are
distributed blockwise across all available processes such that each pro-
cess owns a block of elements of each sequence. The task for each process
is to produce an ordered block of elements from the stable merge of the
input sequences. We present an optimal, perfectly load-balanced, stable
parallel algorithm that accomplishes this task. We describe three differ-
ent implementation alternatives using one-sided communication of the
Message-Passing Interface (MPI). Further, we discuss problematic issues
with the current MPI 2.2 one-sided interface and enabling features that
may be found in future versions of the MPI standard. Experimental re-
sults on a large IBM Blue Gene/P supercomputer show perfect scalability
of our implementation: with a fixed input size per process the running
time remains (almost) constant with increasing number of processes, and
with a fixed total problem size our implementation improves the time to
solution for up to 32,768 MPI processes.

1 Introduction

Merging of ordered sequences is a fundamental operation in many applications
and a key ingredient for many parallel, notably sorting algorithms. As such
it has been studied intensively. However, most parallel merging algorithms are
designed for shared-memory architectures [1,2,3,5,6,10,11], and only few algo-
rithms have been described [4] and fewer implemented for distributed-memory
architectures. For instance, the latter BSP algorithm builds on shared-memory
algorithms that are both unnecessarily complicated and potentially inefficient,
in terms of both non-dominant splitting overhead and achieved load balance.
Although this algorithm could be implemented in MPI, we are not aware of any
such implementation. In this paper we describe an algorithm that is both sim-
pler to implement and better in terms of load balance and overhead. Although
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similar in nature to the algorithm presented in [2], our algorithm was discov-
ered independently. A specific improvement is that our algorithm is stable, a
desirable property for inputs with duplicate elements. The algorithm employs
a logarithmic time preprocessing step, very similar to binary search, which can
be naturally expressed with one-sided communication. The specific contribution
for the MPI community is that we analyze and experimentally compare imple-
mentation alternatives with the one-sided communication model of MPI 2.2 [7];
and show that some of the resulting problems can be resolved with the one-sided
model proposed for the upcoming MPI 3.0 standard (see www.mpi-forum.org).

2 Distributed, Stable Two-Way Merging

Let stable merge(A,B) denote the stable merge of two ordered arrays A and
B. Stability means that elements of A that are equal to elements of B are
placed before the elements of B in the output, and that the relative order of
any sequence of equal elements in either A or B is preserved in the output. The
distributed, stable merging problem is the following. The two ordered arrays
A and B with m and n elements, respectively, are distributed blockwise across
the available p processes, such that process r for 0 ≤ r < p has a block of
mr consecutive elements A[sAr , . . . , s

A
r + mr − 1] and a block of nr consecutive

elements B[sBr , . . . , s
B
r + nr − 1] with start indices sAr =

∑r−1
i=0 mi and sBr =∑r−1

i=0 ni, respectively. Each process r produces a block C[sAr +sBr , . . . , s
A
r +sBr +

mr + nr − 1] of consecutive elements of C = stable merge(A,B).
All parallel merge algorithms divide the input sequences into smaller, dis-

joint, consecutive sequences, that can be merged pairwise in parallel into the
corresponding positions of the output array. Our algorithm accomplishes this
by using the following idea: given an index i (say the start index sAr + sBr in
C for process r) in the output array C, determine the two indices j and k in
the input arrays A and B, such that stably merging the prefixes A[0, . . . , j − 1]
and B[0, . . . , k − 1] will produce exactly the prefix C[0, . . . , i − 1] of the stably
merged result C = stable merge(A,B). We call j and k the co-ranks of i. Put
differently, j and k index the first elements of A and B that are not among the
first i elements of the stably merged output C. For any process r the co-ranks
of the start indices ir = sAr + sBr and ir+1 = sAr+1 + sBr+1 will determine exactly
the blocks of A and B needed to produce the output sequence of C for process
r. Based on these co-ranks, process r can also determine from which processes
to get the input blocks, and perform a local merge on them to produce the final
result. All that is needed is an efficient algorithm for computing the co-ranks for
any given index i in C. We present and discuss such an algorithm below.

The sequential co-ranking algorithm is given as a C program fragment in
Figure 1. It maintains the invariant that i = j + k. For both j and k indices
lower bound indices are also maintained. For any given input index i with 0 ≤
i < m + n it chooses the largest possible j index in A, and starts out with the
assumption that A[j − 1] ≤ B[k], meaning that all elements of A up to j have
to come before the B elements in stable merge(A,B). If this is not the case, the
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// initialize start indices, invariant i = j+k, j as large as possible

j = min(i,m); k = i-j; j_low = max(0,i-n); // k_low set in first iteration

active = 1;

do {

// converge indices to the co-ranks

if (j>0&&k<n&&A[j-1]>B[k]) {

delta = (1+j-j_low)/2;

k_low = k;

j -= delta; k += delta;

} else if (k>0&&j<m&&B[k-1]>=A[j]) {

delta = (1+k-k_low)/2;

j_low = j;

k -= delta; j += delta;

} else active = 0; // co-ranks found

} while (active);

Fig. 1. Algorithm to find the co-ranks j and k for an index i in the output array C.

index j in A is decreased by halving the interval between j and its lower index
j low. Should it turn out that B[k − 1] ≥ A[j] then instead the k index in B is
decreased. To maintain the invariant, whenever either index is halved, the other
index is increased by the same amount. The lower bound indices are chosen such
that the array bounds m and n cannot be exceeded when an index is increased.
Note that the lower index k low for k does not need to be initialized separately,
since at the beginning only the first if condition may be true, which will cause
this index to be initialized properly.

Analysis shows that the algorithm takes at most dlog2(min(m,n))e + 1 it-
erations, since the value delta is halved in each iteration, regardless of which
branch is taken, and delta is initially at most min(m,n). For brevity, we omit
the proof that the co-ranks indeed correspond to the indices for the prefixes
needed to produce a stable merge here, although it is not difficult to see.

The distributed version of the algorithm has the input arrays A and B dis-
tributed over all processes. The accesses to the array fields therefore potentially
entail remote accesses to the memory of other processes. The fully distributed,
stable merge algorithm for each process r can be stated as follows:

1. Let ir = sAr + sBr be the start index for process r in the output array C.
Compute the co-ranks jr and kr via a distributed version of Algorithm 1.

2. Get the co-ranks jr+1 and kr+1 from process r+1 (the last process r = p−1
sets jr+1 = jr +mr = m and kr+1 = kr + nr = n).

3. Get A[jr . . . jr+1−1] and B[kr . . . kr+1−1] from the processes that own these
array blocks via communication.

4. Locally compute stable merge(A[jr . . . jr+1−1], B[kr . . . kr+1−1]) to produce
the final result C[ir . . . ir+1 − 1].

Theorem 1. Let mr+nr be the maximum number of elements for some process.
The above algorithm merges two sequences in time O(log(min(m,n))+mr +nr).



Proof. We assume the co-ranking algorithm used in Step 1 is correct. It com-
pletes in O(log(min(m,n)) iterations with at most 4 single-element remote mem-
ory accesses per iteration. Step 2 requires a communication of only two values.
The data exchange in step 3 communicates a total volume of mk +nk elements.
With a balanced distribution of the arrays, each array block A[jr, . . . , jr+1 − 1]
spans a constant number of processes, so getting the block takes a constant num-
ber of communication steps with a total volume of mk + nk elements. The local
stable merge in Step 4 takes O(mk + nk) operations. In total, our distributed
merge algorithm therefore completes in time O(log(min(m,n)) +mr + nr). ut

The proof assumes that any concurrent read accesses that may occur during
Step 1 and Step 3 can be handled efficiently.

3 Implementation Alternatives

The distributed merge algorithm has a straight-forward implementation with
any communication interface that supports one-sided communication. Indeed,
the MPI 2.2 one-sided communication model [7, Chapter 11] should in princi-
ple enable an efficient, highly portable implementation. It offers different im-
plementation alternatives, which we evaluate for our algorithm. The algorithm
consists of two main communication phases: first, the co-ranking algorithm re-
quires O(log(min(m,n))) potentially remote single-word accesses per process.
The binary search like pattern is data dependent, therefore irregular, and in
each iteration only the source process knows which data elements to assess on
which processes. This phase is thus a paradigmatic case for one-sided communi-
cation. We note that a standard binary search follows much the same pattern,
which makes our implementation alternatives also relevant for distributed binary
searches in general. During the other main communication phase in Step 3, each
process copies the array blocks needed for the local merge. This step can also be
expressed conveniently with one-sided communication.

For the implementation alternatives that use the MPI 2.2 one-sided model,
we assume that the input arrays A and B are exposed in (two disjoint) com-
munication windows. The alternatives differ in how accesses to the windows are
synchronized. We assume that for any global array index i each process r can
efficiently (that is, in constant time) compute both: the rank of the target pro-
cess that owns the corresponding block of A and B, and the local index in the
block. This can easily be done for regular distributions of the A and B arrays.
Note, however that the correctness of our implementations does not require any
specific distribution. Each iteration in Step 1 performs up to four MPI Get oper-
ations, namely to access array elements A[j−1], B[k] and A[j], B[k−1]. This can
be optimized further by aggregating two or more accesses, if they are located
on the same process. For ease of exposition, we do not discuss such (minor)
improvements.



3.1 Active Target Synchronization with an Upper Bound of Fences

The first implementation variant uses active target synchronization via a col-
lective fence operations. Each iteration of Algorithm 1 becomes a global access
epoch, which is surrounded by MPI Win fence for each window. In an epoch, each
process performs up to four remote memory accesses with MPI Get. The actual
number of iterations that is needed to determine the co-ranks is data-dependent.
Therefore, the processes do not necessarily perform the same number of itera-
tions. This is a problem because the collective MPI Win fence operation must
be called by all processes. One solution is shown in Algorithm 2: it imposes a
worst-case upper bound on the number of epochs. Processes that complete the
co-ranking procedure early, perform empty epochs to keep in sync with the re-
maining, potentially still active, processes. An upper bound on the number of
iterations is dlog2(min(m,n))e+ 1.

j = min(i,m); k = i-j; j_low = max(0,i-n);

upper = ceil(log2(min(m,n)))+1; active = 1;

do {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // (1) start access epoch

// on both A and B window (not shown)

if (j>0) a1=GET(A[j-1]); if (k<n) b1=GET(B[k]);

if (k>0) b2=GET(B[k-1]); if (j<m) a2=GET(A[j]);

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // (2) end access epoch

if (j>0&&k<n&&a1>b1) {

delta = (1+j-j_low)/2;

k_low = k;

j -= delta; k += delta;

} else if (k>0&&j<m&&b2>=a2) {

delta = (1+k-k_low)/2;

j_low = j;

k -= delta; j += delta;

} else active = 0;

upper--;

} while (active);

// execute epochs until upper bound is reached

while (upper-- > 0) {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // mimic (1)

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // mimic (2)

}

Fig. 2. Co-ranking using collective fences and an upper bound on number of iterations.

The GET functionality determines both the target process and the local in-
dex on that process for a given global index. It calls MPI Get to remotely ac-
cess this element. Since all (local and remote) accesses to the input arrays are
read-only, we use the MPI assertions MPI MODE NOPUT and MPI MODE NOSTORE as



optimization hints to the MPI library. The additional MPI MODE NOPRECEDE and
MPI MODE NOSUCCEED assertions indicate that there is no active epoch before the
opening and after the closing fence. An optimization not considered here would
use only a single fence between iterations, but the last assertion pair could be
expected to ensure this behavior. With the Blue Gene/P MPI implementation
however, there was no performance difference whether these assertions were used
or not, which suggests some room for improvement within the MPI library.

3.2 Active Target Synchronization with Global Reduction

Our first implementation variant uses a precalculated upper bound on the num-
ber of iterations. However, this is a theoretical worst case and might in practice
be too large. If all processes find their co-ranks faster, all extraneous fences
consume unnecessary time. To avoid these superfluous fences, we determine at
the end of each epoch whether all processes have finished co-ranking. This is
accomplished by an MPI Allreduce at the end of each iteration. Each process
contributes its local active flag. Local flag values are combined with a logical
“or”, and the result tells every process whether there are still active processes.
This variant is shown in Algorithm 3. Everything in [...] is as in Algorithm 2.

[...]

active = 1;

do {

MPI_Win_fence(MODE_NOPUT|MODE_NOPRECEDE); // (1) start access epoch

if (j>0) a1=GET(A[j-1]); if (k<n) b1=GET(B[k]);

if (k>0) b2=GET(B[k-1]); if (j<m) a2=GET(A[j]);

MPI_Win_fence(MODE_NOSTORE|MODE_NOSUCCEED); // (2) end access epoch

[...]

MPI_Allreduce(MPI_IN_PLACE,&active,1,MPI_INT,MPI_LOR,MPI_COMM_WORLD);

} while (active);

Fig. 3. Active one-sided variant with MPI Allreduce to determine termination.

This variant can never use more iterations than the first implementation.
However, whenever the number of iterations of some rank is close to the up-
per bound, the extra MPI Allreduce calls are “pure overhead”. Unfortunately,
without doing the actual co-ranking, there is no way to tell in advance whether
Algorithm 2 or 3 is preferable. The MPI standard might be able to help with
the general problem exposed by this example, namely to detect epochs where
there is no communication activity. A fence operation could report back whether
the epoch had any one-sided communication activity – in many cases, the MPI
library implementation would have to detect this internally anyway.

Both variants so far have the drawback of adding a collective call to each iter-
ation of the co-ranking algorithm, thus increasing the worst-case complexity by
a factor reflecting the time for a collective fence and global reduction operation.



3.3 Passive Target Synchronization with Shared Locks

The third implementation variant uses passive target synchronization. The ad-
vantage here is that no collective operations as in the previous variants are
required. Since we need the actual data directly after the GET call, each MPI Get
is encapsulated by MPI Win lock() and MPI Win unlock() operations. All remote
accesses are read operations, thus we can allow concurrent accesses by specifying
the lock to be shared. Although this implementation involves lock overhead, the
processes can now work and terminate independently. The optional assertion
MPI MODE NOCHECK indicates to the MPI library that accesses are not conflict-
ing (shared and exclusive). On the Jugene system (see Section 4), this assertion
improves the performance of the co-ranking by up to 640% at 32k MPI processes.

double GET(global_pos, window)

{

target_rank = ...global_pos...; // compute rank from global index

local_pos = ...global_pos...; // compute local index

MPI_Win_lock(MPI_LOCK_SHARED,target_rank,MPI_MODE_NOCHECK,window);

MPI_Get(result,1,MPI_DOUBLE,target_rank,local_pos,1,MPI_DOUBLE,window);

MPI_Win_unlock(target_rank,window);

return result;

}

Fig. 4. The GET functionality for the lock variant implementation.

The MPI 2.2 one-sided model allows to perform the lock on only one process
at a time, which limits concurrency between MPI Get calls within each iteration.
A different interface might potentially yield better performance. One-sided com-
munication interfaces such as ARMCI [8] or SHMEM [9] define their one-sided
communication operations to be explicitly blocking or nonblocking, which gives
further opportunities to increase concurrency as discussed in the next section.

3.4 MPI 3.0

The proposed MPI 3.0 standard (available at www.mpi-forum.org) considerably
extends the MPI 2.2 one-sided communication model and does address some of
the problems discussed above. In particular, it introduces new MPI Rget and
MPI Rput one-sided communication operations, which return a request object.
Inside the epoch it is possible to complete such operations by issuing an MPI Wait
on this request. With this feature, the whole merge algorithm could be performed
in a single MPI Win fence epoch. Each process would independently iterate, and
enforce completion of the MPI Rget calls in each iteration.

www.mpi-forum.org


10 µs

100 µs

1 ms

10 ms

100 ms

R
u
n
n
in

g
ti

m
e

2 8 32 128 512 2k 8k

Number of MPI processes

◦

�×

◦

�×

◦

�
×

◦

�
×

◦

�
×

◦

�
×

◦

�
×

◦

�
×

◦

�
×

◦

�×

◦

�×

◦

�×

◦

�×

� active target with upper bound of fences

× active target with global reduction

◦ passive target with shared locks

Fig. 5. Co-ranking performance with the three implementation variants, weak scaling.

4 Experimental Results

We have implemented the distributed, stable merging algorithm with all three
alternatives for the co-ranking step. The implementations have been evaluated
on a large distributed-memory supercomputer: the “Jugene” IBM Blue Gene/P
installation in Jülich/Germany with 73,728 nodes, each equipped with a 4-way
PowerPC processor (850 MHz) and 2 GiB memory.

All experiments used double-precision floating-point elements with sorted
random inputs, and were conducted in SMP mode with one MPI process per
node. We performed both strong and weak scaling experiments. Figure 5 shows
weak scaling results for the three co-ranking implementation variants. The two
input arrays have 10 and 20 million elements per process, respectively. Therefore,
the total number of elements is p times these local sizes. Since the number of
iterations of the co-ranking algorithm is logarithmic in the minimum number of
elements, we would expect its running time for an increasing number of processes
to grow with at least O(log p). The passive target variant seems to achieve this
slow growth while the curves for the two active target variants show a steeper
ascent. Both variants with the collective fence synchronization are by far slower
than the lock variant, reaching a factor of 29 difference at 8,192 processes. We
therefore choose the lock variant as our implementation for the co-ranking step.

In Figures 6 and 7, we present the individual times for the three main steps
of the complete merge algorithm: co-ranking, copying of remote data, and local
merge. We determined the running time of the local merge Tseqmerge(n,m) to be
0.0484 · (n+m) µsec. We use this sequential time to calculate the parallel effi-
ciency of our merge implementation E(n,m, p) as Tseqmerge(n,m)/(p ·Tparmerge),
which is given as a percentage above the total running time.
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Fig. 6. Merging performance on Jugene, weak scaling.
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Figure 6 shows the weak-scaling behavior for the individual steps of the
parallel merge algorithm, including its total running time. Note that the co-
ranking step is indeed about a thousand times faster than the data copy and
local merge. With a fixed input size per process, we would expect the running
time for the data copy and local merge to remain constant, which is indeed the
case. Only the time of the co-rank step increases very slowly with p. The overall
parallel efficiency stays at around 80%.

Figure 7 presents results from a strong scaling experiment. The total number
of elements for the two input arrays are 32 · 220 and 48 · 220, respectively. This
means that we always use only 640 MiB of input data and distribute this over
an increasing number of processes. Even with such a relatively small amount of



data (note that this Blue Gene/P system has only 2 GiB of memory available
per node), our lock-based co-ranking implementation scales up to 32,768 pro-
cesses, where only a few thousand input elements exists per process, albeit with
decreasing efficiency from around 2k processes.

5 Summary and Outlook

We presented a stable, distributed-memory parallel merge algorithm, and in
particular discussed implementation alternatives in the MPI 2.2 and MPI 3.0
one-sided communication models. The alternatives have been implemented and
we reported on initial experiments on a Blue Gene/P system. To our surprise,
the lock-based variant used for the co-ranking preprocessing step showed con-
siderably better performance than the other possibilities considered. However,
this still needs stronger experimental support, and we are continuing the exper-
imental work with the distributed merge algorithm.
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