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Abstract. Online steering means to visualize the current state of an
application which includes application data and/or performance data,
and to modify data in the application. Thus, in online steering the appli-
cation as well as the steering tool must concurrently access and modify
the same data at run time. In this paper a new model for online steering
is presented which models the mechanism of online steering as access to
a distributed shared memory. The integrity requirements of the steered
application are analyzed. The integrity can be ensured through an ap-
propriate consistency model. Finally, the online steering system RMOST
is presented which is based on the distributed shared memory model and
can be used to steer Grid jobs from the High Energy Physics experiment
ATLAS.

1 Introduction

In recent times, scientific simulations increased both in complexity and in the
amount of data they produce. Often, the simulations run on batch systems in
clusters or computational Grids and do not support interactivity during the
runtime of the simulation. Online steering of an application enables the visu-
alization of intermediate results, performance data, or other application data,
and the invocation of actions, e.g. modification of a parameters by the user at
runtime of the job. The user can interactively explore parameter realms, debug
his program, or optimize performance. Beause the user sees results earlier, he
can evaluate results earlier and react before the job has finished. Thus, online
steering accelerates scientific research and saves ressources.

In this work application means the steered program. A steering tool is dis-
tinguished from a steering system. A steering tool is the interface to the user
which visualizes data and offers the user the possibility to enter commands, e.g.
modifications of a parameter. A steering system comprises all extentions to the
application, external components, specialized steering tools, and extentions to
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offline visualization tools to enable steering. For example, a steering system can
comprise steering libraries on the application side, special processes which are
needed for the communication or automated decision making, and libraries on
the steering tool side to extend an existing visualization.

Until now, various steering systems have been developed [1,2,3,4,5,6,7] for
supporting the scientist with interactive control over his simulation. Existing
systems provide means to retrieve data from the application and invoke actions
in the remote application. Typically, the application is instrumented with calls
to a steering library to enable the sending of data to a remote visualizer, or to
apply commands from the user. The steering system manages the data transport
to a customized user interface. One of the reasons why steering systems are not
used is the required effort to instrument a legacy application for steering.

In this paper another approach is used, which views steering similar to dis-
tributed shared memory (DSM). Any steering is basically the change of state
of an application and a state change corresponds to a change in memory. Thus,
steering can be modeled as a case for DSM because all steering actions can be
reduced to memory access operations. This approach simplifies the application
of steering systems to existing software and improves the efficiency of steering.

If a data object is modified in a running application without any synchro-
nization with the execution of the applications, severe errors may occur.

In these cases the integrity of the data in the application is broken. To protect
the integrity, rules are needed which define the order of access operations on the
shared data. The necessary rules define a consistency model. Though various
steering tools exists, until now no consistency model for online steering exists.
In most cases the integrity problem is not addressed or left to the user.

Based on the DSM-based steering model, the new online steering system
RMOST (Result Monitoring and Online Steering Tool) [8,9] was developed. The
advantages for the user are the ease of use of a DSM-like approach and the
build-in consistency guarantees.

2 Formalism for the DSM Based Model for Online
Steering

In online steering, the application and the steering tool access both the same
data. If the steering tool and the application run in the same address space, it is
a trivial task. But if visualization and simulation have different address spaces,
e.g. if they are located on different machines, a mechanism to access the remote
data is needed. Thus, online steering can be modeled as DSM. The advantages
of a DSM model are that the complexity of distributed data is hidden from the
user of the steering system, and it looks like accessing only local data for the
steering tool and the application. The steering system completely handles the
communication and it supports the programmer with the consistency guarantees
to maintain data integrity.

In the DSM based model of online steering, two kinds of processes exists with
different roles and properties. Firstly, n application processes p1, ..., pn exist. The



application may synchronize p1, ..., pn with any mechanism, e.g. MPI, or shared
memory. However, the synchronization within the application is out of scope of
this work. Secondly, m steering processes pn+1, ...pn+m exist, each representing a
steerer in a collaborative environment. The data objects which can be visualized
or steered reside in the distributed shared memory. Each data object o has a
home location H(o) ∈ p1, ..., pn which is one of the application processes. The
steering processes are not chosen for home locations, because the steerers may
detach and thus causing the home location to be inaccessible.

Three kinds of memory operations exist: read operations r, write operations
w, and synchronization operations s. Read and write operations are denoted as
o(p, x, v) where o ∈ {w, r} specifies the operation type, p is the process that
perform the operation, x is the memory location, and v is the value that is
written or read. Synchronization operations are denoted as s(p, x). A process pi
is viewed as a sequence of memory operations Si = {o1, o2, ...} with oi ∈ {w, r, s}.
A process sees a write operation w if a current read operation would return the
value written by w. A write operation w is visible to a process p if p can see w.

Each application process pi is associated with a logical clock Ti, which indi-
cates the progress of the process. Ti in incremented when pi release an update to
the distributed shared memory, or when p1 sees an update of another process.
Thus, synchronization operations imply clock incrementations. An epoch is the
interval between two consecutive clock incrementations. The furthest common
logical time Tmin = min(T1, ..., Tn) is the minimum time of all application pro-
cesses. The furthest time Tmax = max(T1, ..., Tn) is the maximum time of all
application processes.

3 Data Integrity

Data integrity is an important prerequisite to obtain correct results from the
application. This means a steering system should ensure that the displayed data
is consistent in itself, and any modifications must preserve the integrity of the
data within the application. In this section, the effects that might affect the
integrity are analyzed which lead to two integrity conditions. The first one is the
inner-process condition, and the second one is the inter-process condition.

3.1 The Inner-Process Condition

The inner-process condition requires that the data in the application must not
be modified externally during certain operation intervals, and that the write
operations of the application to shared objects become only visible if the data
is in a well-defined state. For example, assume one formula is computed where
one variable x appears at different places in the formula. The result can only be
correct if the value of x stays the same during the whole computation. Another
case could be a numerical n-body simulation. While it is allowed to modify
parameters between each simulated time step, the value should stay the same
inside each simulated time step.



Also the modifications of the application to shared data should become visible
only at well defined places. Imagine several properties of different input objects
are computed. If the object is visible and displayed after the computation of the
first few properties while the other properties stem from another input, the dis-
played result is propably incorrect and can be misleading. Thus, to preserve the
inner-process condition, changes of the application must only become visible at
well defined points, and changes by the steerer must only be applied by the ap-
plication at well-defined synchronization points. Typically, one epoch is bounded
by two synchronization points, which implies that synchronization points match
the incrementations of the logical clock.

3.2 The Inter-Process Condition

The inter-process condition considers the different progress of different processes.
Firstly, it requires that write operations of the steering processes must be seen
in all processes at the same time step. Secondly, values of displayed data objects
must stem from the same epoch.

For example, suppose a parallel simulation iterates over several time steps
and each process computes a part of the overall result. If changing a boundary
parameter, one would like to change this parameter at all processes in the same
epoch. If a steerer changes the value of the parameter in the DSM, the system
must ensure that the modification is viewed by all processes at the same epoch.

Another case occurs if a steerer wants to display a distributed object which
is modified by several processes, and each process computes a part of the whole
object. The steerer must only see the writes of all processes up to Tmin to retrieve
an internally consistent data set. Writes of processes that have proceeded further
ahead must not be visible to the steerer to provide a well-defined display of
intermediate results.

4 Consistency Models

To ensure the integrity of the data in online steering, each process must view ac-
cess operations to the shared memory according to certain rules. For each given
set of access operations, a consistency model is defined through the possible or-
ders in which each process is allowed to see the memory accesses [10]. Thus, a
consistency model can be used to maintain data integrity. In this section, con-
sistency models are evaluated which fulfill the requirements for data integrity in
online steering. One consistency model will not satisfy all cases, because not all
data objects require both integrity requirements analyzed in Sec. 3. Some data
objects have no integrity conditions and can be treated completely asynchronous,
some data objects have only the inner-process condition, and some data objects
require both conditions. Thus, different consistency models are appropriate to
each of these cases. The case that data objects have only the inter-process condi-
tion is not considered, because the inter-process condition implies the existence
of epoches. The transition points between two epoches define the synchronization
points where values may be read or modified.



4.1 Consistency for the Inner-Process Condition

The inner-process condition allows the application and distribution of updates
only at special synchronization points. The desired existence of special synchro-
nization points leads to a consistency model which is similar to weak consistency
[11]. Two possibilities exist which behave different in the following case: Let p1
be an application process and let p2 be a steerer process that viewed the accesses
w(p1, x, 1), and s(p1). Now, p2 executes w(p2, x, 2), and r(p2, x, ?) before it sees
another s(p1). Which value should r(p2, x, ?) return?

1. r(p2, x, 1) returns the current value of the application. The newly written
value is not seen until the next synchronization operation. This model delays
the execution of the write operation after the next synchronization operation,
thus it is called delayed weak consistency. This consistency model displays
always a consistent set of values from the application, but it has the effect
that a read operation at the steerer may not return the value written by
the previous write operation. This behavior can be interpreted as display of
results. An advantage of this model is that it does not require a sequential
order of the synchronization points.

2. r(p2, x, 2) returns the value recently written by the same process. This leads
to weak consistency with the modification that updates are applied exactly
at the next synchronization operation, instead of latest at the next synchro-
nization operation. In this case a read operation of the steerer may return
a value that is not consistent with the results from the application. The
displayed data equals the value the application sees when it enters the next
epoch. It can be interpreted as display of the configuration.

Interestingly, the sequential consistency [12] is too strong for the inner-
process condition. In most DSM systems, the usage of relaxed consistency models
is driven by the better performance of the relaxed models compared to strong
consistency models, but the programmer wants his program to behave like se-
quential consistency [12] would be used. In the case of online steering, strong
consistency would not provide the desired behavior. In the example shown above
both cases violate the rules of sequential consistency. With delayed weak consis-
tency a read does not return the value of the most recent write, and with weak
consistency p1 and p2 view write operations in different orders.

If synchronization operations are not global but only for one or a few data
objects, release like consistency models [13] can be derived. But this reduces
the advantage of a simple instrumentation, because it requires more detailed
information about which data is updated at each synchronization point.

4.2 Consistency for Both Conditions

In this case it must be ensured that the steerers retrieve all values from the same
epoch, and all application processes apply all modifications at the same epoch.
At every given time, each epoch can be assigned to one of the following three
groups:



– The past are those epoches T that are finished by all application processes:
T < Tmin.

– The future are those epoches T that are not yet entered by any application
process: T > Tmax.

– The presence are the epoches T that do neither belong to the past nor to
the future: T ∈ [Tmin, Tmax].

Each write operation w is tagged with a time stamp T (w). Write operations of
an application process p will be tagged with the timestamp of the process T (w) =
T (p). Write operations of a steering processes will be tagged with Tmax+1. Thus,
each data object has a schedule of values assigned to it. A read operation of data
object x by a steering process will always return the most recent value v from the
past. Read operations of an application process p at time step T (p) will always
return the most recent value v from the viewpoint of the process.

This consistency model is called schedule consistency. Steerers can only write
to the future and read from the past. It has the effect, that modifications are not
seen immediately, but after a delay which depends on the length of the presence.
The delayed weak consistency is a special case of the schedule consistency with
the presence comprising only one epoch. Formally, this effect is caused by an
reordering of write and read operations in the steerer processes. Writes that
occur before a read in program order may be seen later than the read.

4.3 Consistency with no Integrity Conditions

Beside parameters or results which probably have the inner-process or inter-
process condition, data objects with a producer-consumer access pattern exists
which require none of the integrity conditions. These data object have one pro-
ducer, which is the only process writing to this data object, and one or more
consumer processes who read this data object. For example, processor load or
other monitoring data has neither the inner-process nor the inter-process condi-
tion. For those data the update intervals or delays implied by the weak or sched-
ule consistency may be inappropriate. These data objects are independent from
other data objects by definition, thus Pipelined RAM consistency [14] should be
sufficient. Pipelined RAM consistency ensures that all processes view the writes
of a process p in the order they are executed by p.

5 Implementation in RMOST

RMOST (Result Monitoring and Online Steering Tool)4 [8,9] is an online steering
system for Grid Jobs of the High Energy Physics (HEP) experiment ATLAS [15].
It consists of an application independent implementation of the presented DSM
approach for online steering, and a thin integration layer into the ATLAS soft-
ware. Through the DSM-based approach it is possible to enable steering of Grid

4 RMOST can be downloaded from http://hep.physik.uni-siegen.de/grid/rmost



Jobs in the ATLAS experiment without modification of the source code. Cur-
rently, only sequential applications with one steerer are supported. Its architec-
ture consists of four main layers:

1. The communication layer realizes a communication channel between the ap-
plication and the steering tool. The Grid communication channel of RMOST
is described in [16].

2. The data consistency layer implements a DSM system with the consistency
models described in Sec. 4.

3. The data processing layer is a place holder for any data processing performed
by the steering system like filtering, or automated evaluation.

4. The data access layer provides tools for data access. For example, in RMOST
a preloaded library replaces standard library calls in order to observe file
accesses. Another (not yet implemented) possibility is to monitor method
calls by modifying a classes’ virtual table.

5.1 Data Consistency Layer

The data consistency layer provides a framework for several consistency proto-
cols implementing different consistency models. The framework consists of the
registry, the manager, and an interface for consistency protocols.

The registry contains for every steerable data object its name, the used pro-
tocol, and the access methods of the local copy. If several processes register data
with same name, these objects are considered as local copies of the same value.
The manager handles all communication in a separate thread. Asynchronous
messages are immediately forwarded to the appropriate protocol, while synchro-
nized message types are buffered until the next synchronization operation.

Consistency protocols can send messages via the manager and are called on
every synchronization point, when a message is received for it, or if a data object
is accessed which uses this protocol. Currently, for delayed weak consistency,
pipelined RAM consistency, and blockwise delayed weak consistency both an
invalidate and an update protocol are implemented. As example, the update
protocol for the weak and for the delayed weak consistency are explained:

If a process uses the update protocol for the weak consistency and a write oc-
curs, it sets a modification flag for this data object. At the next synchronization
point, the process sends updates of all data objects whose modification flags have
been set. If a process receives an update, it is buffered until the next synchro-
nization point. At this point the new value is applied. If an update was received
and the local modification flag of this data object is set, too, the value from the
steering process has priority. For weak consistency the synchronization points
must be ordered sequentially. Thus, a process must obtain a synchronization
lock before it can execute a synchronization point.

If the application uses delayed weak consistency, it performs the same actions
as with weak consistency except that it does not obtain the synchronization lock.
If the steering tool performs a write operation, the new value is buffered, but
not yet applied locally. At the next synchronization point an update is send



to the application. If the application receives an update, it applies it at its
next synchronization point. Afterwards, it sends an acknowledgment back to the
steering tool. The steering tool applies the new value at the next synchronization
point after receiving the acknowledgment.

6 Application of RMOST

The ATLAS [15] experiment is performed at the Large Hadron Collider (LHC) at
CERN. Beside many others, the most prominent goal of the ATLAS experiment
is to find the Higgs particle which is responsible for the masses of particles.

The experiment software framework Athena [17] was created for the compu-
tation of the data and is commonly used in the HEP community. The processed
data consists of collision events which can be computed independently. In gen-
eral, the desired results are statistics over several thousands events.

The Athena framework [17] provides different components which can be
plugged together by the user through a so called job options file. Furthermore,
Athena can be extended with customized components contained in a shared
library. The different components can be categorized into several basic classes.
The two important classes for the implementation of RMOST are algorithms and
services. The core of an Athena job is a list of algorithms which are executed for
each event. Services provide functionality to other components.

The ROOT toolkit [18] is commonly used for offline visualization of physical
results. It provides an interface to extend ROOT with new classes which are
located in a shared library and loaded dynamically. Modifications and recompi-
lations of the ROOT toolkit and the Athena framework to enable steering are
hardly accepted by the HEP community. Thus, for the integration of RMOST in
the Athena framework a new algorithm RM Spy was developed which can be ap-
plied to the Grid job by editing the job options file. RM Spy enables the steering
of the job execution, monitoring of intermediate results in the output files, and
modification of the job options file. The steering API is encapsulated by a new
Athena service RM SteeringSvc. Thus, steering of Athena jobs is enabled with-
out modification of the source code of existing components. Other components
can be extended with customized steering features by using the RM SteeringSvc.

Steering can be made available to ROOT by dynamically loading an extra
library with interface classes for ROOT to RMOST. It allows to modify steerable
parameters, or view progress information from the job. Through preloading of the
RMOST file access library, the steering system intercepts file accesses and fetches
or updates the according parts of the file. Thus, the existing offline visualization
in ROOT can be used for online monitoring of intermediate results and steering
without modifications of the source code.

7 Related Work

Until now, no general DSM-based model for steering exists. However, some steer-
ing tools provide tools to support the user to maintain the integrity of the data.



Closest to this work is the Pathfinder [5] steering system. Steering actions
and the program’s execution are both viewed in terms of atomic transactions.
They address the issue to consistently apply steering actions to a parallel mes-
sage passing program. A steering action is consistent if it is applied in a consis-
tent snapshot of the parallel program. An algorithm is presented which detects
inconsistent steering actions. The mayor issue is to define points in a parallel
application where steering actions can be consistently applied. As result a global
ordering of all transactions exists, which leads to sequential consistency.

CUMULVS [2,19] is a steering tool which allows to make checkpoints of a
parallel program. An algorithm is presented to capture distributed data objects
consistently by stopping processes that have already processed ahead until all
processes reached an equal progress. While this algorithm is similar to the pre-
sented schedule consistency, CUMULVS has no DSM-based model for steering.

EPSN [20] requires a description of the structure of the application. For each
steerable data object, areas are defined where the data object may be read or
changed. The source code of the application must be instrumented with markers
to the abstract structure. VASE [6] follows similar principles. The integrity prob-
lem is brought to an abstract level which can simplify the problem for the user.
However, the decision where a data object may be accessed without disrupting
integrity stays with the user. Both have no DSM-based approach for steering.

In RealityGrid [1] a client/server based steering system was developed. The
steering library only informs the application on events which must be handled by
the user. The user may use predefined library calls to react on events, but a DSM
like mechanism does not exist. The steering actions are performed in a single
steering library call to reduce the effort of instrumentation. Because events are
processed in a single function, by default, weak consistency is implicitly realized.

8 Conclusions and Future Work

The data integrity of an application can be destroyed through online steering.
Two major conditions that ensure data integrity are identified, the inner-process
condition and the inter-process condition. Online steering is viewed as a access
to distributed shared memory. The integrity of the data can be maintained if
the steering systems provide certain consistency guarantees. This allows to easily
apply steering to existing legacy codes. In the case of the ATLAS experiment it
was possible to enable offline legacy codes for online steering without changing
existing codes by just adding components to the framework. Furthermore, offline
visualization tools could be used for online visualization.

The necessary conditions may vary between different objects of the same ap-
plication, thus a steering system should support a number of consistency models.
First measurements show, that invalidate protocols effectively avoid overload on
the network, which happens in stream-based steering tools. On the other hand,
update protocols are faster for small amounts of data. We are currently working
on an automatic selection between update or invalidate protocols that dynami-
cally adapts to the environment and optimizes the performance.
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