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a b s t r a c t 

The stagnation of single-core performance leaves application developers with software parallelism as the 

only option to further benefit from Moore’s Law. However, in view of the complexity of writing parallel 

programs, the parallelization of myriads of sequential legacy programs presents a serious economic chal- 

lenge. A key task in this process is the identification of suitable parallelization targets in the source code. 

In this paper, we present an approach to automatically identify potential parallelism in sequential pro- 

grams of realistic size. In comparison to earlier approaches, our work combines a unique set of features 

that make it superior in terms of functionality: It not only (i) detects available parallelism with high ac- 

curacy but also (ii) identifies the parts of the code that can run in parallel—even if they are spread widely 

across the code, (iii) ranks parallelization opportunities according to the speedup expected for the entire 

program, while (iv) maintaining competitive overhead both in terms of time and memory. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Although the component density of microprocessors is still ris-

ing according to Moore’s Law, single-core performance is stag-

nating for more than ten years now. As a consequence, extra

transistors are invested into the replication of cores, resulting in

the multi- and many-core architectures popular today. The only

way for developers to take advantage of this trend if they want

to speed up an individual application is to match the replicated

hardware with thread-level parallelism. This, however, is often

challenging especially if the sequential version was written by

someone else. Unfortunately, in many organizations the latter is

more the rule than the exception ( Johnson, 2010 ). To find an entry

point for the parallelization of an organization’s application portfo-

lio and lower the barrier to sustainable performance improvement,

tools are needed that identify the most promising parallelization

targets in the source code. These would not only reduce the re-

quired manual effort but also provide a psychological incentive for

developers to get started and a structure for managers along which

they can orchestrate parallelization workflows. 

In this paper, we present an approach for the discovery of po-

tential parallelism in sequential programs that—to the best of our
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nowledge—is the first one to combine the following elements in

 single tool: 

1. Detection of available parallelism with high accuracy 

2. Identification of code sections that can run in parallel, support-

ing the definition of parallel tasks—even if they are scattered

across the code 

3. Ranking of parallelization opportunities to draw attention to

the most promising parallelization targets 

4. Time and memory overhead that is low enough to deal with

input programs of realistic size 

Our tool, which we call DiscoPoP ( = Discovery of Potential

arallelism), identify potential parallelism in sequential programs

ased on data dependences. It profiles dependences, but instead

f only reporting their violation it also watches out for their ab-

ence. The use of signatures ( Sanchez et al., 2007 ) to track memory

ccesses, a concept borrowed from transactional memory, keeps

he overhead at bay without significant loss of information, rec-

nciling the first with the last requirement. We use the depen-

ence information to represent program execution as a graph, from

hich parallelization opportunities can be easily derived or based

n which their absence can be explained. Since we track depen-

ences across the entire program execution, we can find parallel

asks even if they are widely distributed across the program or not

roperly embedded in language constructs, fulfilling the second

equirement. To meet the third requirement, our ranking method

onsiders a combination of execution-time coverage, critical-path

ength, and available concurrency. Together, these four properties
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b  
ring our approach closer to what a user needs than alternative

ethods ( Ketterlin and Clauss, 2012; Zhang et al., 2009; Garcia

t al., 2011 ) do. 

We expand on earlier work ( Li et al., 2013; 2015a; Ul-Huda

t al., 2015 ), which introduced the concept of computational units

CUs) in parallelism discovery for the first time ( Li et al., 2013 ), and

elated algorithms for identifying parallelism based on the notion

f computational units ( Li et al., 2015a; Ul-Huda et al., 2015 ). At

hat time, computational units were defined at instruction level,

 granularity that is too fine to identify thread-level parallelism.

urthermore, the internal read-compute-write pattern of a CU was

ot clearly defined, leading to unnecessary complication for both

he parallelism discovery algorithms and the users. Finally, it had

ignificant time and memory overhead due to the brute-force data-

ependence profiling method. Compared to the earlier approach,

his paper has the following contributions: 

1. Revised definition of computational units. According to the new

definition, the three phases (read phase, compute phase, and

write phase) of a CU can be clearly distinguished. The new def-

inition is compatible with the one presented in earlier work ( Li

et al., 2013 ), but allows CUs to be built on any granularity. 

2. Improved parallelism discovery algorithms adapted to the new

definition of CUs. The algorithms identify more parallelization

opportunities, including the ones identified by the earlier ap-

proach ( Li et al., 2015a; Ul-Huda et al., 2015 ). 

3. A ranking method to draw attention to the most promising par-

allelization targets. 

The remainder of the paper is structured as follows: In the next

ection, we review related work and highlight the most important

ifferences to our own. In Section 3 , we explain our approach in

ore detail. In the evaluation in Section 4 , we demonstrate the

esults of applying our method on benchmarks from four different

enchmark suites with two case studies. We also quantify the over-

ead of our tool both in terms of time and memory. Section 5 sum-

arizes our results and discusses further improvements. 

. Related work 

After purely static approaches including auto-parallelizing com-

ilers had turned out to be too conservative for the parallelization

f general-purpose programs, a range of predominantly dynamic

pproaches emerged. As a common characteristic, all of them cap-

ure dynamic dependences to assess the degree of potential paral-

elism. Since this procedure is input sensitive, the analysis should

e repeated with a range of representative inputs and the final val-

dation is left to the user. Such dynamic approaches can be broadly

ivided into two categories. Tools in the first merely count depen-

ences, whereas tools in the second, including our own, exploit

xplicit dependence information to provide detailed feedback on

arallelization opportunities or obstacles. 

Kremlin ( Garcia et al., 2011 ) belongs to the first category. Using

ependence information, it determines the length of the critical

ath in a given code region. Based on this knowledge, it calculates

 metric called self-parallelism, which quantifies the parallelism of

 code region. Kremlin ranks code regions according to this met-

ic. Alchemist ( Zhang et al., 2009 ) follows a similar strategy. Built

n top of Valgrind, it calculates the number of instructions and the

umber of violating read-after-write (RAW) dependences across all

rogram constructs. If the number of instructions of a construct

s high while the number of RAW dependences is low, it is con-

idered to be a good candidate for parallelization. In comparison

o our own approach, both Kremlin and Alchemist have two ma-

or disadvantages: First, they discover parallelism only at the level

f language constructs, that is, between two predefined points in

he code, potentially ignoring parallel tasks not well aligned with
he source-code structure (loops, if s, functions, etc.). Second, they

erely quantify parallelism but do neither identify the tasks to run

n parallel unless it is trivial as in loops nor do they point out par-

llelization obstacles. 

Like DiscoPoP, Parwiz ( Ketterlin and Clauss, 2012 ) belongs to

he second category. It records data dependences and attaches

hem to the nodes of an execution tree it maintains (i.e., a gen-

ralized call tree that also includes basic blocks). In comparison

o DiscoPoP, Parwiz lacks a ranking mechanism and does not ex-

licitly identify tasks. They have to be manually derived from the

ependence graph, which is demonstrated using small text-book

xamples. 

Reducing the significant space overhead of tracing memory ac-

esses was also successfully pursued in SD3 ( Kim et al., 2010b ). An

ssential idea that arose from there is the dynamic compression

f strided accesses using a finite state machine. Obviously, this ap-

roach trades time for space. In contrast to SD3, DiscoPoP lever-

ges an acceptable approximation, sacrificing a negligible amount

f accuracy instead of time. The work from Moseley et al. (2007) is

 representative example of this approach. Sampling also falls into

his category. Vanka and Tuck (2012) profiled data dependences

ased on signature and compared the accuracy under different

ampling rates. 

Prospector ( Kim et al., 2010a ) is a parallelism-discovery tool

ased on SD3. It tells whether a loop can be parallelized, and pro-

ides a detailed dependence analysis of the loop body. It also tries

o find pipeline parallelism in loops. However, no evaluation result

r example is given for this feature. 

. Approach 

Fig. 1 shows our parallelism-discovery workflow. It is divided

nto three phases: In the first phase, we instrument the target pro-

ram and execute it. Control flow information and data depen-

ences are obtained in this phase. In the second phase, we search

or potential parallelism based on the information produced during

he first phase. The output is a list of parallelization opportunities,

onsisting of several code sections that may run in parallel. Finally,

e rank these opportunities and write the result to a file. 

.1. Phase 1: Control-flow analysis and data-dependence profiling 

The first phase includes both static and dynamic analy s es. The

tatic part includes: 

• Instrumentation. DiscoPoP instruments every memory access, 

control region, and function in the target program after it

has been converted into intermediate representation (IR) using

LLVM ( Lattner and Adve, 2004 ). 
• Static control-flow analysis, which determines the boundaries

of control regions (loop, if-else, switch-case, etc.). 

The instrumented code is then linked to libDiscoPoP, which

mplements the instrumentation functions, and executed. The dy-

amic part of this phase then includes: 

• Dynamic control-flow analysis. Runtime control information

such as entry and exit points of functions and number of it-

erations of loops are obtained dynamically. 
• Data-dependence profiling. DiscoPoP profiles data dependences

using a signature algorithm. 
• Variable lifetime analysis. DiscoPoP monitors the lifetime of

variables to improve the accuracy of data-dependence detec-

tion. 
• Data dependence merging. An optimization to decrease the

memory overhead. 

Note that we instrument intermediate representation, which is

btained from the source code of the application. That means li-

raries used in the application can only be instrumented when
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Fig. 1. Parallelism discovery workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Signature algorithm example. 
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the source code of the libraries is available. We believe that this

approach is sufficient for discovering parallelism since it is nearly

impossible to parallelize binary code manually. 

3.1.1. Hybrid control-flow analysis 

We perform the control-flow analysis in a hybrid fashion. Dur-

ing instrumentation, the boundaries of control structures (loop, if-

else, and switch-case, etc.) are logged while traversing the IR of

the program. The boundaries are indexed by source line number,

which allows us later to provide detailed information to the user.

At the same time, we instrument control structures and functions. 

During execution, inserted instrumentation functions log run-

time control-flow information dynamically. Instrumentation func-

tions for loops count the number of iterations, while functions for

branches remember which branch is being executed so that data

dependence information can be correctly mapped onto control-

flow information. Instrumentation functions for function calls log

the function boundaries. This is done dynamically because a func-

tion may have multiple return points and can return from different

positions during execution. 

3.1.2. Signature-based data-dependence profiling 

Our earlier approach ( Li et al., 2013 ) consumes more than

500 MB memory on very simple programs. For a relatively small

benchmark (streamcluster) that performs computations iteratively,

it consumes 3.3 GB to profile the dependences. Such high memory

consumption limits our approach from being applied to real-world

applications. 

To lower the memory requirements of the data-dependence

profiling, we record memory accesses based on signatures. This

idea is originally introduced in ( Vanka and Tuck, 2012 ). A signa-

ture is a data structure that supports the approximate represen-

tation of an unbounded set of elements with a bounded amount

of state ( Sanchez et al., 2007 ). It is widely used in transactional

memory systems to uncover conflicts. A signature usually supports

three operations: 

• Insertion: A new element is inserted into the signature. The

state of the signature is changed after the insertion. 
• Membership check: Tests whether an element is already a

member of the signature. 
• Disambiguation: Intersection operation between two signatures.

If an element was inserted in both of them, the resulting ele-

ment must be represented in the resulting intersection. 

A data dependence can be regarded as a conflict because a

data dependence exists only when two or more memory opera-

tions access the same memory location in some order. Therefore, a

signature is also suitable for detecting data dependences. In our

approach, we adopt the idea of signatures to store memory ac-

cesses. A fixed-length array is combined with a hash function that
aps memory addresses to array indices. In each slot of the ar-

ay, we save the source line number where the memory access oc-

urs. Because of the fixed length of the data structure, memory

onsumption can be adjusted as needed. 

To detect data dependences, we use two signatures. One for

ecording read operations, one for write operations. When a mem-

ry access c at address x is captured, we first obtain the access

ype (read or write). Then, we run the membership check to see if

 exist in the signature of the correspondent type. If x already exist,

e update the source line number to where c occurs and build a

ata dependence between the current source line and the previous

ource line. Otherwise, we insert x into the signature. At the same

ime, we check whether x exist in the other signature. If yes, a data

ependence has to be built as well. An alternative would be per-

orming membership check and disambiguation whenever a write

peration occurs, since read-after-read (RAR) dependences do not

revent parallelization. 

Fig. 2 shows an example of how our algorithm works. The sig-

ature size in this example is four. Four memory accesses are

ecorded, including two write and two read accesses. A disam-

iguation of the two signatures indicates a conflict at address 2.

n this case, a write-after-read (WAR) dependence must be built. 

We insert a function at the beginning of the target program to

nitialize the data structures. Every read and write operation of the

arget program is instrumented. Since disambiguation usually in-

urs a bigger overhead than the membership check does, we build

ata dependences using membership check whenever possible. 

.1.3. False positives and false negatives 

Representing an unbounded set of elements with a bounded

mount of state means adding new elements can introduce errors.
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Fig. 3. Architecture of a parallel data-dependence profiler for sequential programs. 
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he membership check of a signature can deliver false positives,

hich further lead to false positives and false negatives in depen-

ences. 

The false-positive rate of the membership check is a function

f the signature size and the number of elements. Assume that we

se one hash function, which selects each array slot with equal

robability. Let m be the number of slots in the array. Then, the

robability that the hash function does not use a slot during inser-

ion is: 

 − 1 

m 

After inserting n elements, the probability that a certain slot is

till unused is: 

1 − 1 

m 

)n 

Now the estimated false-positive rate (EFPR), i.e., the probability

hat a certain slot is used is thus: 

F P R = 1 −
(

1 − 1 

m 

)n 

Obviously, to control the false-positive rate of the membership

heck, we need to adjust the size of the signature m to the num-

er of variables n in the program. There are two solutions. The first

olution is to set the size of signatures as big as possible so that

he false positive rate is guaranteed to be low. This may sounds

seless at the first time, but it is actually quite a simple, effec-

ive, and applicable solution. Experiments show that to profile NAS

enchmarks with accuracy higher than 99.6%, the average mem-

ry consumption is 649 MB. Any ordinary PC that equipped with

ore than 2 GB memory has enough resource to secure a high

ccuracy. In this paper, we use this solution to profile data depen-

ences, keeping the error rate lower than 0.4%. 

The second solution is to calculate the size of the signatures

n advance, if the amount of memory is really limited. Experi-

ents show that when using a fixed number of slots (80 0,0 0 0) for

rofiling the NAS benchmarks, the EFPR vary between 0.01% and

round 60%, meaning memory is wasted on small programs while

ot enough for the big ones. To avoid such a scenario, the user can

pecify an maximum EFPR, and DiscoPoP will choose the size of

ignature accordingly. In this way, memory can be used more effi-

iently and the quality of the final suggestions can be also assured.

To calculate the size of signature based on a given EFPR, we

eed to know the number of variables in the program. To avoid

unning the program more than once, we estimate the number

f variables during instrumentation. The number is counted based

n the intermediate representation (IR) of the program produced

y the front-end of LLVM. Although the IR is in Static Single As-

ignment (SSA) form, it provides the possibility to distinguish con-

tants, global variables, named and unnamed variables. Thus it is

asy to define rules that filter out the variables that originated

rom the program. The rules are relaxed so that the counted num-

er is always bigger than the real number of variables. This will

esult in a bigger size of the signature, leaving the actual false-

ositive rate usually below the specified EFPR threshold. 

.1.4. Parallel data-dependence profiling 

We have our data-dependence profiler parallelized in order to

ower the time overhead further. The basic idea behind the paral-

elization of our approach is to run the profiling algorithm in par-

llel on disjoint subsets of the memory accesses. In our implemen-

ation, we apply the producer-consumer pattern. The main thread

xecutes the target program and plays the role of the producer, col-

ecting and sorting memory accesses, whereas the worker threads

lay the role of consumers, consuming and analyzing memory ac-

esses and reporting data dependences. 
To determine the dependence type (RAW, WAR, WAW) cor-

ectly, we need to preserve the temporal order of memory accesses

o the same address. For this reason, a memory address is assigned

o exactly one worker thread, which becomes responsible for all

ccesses to this address. 

Fig. 3 shows how our parallel design works. The main thread

xecutes the program to be analyzed and collects memory accesses

n chunks, whose size can be configured in the interest of scala-

ility. One chunk contains only memory accesses assigned to one

hread. The use of maps ensures that identical dependences are not

tored more than once. At the end, we merge the data from all lo-

al maps into a global map. This step incurs only minor overhead

ince the local maps are free of duplicates. Detailed description of

he parallel dependence profiler is in related work ( Li et al., 2015b ).

.1.5. Variable lifetime analysis 

Although false positives are a basic property of signatures and

annot be completely eliminated, we apply an optimization to

ower the false-positive rate further. The main idea is to remove

ariables from the signature once it is clear that they will never be

sed again during the remainder of the execution. Thus, we need a

ay to monitor the lifetime of a variable. The lifetime of a variable

s the time between its allocation and deallocation. The lifetime of

ariables has an impact on the correctness of the data dependence

nalysis because signature slots of dead variables might be reused

or new variables. If this happens, a false dependence will be built

etween the last access of the dead variable and the first access of

he new variable. 
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To resolve this problem, we perform variable lifetime analysis

dynamically. This means we observe the allocation and dealloca-

tion of variables, including both explicit methods like new / delete
and malloc / free , and implicit allocation and deallocation of lo-

cal variables. To achieve this, we exploit dynamic control-flow in-

formation, which is helpful to determine the lifetime of local vari-

ables allocated inside a control region. Although there is no explicit

deallocation of local variables, they die once the program leaves

the control region where they have been allocated. In this way,

signature slots for local variables can be reused without the dan-

ger of building false dependences. With variable lifetime analysis,

our signature algorithm can support more variables with the same

amount of memory. 

3.1.6. Runtime data dependence merging 

Recording every data dependence may consume an excessive

amount of memory. DiscoPoP performs all the analy s es on every

instruction that is dynamically executed. Depending on the size of

both the source code and the input data, the size of the file con-

taining processed data dependences can quickly grow to several

gigabytes for some programs. However, we found that many data

dependences are redundant, especially for regions like loops and

functions which will be executed many times. Therefore, we merge

identical data dependences. This approach significantly reduces the

number of data dependences written to disk. 

A data dependence is expressed as a triple < Dependent-
Line, dependence-Type, Depends-On-Line > with at-

tributes like variable name, thread ID (only available for multi-

threaded programs), and inter-iteration tag. Two data dependences

are identical if and only if each element of the triple and all

attributes are identical. When a data dependence is found, we

check whether it already exists. If there is no match, a new

entry for the dependence is created. Otherwise the new de-

pendence is discarded. For a code region that is executed more

than once, we maintain only one set of dependences, merging

the dependences that occur across multiple instances. When the

parallelism-discovery module reads the dependence file, it still

treats these multiple execution instances as one. For example, a

loop will always be considered as a whole and its iterations will

never be expanded. 

Merging data dependences may hide parallelism that is only

temporarily available. For example, the first half of the iterations

of a loop can be parallelized but the second half cannot. With data

dependences merged, parallelism that exists in the first half of the

iterations can be hidden. We recognize that temporarily available

parallelism is definitely promising. However, discovering such par-

allelism requires a significant amount of time and memory since

every iteration must have its own instance of profiled data, and

parallelism must be checked between every two instances. We im-

plemented a version without dependence merging, and it failed to

profile most of the NAS benchmarks. For those programs it can

profile, the size of the dependence file ranged from 330 MB to

about 37 GB with input class W (6.1 GB on average). 

The effect of merging data dependences is significant. After in-

troducing runtime data dependence merging, all the NAS bench-

marks can be profiled and the file size decreased to between 3 KB

and 146 KB (53 KB on average), corresponding to an average re-

duction by a factor of 10 5 × . Since the parallelism-discovery mod-

ule redirects the read pointer in the file when encountering func-

tion calls rather than processing the file linearly, data dependence

merging drastically reduces the time needed for parallelism discov-

ery. The time overhead of data dependence merging is evaluated in

Section 4 . Since we still want to cover temporarily available paral-

lelism, an efficient profiling and analysis method for loops is under

development. 
.2. Phase 2: Parallelism discovery 

During the second phase, we search for potential parallelism

ased on the output of the first phase, which is essentially a

raph of dependences between source lines. This graph is then

ransformed into another graph, whose nodes are parts of the

ode without parallelism-preventing read-after-write (RAW) de-

endences inside. We call these nodes computational units (CUs).

ased on this CU graph, we can detect potential parallelism and

lready identify tasks that can run in parallel. 

.2.1. Computational units 

The first definition of computational units (CUs) was presented

n earlier work ( Li et al., 2013 ). However, CUs were only defined

n instruction level, which is too fine-grained to identify thread-

evel parallelism (CUs have to be grouped to form tasks). The inter-

al computation process of a CU was not clearly defined, making

he parallelism discovery algorithms less powerful and unnecessar-

ly complicated. In this paper, we redefine computational units to

vercome the disadvantages stated above. 

A computational unit is a collection of instructions following

he read-compute-write pattern: a set of variables is read by a col-

ection of instructions and is used to perform a computation, then

he result is written back to another set of variables. The two sets

f variables are called read set and write set , respectively. These two

ets do not necessarily have to be disjoint. Load instructions read-

ng variables in the read set form the read phase of the CU, and

tore instructions writing variables in the write set form the write

hase of the CU. 

A CU is defined by read-compute-write pattern because in prac-

ice, tasks communicate with one another by reading and writing

ariables that are global to them, and computations are performed

ocally. Thus, we require the variables in a CU’s read set and the

rite set to be global to the CU. The variables local to the CU

re part of the compute phase of the CU as they will not be used

o communicate with other tasks during parallelization. To distin-

uish variables that are global to a code section, we perform vari-

ble scope analysis, which is available in any ordinary compiler.

ote that the global variables in the read set and the write set do

ot have to be global to the whole program. They can be local to

n encapsulating code section, but global to the target code sec-

ion. 

The CUs defined above can be built for any granularity: instruc-

ion level, basic block level, or even function level. In this paper,

Us are built for every region . A region is a single entry single exit

ode block. The difference between a region and a basic block is

hat not every instruction inside a region is guaranteed to be ex-

cuted, meaning a region could be a group of basic blocks with

ranches inside. A region can be a function, a loop, an if-else struc-

ure, or a basic block. In our earlier approach, we worked on fine-

rained parallelism due to the less-powerful definition of CUs. In

his paper, we focus on thread-level parallelism. Thus we are inter-

sted in regions like functions and loops, which contain important

omputations that can potentially run in parallel. 

.2.2. Cautious property 

According to the definition of CUs in Section 3.2.1 , CUs are cau-

ious . Cautious property ( Pingali et al., 2011 ) was previously de-

ned for operators in unordered algorithms: an operator is said to

e cautious if it reads all the elements of its neighborhood before

t modifies any of them. By adapting it to the CU, we say a code

ection is cautious if every variable in its read set is read before it

s written in the write phase. 

Cautious property is an alternative representation of the read-

ompute-write pattern. Not only it gives a clear way of separating
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for each region R in the program do 

globalVars = variables that are global to R 

isCautious = true 

for each variable v in globalVars do 

if v is read then 

readSet + = v 

for each instruction Irv reading v do 

readPhase + = Irv 

end 

end 

if v is written then 

writeSet + = v 

for each instruction Iwv writing v do 

writePhase + = Iwv 

end 

end 

end 

for each variable v in readSet do 

for each instruction Ir reading v do 

for each instruction Iw writing v do 

if Ir happens after Iw then 

isCautious = false 

end 

end 

end 

end 

if isCautious then 

cu = new computational unit 

cu.scope = R 

cu.readSet = readSet 

cu.writeSet = writeSet 

cu.readPhase = readPhase 

cu.writePhase = writePhase 

cu.computationPhase = 

(instructions in R) − (readPhase + writePhase) 

end 

else 
for each read instruction Iv violating cautious property 

do 

build CU for instructions do not belong to any CU 

before Iv 
end 

end 

end 

Algorithm 1: Algorithm of building CUs. 

r  

e  

c  

t  

h

 

g  

c  

R  

t  

w  

o

 

d  

o  

I  

a

Fig. 4. Building a CU. 
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ead phase and write phase, but also allows multiple CUs to be ex-

cuted speculatively without buffering updates or making backup

opies of modified data because all conflicts are detected during

he read phase. Consequently, tasks extracted based on CUs do not

ave any special requirement on runtime frameworks. 

Algorithm 1 shows the algorithm of building CUs. For each re-

ion, we firstly get all variables that are global to the region, and

lassify them into read set (inputs) and the write set (outputs).

ead phase and write phase of the region are built according to

he read set and write set. Then we check if the read phase and

rite phase satisfy the cautious property. If so, the region is rec-

gnized as a computation unit. 

It is possible that a variable is written but never read. Such case

oes not violate the cautious property. The cautious property is vi-

lated only when a global variable is firstly written and then read.

n such a case, we call the read instruction that happens after write

 cautiousness violating point . 
A region can be not cautious, meaning it contains more than

ne computational unit. Functions are usually cautious since most

f them communicate to the outside program via predefined pa-

ameters and return values. However, loop bodies (especially C-

tyle code) are usually not cautious. It is common that nearly all

he variables accessed inside a loop body could be global to the

oop. When a region is not cautious, we find the cautiousness vio-

ating points in the region, and break the region into multiple code

ections according to the violating points. We then build CU for

ach of the code sections. In the end, a region that is not cautious

ontains multiple CUs. This process is shown in the last else branch

n Algorithm 1 . 

.2.3. Special variables in building CUs 

Function parameters and return values deserve special treat-

ent when determining read set and write set of a function. We

reat them as follows: 

• All function parameters are included in read set, 
• Function parameters passed by value are not included in write

set, 
• Return value is stored in a virtual variable called ret , and ret

is included in write set. 

The first rule is obvious. We follow the second rule because pa-

ameters passed by value are copied into functions, thus modifica-

ions to them do not affect their original copies. The return value

ust be included in write set. However, it is common that the re-

urn value does not have a name. That is why we always call it

et when building CU statically. 

Loop iteration variables also require special treatment. Con-

retely, following rules apply to them: 

• By default, loop iteration variables are considered as local to

loops, 
• If a loop iteration variable is written inside the body of a loop,

it is considered as global to the loop. 

We treat loop iteration variables in a special way because inter-

teration dependences on them in loop headers do not prevent par-

llelism. However, if their values are updated inside loop body, the

ormal iteration process may be interrupted, and dependences on

oop iterations variables must be checked in order to determine

hether the loop can be parallelized. 

.2.4. Example of building CUs 

To show that the new definition of CUs is compatible with the

arlier one, we use the same example as the one used in earlier

ork ( Li et al., 2013 ), and show that the new algorithm build the

ame CU. The example is shown in Fig. 4 . 

In this example, readSet and writeSet are both { x }. Each loop it-

ration calculates a new value of x by firstly reading the old value



288 Z. Li et al. / The Journal of Systems and Software 117 (2016) 282–295 

Fig. 5. Part of the CU graph of sparselu . 
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of x , then by computing a new value via local variables a and b .
Finally, the new value is written back to x . For a single iteration,

the loop region is cautious since all the reads of x happen before

the write to x . Following the read-compute-write pattern, lines 3–

5 are in one CU, as shown in Fig. 4 . At source-line level, the com-

pute phase (line 3–5) of the CU overlaps with its read phase (line

3–4) and write phase (line 5). At instruction level, the three phases

are separate to one another. If a and b were declared outside the

loop, then they would be considered global to the loop as well.

This would mean the loop would be made up of two CUs with

lines 3–4 being one CU and the line 5 being the second CU. 

Note that CUs never cross region boundaries. Otherwise a CU

could grow too large, possibly swallowing all the iterations of a

loop and many other code sections, and hiding important paral-

lelism that we actually want to expose. 

3.2.5. CU graph 

With CUs and data dependences, we represent a program using

a CU graph , in which vertexes are CUs and edges are data depen-

dences. Data dependences in a CU graph are always among read

phases and write phases of CUs. Dependences that are local to a

CU are hidden because they do not prevent parallelism among CUs.

CUs are built statically. A CU represents a computation. In exe-

cution, it is possible to have multiple “instances” of the same com-

putation, like two calls to the same function with different param-

eters. Since data dependences are obtained during execution, it is

effectively recording dependences between instances of CUs, and

then merge the instances of the same CU together. Although this

solution may miss some parallelism, producing complete “CU in-

stance” graph is nearly impossible because of the high overhead

in terms of both time and memory. To preserve as much informa-

tion as we can, data dependence properties like “inter-iteration” or

“intra-iteration” are kept so that parallelism discovery algorithms

can work properly. 

Fig. 5 shows a part of the CU graph of sparselu ( Duran et al.,

2009 ). CU IDs (strings in vertexes) are in the format of File_ID -

Local_CU_ID . Edges (data dependences) are always from source to

sink. When statement B depends on statement A , we call A the

source of the dependence, and B the sink. 

3.2.6. Detecting parallelism 

Our earlier approach ( Li et al., 2013; 2015a; Ul-Huda et al.,

2015 ) identifies three kind of parallelism: DOALL loops, indepen-

dent tasks, and pipelines. With the new definition of CUs, we
mprove the parallelism discovery algorithms to cover the follow-

ng parallelism: DOALL loops, DOACROSS loops, SPMD tasks, and

PMD tasks. Both DOACROSS loops and MPMD tasks can lead to

ipelines, but we distinguish them in the new approach since it is

ossible to apply different im plementation techniques other than

ipeline for SPMD tasks. Moreover, the new classification covers

oth independent and dependent tasks. In a word, the new algo-

ithms cover more parallelism, and classify them in a more de-

ailed way. 

OALL loops. A loop can be categorized as a DOALL loop if there is

o inter-iteration dependence. For nested loops, whether an inner

oop is DOALL or not does not affect outer loops. This is the easiest

ype of parallelism to be discovered since it only needs to check if

here is an inter-iteration dependence among the CUs belong to

he body of the target loop. 

When checking inter-iteration dependences, we check read-

fter-write (RAW) dependences only. The condition is relaxed be-

ause usually inter-iteration write-after-read (WAR) and write-

fter-write (WAW) dependences do not prevent parallelism (sup-

ose a variable is always assigned a new value at the beginning of

ach iteration). This may lead to false positives, but we expect that

alse positives are rare. Thus, our algorithm detecting DOALL loops

s optimistic. 

Note that data dependences on iterating variables are already

aken care by the special treatment described in Section 3.2.3 . 

OACROSS loops. When a loop has inter-iteration dependences, it

s possible to further analyze the dependence distances of the

nter-iteration dependences to discover DOACROSS ( Kennedy and

llen, 2002 ) loops. A DOACROSS loop has inter-iteration depen-

ences, but the dependence are not between the first line of an

teration and the last line of the previous iteration. This means in

 DOACROSS loop, iterations are not independent but can partly

verlap of one another, providing parallelism that can be utilized

y implementing reduction or pipeline. Dependence distances can

e easily checked since data dependences are indexed by source

ine numbers. For a non-DOALL loop, we classify it as a DOACROSS

oop if there is no inter-iteration dependence that from the read

hase of the first CU (in single-iteration execution order) to the

rite phase of the last CU of the loop body. Note that the first CU

nd the last CU can be the same. 

PMD task parallelism. As its name suggests, Single-Program-

ultiple-Data (SPMD) tasks execute the same code but work on

ifferent data. It is similar to data decomposition. To identify SPMD

ask parallelism, it only needs to check if a CU depends on itself. 

Note that iterations in a DOALL loop can also be consid-

red as SPMD task parallelism. However, since DOALL loops can

sually be parallelized using specialized mechanisms that are

ore efficient (like #pragma parallel for in OpenMP, and

bb::parallel_for() in TBB), we categorize DOALL loops

eparately. In this paper, SPMD task parallelism refer to indepen-

ent calls to the same function with different parameters, possibly

ombined with recursive pattern. 

PMD task parallelism. In contrast to SPMD task parallelism,

ultiple-Program-Multiple-Data (MPMD) tasks execute different

ode. Once tasks are allowed to execute different code, identify-

ng only independent tasks is not sufficient. Multiple MPMD tasks

hat are dependent of one another may lead to a pipeline, or even

ask graph, unless the dependences form a circle. Thus, we report

PMD task parallelism if dependences among CUs that belong to

arget code sections do not form a circle. That is said, MPMD task

arallelism is the most general type of parallelism we identify in

his paper. 
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Fig. 6. Scenarios with different degrees of CU imbalance. 
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Note that the implementation of MPMD task parallelism can be

ifferent, and the resulting performance varies. When task graph is

mplemented, the performance is greatly determined by the power

f the scheduler in use. 

Our approach is semi-automatic at the moment, which means it

oes not generate the parallel code automatically. It is a program-

nderstanding approach, and it leaves the implementation part to

he users, including the correctness validation of the found par-

llelism. We do so because fully automatic sequential-to-parallel

ode transformation techniques for general purpose code are still

n research. So far, the best working automatic approaches are

or specific cases, such as polyhedral-based parallelizing methods

or well formed, perfectly nested loops ( Grosser et al., 2012 ) and

ecoupled software pipelining for DOACROSS parallelism ( Ottoni

t al., 2005 ). 

It is very difficult to predict whether data races would be intro-

uced during parallelization. In many cases, parallelization means

partially) redesigning the algorithm. It is possible that an object

s accessed only once in the sequential program but must be ac-

essed by all the threads in the parallel version. It is also possible

hat there is a data structure in the parallel version that does not

ven exist in the sequential program. Data race detection in paral-

el code ( Jannesari et al., 2009; Cai and Cao, 2015; Sorrentino et al.,

010 ) is a well-known difficult research topic, and we believe that

redicting possible data races in the resulting parallel code from

nalyzing sequential code is even harder. 

.3. Phase 3: Ranking 

Ranking parallelization opportunities of the target program

elps users to focus on the most promising ones. Three metrics

re involved: instruction coverage, local speedup , and CU imbalance . 

.3.1. Instruction coverage 

The instruction coverage (IC) provides an estimate of how much

ime will be spent in a code section. The estimation is based on the

implifying assumption that each kind of instruction costs about

he same amount of time. Given a code section i and the whole

rogram P , 

C(i ) = 

N inst (i ) 

N inst (P ) 

here N inst ( i ) and N inst ( P ) are the number of instructions of code

ection i and the whole program P , respectively. Note that N inst al-

ays represents the total number of instructions which are really

xecuted at runtime. For a loop, N inst is the sum of the number of

nstructions across all iterations. 

.3.2. Local speedup 

The local speedup (LS) reflects the potential speedup that

ould be achieved if a code section was parallelized according to

he suggestion. Since it refers only to a given code section and

ot necessarily to the whole program it is called local. The local

peedup is based on the critical path (the longest series of oper-

tions that have to be performed sequentially due to data depen-

ences) and Amdahl’s Law, which is why super linear effects are

ot considered. 

Given a code section i of the target program: 

S(i ) = min 

(
N threads , 

N inst (i ) 

length (CP (i )) 

)

here N inst ( i ) is the total number of instructions of code section i ,

nd length(CP) is the length of the critical path of i —again, based

n the assumption that each kind of instruction costs the same

mount of time. N threads is the number of threads. If the local

peedup exceeds the number of threads, it will be just equal to

he number of threads. 
.3.3. CU imbalance 

The CU imbalance reflects how evenly CUs are distributed in

ach stage of the critical path, which means whether every thread

as some work to do in each step of the computation. Otherwise,

ome of the threads have to wait because of data dependences,

hich means the suggested parallelization may have a bottleneck.

e define the CU imbalance for a code section i as 

I(i ) = 

σ (i ) 

MP (i ) 

here σ ( i ) is the standard deviation of the number of CUs in each

tage of the critical path, and MP ( i ) is the number of CUs in the

argest stage of the critical path of node i . The CU imbalance is

 value in [0 , + ∞ ) . The more balanced the CU ensemble is, the

maller the value becomes. 

Fig. 6 provides an example. Under the assumption that each CU

as the same number of instructions, both of situations have a lo-

al speedup of two and will complete all the tasks in two units of

ime. However, the arrangement in Fig. 6 (a) requires three threads

hile 6 (b) requires only two. The red CU (R) in 6 (a) needs the re-

ults from three CUs, constituting a bottleneck of the execution. Al-

hough the purple CU (P) in 6 (b) is in the same situation, the other

hread still has some work to do (green CU, G) so that it does not

eed to wait. The CU imbalance values of the two situations ( 6 (a):
 

2 / 3 = 0 . 47 , 6 (b): 0 / 2 = 0 ) reflect such a difference. Note that a

ode section containing no parallelism (CUs are sequentially de-

endent) will also get a CU imbalance of zero, which is consistent

ith our definition. 

Our ranking method now works as follows: Parallelization op-

ortunities are ranked by their estimated global speedup (GS) in

escending order, with 

S = 

1 

IC 
LS 

+ (1 − IC) 
. 

Should two or more opportunities exhibit the same amount of

lobal speedup, they will be ranked by their CU imbalance in as-

ending order. Note that since LS is never bigger than the number

f threads and IC is always smaller than 1, GS can never exceeds

he number of threads, either. 

. Evaluation 

We conducted a range of experiments to evaluate the effective-

ess of our approach. We applied our method on benchmarks in

arcelona OpenMP Task Suite (BOTS) ( Duran et al., 2009 ), PARSEC

enchmark ( Bienia, 2011 ), NAS Parallel Benchmarks (NPB) ( Bailey

t al., 1991 ), and Starbench benchmark ( Andersch et al., 2011 ). All

our benchmark suites contain sequential benchmark applications

s well as their equivalent parallel versions. After applying our

ethod on the sequential benchmark applications, we compare the
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Table 1 

Detection of parallelizable loops in NAS Parallel Benchmark programs. 

Benchmark Executed OpenMP-annotated loops 

# loops # parallelizable # OMP # identified # in top 30% # in top 10 

BT 184 176 30 30 22 9 

SP 252 231 34 34 26 9 

LU 173 164 33 33 23 7 

IS 25 20 11 8 2 2 

EP 10 8 1 1 1 1 

CG 32 21 16 9 5 5 

MG 74 66 14 14 11 7 

FT 37 34 8 7 6 5 

Overall 787 720 147 136 96 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Detection of DOACROSS loops in benchmarks from Starbench and NAS. 

Benchmark Exec. time [%] DOACROSS Implemented # CUs 

Starbench rgbyuv 99.9 
√ 

pipeline (DOALL) 5 

tinyjpeg 99.9 
√ 

pipeline 2 

kmeans 99.5 
√ 

reduction 4 

BOTS nqueens ˜100 
√ 

reduction 1 

NAS CG 96.9 
√ 

reduction 4 

BT 99.1 ✗ – –

SP 99.1 ✗ – –

FT 49.3 ✗ – –

MG 49.8 ✗ – –

4

 

d  

v  

i  

n  

T  

f  

a  

l  

p  

w  

t  

u  

fi

 

t  

t  

t  

b  

t  

t  

D  

i  

b

C  

1  

h  

a  

t  

s  

l  

i

 

b  

c  
identified parallelization opportunities to the existing parallel ver-

sions in order to evaluate our approach. For the opportunities that

do not have corresponding parallel version, we implemented our

own parallel version for these applications. 

Our approach is implemented in LLVM 3.6.1 ( Lattner and Adve,

2004 ), and all benchmarks are compiled using Clang 3.6.1 ( Lattner,

2011 ) with -g -O0 for instrumentation, and -O2 for execution.

Experiments were run on a server with 2 x 8-core Intel Xeon E5-

2650, 2 GHz processors with 32 GB memory, running Ubuntu 12.04

(64-bit server edition). The performance results reported are an

average five independent executions. Whenever possible, we tried

different inputs to compensate for the input sensitivity of data-

dependence profiling approach, resulting more complete data de-

pendences for each benchmark. 

4.1. Identification of DOALL loops 

The purpose of the first experiment was to detect DOALL loops

and see how the approximation in data dependence profiling af-

fects the accuracy of the suggestions on parallelism. We took our

test cases from the NAS Parallel Benchmarks (NPB) 3.3.1, a suite

of programs derived from real-world computational fluid dynam-

ics applications. The suite includes both sequential and OpenMP-

based parallel versions of each program, facilitating a quantitative

assessment of our tool’s ability to spot potential loop parallelism.

We searched for parallelizable loops in sequential NPB programs

and compared the results with the parallel versions provided by

NPB. 

Table 1 shows the results of the experiment. The data listed in

the column set “Executed” are obtained dynamically. Column “#

loops” gives the total number of loops which were actually ex-

ecuted. The number of loops that we identified as parallelizable

are listed under “# parallelizable”. At this stage, prior to the rank-

ing, DiscoPoP considers only data dependences, which is why still

many loops carrying no dependence but bearing only a negligible

amount of work are reported. The second set of columns shows

the number of annotated loops in OpenMP versions of the pro-

grams (# OMP). Under “# identified” we list how many annotated

loops were identified as parallelizable by DiscoPoP. 

As shown in Table 1 , DiscoPoP identified 92.5% (136/147) of the

annotated loops, proving the effect of the signature approxima-

tion to be negligible. A comparison with other tools is challeng-

ing because none of them is available for download. A comparison

based exclusively on the literature has to account for differences

in evaluation benchmarks and methods. For Parwiz ( Ketterlin and

Clauss, 2012 ), the authors reported an average of 86.5% after ap-

plying their tool to SPEC OMP-2001. Kremlin ( Garcia et al., 2011 ),

which was also evaluated with NPB, selects only loops whose ex-

pected speedup is high. While Kremlin reported 55.0% of the loops

annotated in NPB, the top 30% of DiscoPoP’s ranked result list cover

65.3% (96/147). 
.2. Identification of DOACROSS loops 

For loops that are not DOALL, we further analyze the depen-

ence distance of inter-iteration dependences in them. It is ob-

ious that parallelizing small loops (in terms of workload) with

nter-iteration dependences is not beneficial. Thus we focus on

on-DOALL loops that are hotspots in terms of execution time.

able 2 summarizes the biggest non-DOALL loops in benchmarks

rom Starbench ( Andersch et al., 2011 ), BOTS ( Duran et al., 2009 ),

nd NAS. Recall that a non-DOALL loop is classified as a DOACROSS

oop if there is no inter-iteration dependence that from the read

hase of the first CU (in single-iteration execution order) to the

rite phase of the last CU of the loop body. As shown in Table 2 ,

arget loops in BT, SP, FT , and MG are not DOACROSS loops. Col-

mn “Implemented” shows the implementation mechanism in of-

cial parallel versions. 

Among the loops that are identified as DOACROSS, two ( rgbyuv,

inyjpeg ) are suitable for pipeline implementation while the other

hree ( kmeans, nqueens , and CG ) can be parallelized with reduc-

ion. As we mentioned before, the implementation choice has to

e made by the users. However, distinguishing which implemen-

ation is the best for a DOACROSS loop is relatively easy since

he inter-iteration dependences are reported. We verified that the

OACROSS loops identified in tinyjpeg is implemented as pipelines

n official parallel implementation. However, the target loop in rg-

yuv is an interesting case. 

ase study—rgbyuv. The target loop in rgbyuv is in bmark.c, line

51. The source code of the loop is shown in Fig. 7 . The target loop

as five CUs: CU 1 (line 2), CU 2 (line 3), CU 3 (line 4), CU 4 (line 6–8),

nd CU 5 (line 10–12). The CU graph of the loop body is shown on

he left side in Fig. 8 . Obviously, CU 1 , CU 2 , and CU 3 are too small,

o we consider them as a single computation without hiding paral-

elism, leading to the simplified CU graph shown on the right side

n Fig. 8 . 

At the beginning we know nothing about the code of rg-

yuv , just as every programmer that parallelizes sequential

ode written by someone else. Simply following the simplified
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Fig. 7. The target loop in rgbyuv (bmark.c, line 151). 

Fig. 8. CU graphs of the loop body of the loop in rgbyuv (bmark.c, line 151). 
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Fig. 9. Function nqueens() from nqueens of BOTS. 

Table 3 

Detection of SPMD task parallelism in BOTS benchmarks. 

Benchmark Function Exec. SPMD Implemented 

time [%] task 

sort sort 74.9 ✗ ✗ 

cilksort 74.8 
√ √ 

seqmerge 52.0 ✗ ✗ 

cilkmerge 34.4 
√ √ 

seqquick 22.6 ✗ ✗ 

fib fib ˜100 
√ √ 

fft fft ˜100 ✗ ✗ 

fft_aux 97.2 
√ √ 

fft_twiddle_16 83.0 
√ √ 

fft_unshuffle_16 12.7 
√ √ 

floorplan add_cell ˜100 
√ √ 

health sim_village ˜100 
√ √ 

sparselu bmod 89.6 ✗ ✗ 

sparselu 34.4 
√ √ 

strassen OptimizedStrassenMultiply 95.2 
√ √ 

MultiplyByDivideAndConquer 82.0 
√ √ 

FastAdditiveNaiveMatrixMultiply 61.9 ✗ ✗ 

FastNaiveMatrixMultiply 21.4 ✗ ✗ 

uts serTreeSearch 99.6 
√ √ 
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U graph in Fig. 8 , we know the loop can be parallelized as a

hree-stage pipeline. Since CU 1 and CU 5 have self-dependences,

he first stage and the third stage has to be sequential stage,

hile the second stage can be a parallel stage. We im-

lement the pipeline using Intel TBB ( Reinders, 2007 ). Each

tage is implemented as a filter class, and stages are con-

ected using tbb::parallel_pipeline . Moreover, filter:: 
erial_in_order attribute is specified for stage 1 and 3. In a

ord, everything was done following the output of our tool, and

e did not bother understanding the code. Note that the loop body

s not considered as a whole due to the source code control struc-

ure. The loop body is divided into three tasks, and the task bound-

ries are not aligned with the loop boundaries. 

The best performance of our implementation appears when us-

ng 4 threads, with a speedup of 2.29. Using more threads than

he number of stages of a pipeline usually do not give better per-

ormance, especially when most of the stages are sequential. When

xamining the official parallel implementation of rgbyuv , we found

hat the target loop is parallelized as DOALL, not DOACROSS. This

eans the inter-iteration dependences on CU 1 and CU 5 do not pre-

ent parallelism. This is true because the inter-iteration depen-

ences are on pointers ( in , pY , pU , and pV ), not the data to which

hey point. Thus, to utilize the DOALL parallelism it just need to

ake the pointers local. 

This example shows that simply following the output of our

ool yields good speedup, and understanding the code is still im-

ortant. Nevertheless, our tool reveals interesting parallelization
pportunities and data dependences that potentially prevent paral-

elism, helping the users to achieve a better implementation much

aster. 

DOACROSS loops identified in kmeans, nqueens and CG are im-

lemented using reduction in the official parallel implementations.

s an example, the target loop in nqueens is shown in Fig. 9 .

he inter-iteration dependence is due to the variable solutions ,
hich is a classic scenario of reduction. The DOACROSS loops in

means and CG are similar to the example shown above, but the

ode is more complicated. 

.3. Identification of SPMD tasks 

To evaluate the detection of SPMD tasks, we apply our method

n benchmarks from Barcelona OpenMP Task Suite (BOTS) ( Duran

t al., 2009 ). We choose BOTS benchmarks because they are paral-

elized using OpenMP tasks, providing many opportunities of find-

ng SPMD tasks. Recall that to identify SPMD tasks, we check if a

U depends on itself. Due to the large number of CUs in a program,

e focus on CUs that correspond to functions only, and functions

hat are hotspots in terms of execution time. Table 3 shows the

esults of detecting SPMD tasks in BOTS benchmarks. 

SPMD tasks are found in eight BOTS benchmarks containing 19

unctions that are hotspots. 12 functions are identified as SPMD

asks, which are all parallelized in the official parallel implemen-

ations. Note that none of the SPMD tasks shown in Table 3 come

rom loops. The common pattern of these tasks is that there are

ultiple calls to the same function with different arguments. In

any benchmarks like sort, fib , and fft , computations are per-

ormed recursively. At each recursion level, multiple SPMD tasks

re created. 
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Table 4 

Detection of MPMD tasks in PARSEC benchmarks, libVorbis, and FaceDetection. 

Benchmark Function Implemented Solution # threads Speedup 

blackscholes CNDF ✗ omp sections – –

canneal routing_cost_given_loc ✗ omp sections – –

fluidanimate RebuildGrid ✗ omp sections – –

fluidanimate ProcessCollisions ✗ omp sections – –

fluidanimate ComputeForces Data decomposition Pipeline 3 1.52 

libVorbis main (encoder) ✗ Pipeline 4 3.62 

FaceDetection facedetector Pipeline Pipeline 32 9.92 

Fig. 10. Work flow of FaceDetection and the corresponding flow graph. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. FaceDetection speedups with different threads. 
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4.4. Identification of MPMD tasks 

To evaluate the detection of MPMD tasks, we applied our

method on PARSEC benchmarks ( Bienia, 2011 ) and two other appli-

cations: the open-source Ogg codec libVorbis and an Intel Concur-

rent Collections (CnC) sample program FaceDetection . In contrast to

SPMD tasks that widely exist in BOTS benchmarks, MPMD tasks

execute different code. Generally speaking, programs containing

MPMD tasks perform multiple kinds of computations rather than a

single computation on big input data. This implies that to discover

MPMD tasks, it is better to focus on programs that have more lines

of code (LOC). Moreover, it is well known that pipeline and flow

graph patterns are common in multimedia processing applications.

That is why the programs we use in this section are generally big-
er in terms of code size, and two programs that process audio

 libVorbis ) and image ( FaceDetection ) are included. 

Table 4 summarizes the results of evaluating the detection of

PMD task. As the results show, MPMD tasks are not the main

ype of parallelism in simulating applications ( blackscholes, canneal ,

nd fluidanimate ). All the MPMD tasks found in these programs are

rom non-hotspot computations. They are not parallelized in of-

cial parallel implementations, and parallelizing them using omp
ection does not give any speedup. The only interesting place

n these programs is the ComputeForces function in fluidani-

ate . The parallelization story, however, is similar to the case study

hown in Section 4.2 . We parallelized the function body following

he output CU graph using TBB and achieved a speedup of 1.52 us-

ng three threads. On the contrary, the official parallel version of

uidanimate shows this function is parallelized using data decom-

osition, yielding almost linear speedup. 

ase study—FaceDetection. Face Detection is an abstraction of a

ascade face detector used in the computer vision community.

he face detector consists of three different filters. As shown in

ig. 10 (a), each filter rejects non-face images and lets face images

ass to the next layer of cascade. An image will be considered a

ace if and only if all layers of the cascade classify it as a face.

he corresponding TBB flow graph is shown in Fig. 10 (b). A join

ode is inserted to buffer all the boolean values. In order to decide

hether an image is a face, every boolean value corresponding to

hat specific image is needed. Thus we configure the transforma-

ion tool to use tag_matching buffering policy in the join node.

ag_matching policy creates an output tuple only when it has

eceived messages at all the ports that have matching keys. 

The three filters take 99.9% of sequential execution time. We

se 20,0 0 0 images as input. The speedup of our transformed flow

raph parallel version is 9.92 × using 32 threads. To evaluate the

calability of the automatically transformed code, we compare the

peedups achieved by official Intel CnC parallel version and our
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Fig. 12. Slowdowns of data dependence profiler for sequential NAS and Starbench benchmarks. 

Fig. 13. Memory consumption of the profiler for sequential NAS and Starbench benchmarks. 
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ransformed TBB flow graph version using different number of

hreads. The result is shown in Fig. 11 . The performance is compa-

able using two and four threads. When more than eight threads

re used, the official CnC parallel version outperforms ours. The

eason is that the official CnC parallel code is heavily optimized

nd restructured. For example, some data structures are altered

rom vector to CnC item_collection . As shown in Fig. 11 ,

hen using just one thread, the speedup of official CnC parallel

ersion is already 2 × because of the optimization. 

The remaining application, libVorbis, is a reference implemen-

ation of the Ogg Vorbis codec. It provides both a standard encoder

nd decoder for the Ogg Vorbis audio format. In this study, we an-

lyzed the encoder part. The suggested pipeline resides in the body

f the loop that starts at file encoder_example.c, line 212, which is

nside the main function of the encoder. The pipeline contains only

wo stages: vorbis_analysis() , which applies some transfor-

ation to audio blocks according to the selected encoding mode

this process is called analysis), and the remaining part that ac-

ually encodes the audio block. After investigating the loop of the

ncoding part further, we found it to have two sub-stages: encod-

ng and output. 

We constructed a four-stage pipeline with one stage each

or analysis, encoding, serialization, and output, respectively. We

dded a serialization stage, in which we reorder the audio blocks

ecause we do not force audio blocks to be processed in order

n the analysis and the encoding phase. We ran the test using a

et of uncompressed wave files with different sizes, ranging from

 MB to 47 MB. As a result, the parallel version achieved an aver-

ge speedup of 3.62 with four threads. 

.5. Ranking method 

We also evaluated the precision of our ranking method. The re-

ults are shown in Table 1 . Column “# in top 30%” lists the number

f suggestions matched by actual parallelization in the OpenMP

ersion (# identified) that end up in the top thirty percent after
anking. We believe that only few programmers would examine all

he suggestions one by one and that for most the first 30% would

e the upper limit. As one can see, 70.6% (96/136) of the matched

uggestions can be found in the top 30%. This means by examin-

ng only 30% of the suggestions, 70% of the actually implemented

arallelism can be explored. 

We also verified whether the top 10 suggestions for each pro-

ram are really parallelized in the official OpenMP version. The re-

ults are listed in the column “# in top 10”. For most of the pro-

rams, more than a half (for some of them even 90%) of the top 10

uggestions are parallelized, proving the effectiveness of our rank-

ng method. 

.6. Overhead 

In the last experiment, we measured the time and memory

onsumption of DiscoPoP, which are mainly incurred by the data-

ependence profiler. The results are obtained by profiling NPB 3.3.1

ith input size W and Starbench with the reference input. 

.6.1. Time overhead 

First, we examine the time overhead of our profiler. The num-

er of threads for profiling is set to 8 and 16. The slowdown fig-

res are average values of three executions compared with the ex-

cution time of uninstrumented runs. The negligible time spent in

he instrumentation is not included in the overhead. For NAS and

tarbench, instrumentation was always done in two seconds. 

The slowdown of our profiler when profiling sequential pro-

rams is shown in Fig. 12 . The average slowdowns for the two

enchmark suites (“NAS-average” and “Starbench-average”) are 

lso included. As the figure shows, our serial profiler has a 190 ×
lowdown on average for NAS benchmarks and a 191 × slowdown

n average for Starbench programs. The overhead is not surprising

ince we perform an exhaustive profiling for the whole program. 

When using 8 threads, our parallel profiler gives a 97 × slow-

own (best case 19 ×, worst case 142 ×) on average for NAS
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benchmarks and a 101 × slowdown (best case 36 ×, worst case

253 ×) on average for Starbench programs. After increasing the

number of threads to 16, the average slowdown is only 78 × (best

case 14 ×, worst case 114 ×) for NAS benchmarks, and 93 × (best

case 34 ×, worst case 263 ×) for Starbench programs. Compared

to the serial profiler, our parallel profiler achieves a 2.4 × and a

2.1 × speedup using 16 threads on NAS and Starbench benchmark

suites, respectively. 

4.6.2. Memory consumption 

We measure memory consumption using the “maximum resi-

dent set size” value provided by /usr/bin/time with the ver-

bose ( -v ) option. Fig. 13 shows the results. When using 8 threads,

our profiler consumes 473 MB of memory on average for NAS

benchmarks and 505 MB of memory on average for Starbench pro-

grams. The average memory consumption is increased to 649 MB

and 1390 MB for NAS and Starbench programs, respectively. The

worst case happens when using 16 threads to profile md5 , which

consumes about 7.6 GB memory. Although this may exceed the

memory capacity configured in a three-year-old PC, it is till ad-

equate for up-to-date machines, not to mention servers that are

usually configured with 16 GB memory or more. 

5. Conclusion and outlook 

We introduced a novel dynamic tool for the discovery of po-

tential parallelism in sequential programs. Building the latest defi-

nition of computational units (CUs) and embedding it in a frame-

work of combined static and dynamic analysis, we can reconcile

the identification of DOALL loops, DOACROSS loops, SPMD tasks,

and MPMD tasks with efficiency both in terms of time and mem-

ory. Our approach found 92.5% of the parallel loops in NAS Par-

allel Benchmark (NPB) programs and successfully identified differ-

ent types of tasks at different level of language constructs. Further-

more, we provide an effective ranking method, selecting the most

appropriate parallel opportunities for the user. Our results show

that 70% of the implemented parallelism in NPB can be explored

by examining only the top 30% of our suggestions. Last but not the

least, our method incurs only 78 × slowdown and 649 MB mem-

ory when profiling NAS benchmarks because of the highly efficient

data-dependence profiler. 

In the future, we want to extend our static analy s es to reduce

the number of instrumented functions—with the aim of further

lowering the time and space overhead. On parallelism discovery

side, we tend to explore more potentials of CUs to support differ-

ent parallel program ming models. 
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