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Abstract—Extracting data dependences from programs
serves as the foundation of many program analysis and
transformation methods, including automatic parallelization,
runtime scheduling, and performance tuning. To obtain data
dependences, more and more related tools are adopting profil-
ing approaches because they can track dynamically allocated
memory, pointers, and array indices. However, dependence
profiling suffers from high runtime and space overhead. To
lower the overhead, earlier dependence profiling techniques
exploit features of the specific program analyses they are
designed for. As a result, every program analysis tool in need
of data-dependence information requires its own customized
profiler. In this paper, we present an efficient and at the
same time generic data-dependence profiler that can be used
as a uniform basis for different dependence-based program
analyses. Its lock-free parallel design reduces the runtime
overhead to around 86× on average. Moreover, signature-based
memory management adjusts space requirements to practical
needs. Finally, to support analyses and tuning approaches for
parallel programs such as communication pattern detection,
our profiler produces detailed dependence records not only for
sequential but also for multi-threaded code.

Keywords-data dependence, profiling, program analysis, par-
allelization, parallel programming

I. INTRODUCTION

Single-core performance is more or less stagnating.
Nonetheless, to speed up a program developers can now
exploit the potential of multi-core processors and make it
run in parallel. However, fully utilizing this potential is often
challenging, especially when the sequential version was writ-
ten by someone else. Unfortunately, in many organizations
the latter is more the rule than the exception [1]. Many useful
tools have been proposed to assist programmers in paralleliz-
ing sequential applications and tuning their parallel versions
more easily. Tools for discovering parallelism [2], [3], [4],
[5], [6], [7] identify the most promising parallelization
opportunities. Runtime scheduling frameworks [8], [9], [10],
[11] add more parallelism to programs by dispatching code
sections in a more effective way. Automatic parallelization
tools [12], [13], [14] transform sequential into parallel code
automatically. However, they all have in common the fact
that they rely on data-dependence information to achieve
their goals because data dependences can present serious
obstacles to parallelization.

Data dependences can be obtained in two main ways:
static and dynamic analysis. Static approaches determine

data dependences without executing the program. Although
they are fast and even allow fully automatic parallelization
in some cases [13], [14], they lack the ability to track
dynamically allocated memory, pointers, and dynamically
calculated array indices. This usually makes their assessment
pessimistic, limiting their practical applicability. In contrast,
dynamic dependence profiling captures only those depen-
dences that actually occur at runtime. Although dependence
profiling is inherently input sensitive, the results are still
useful in many situations, which is why such profiling
forms the basis of many program analysis tools [2], [5],
[6]. Moreover, input sensitivity can be addressed by running
the target program with changing inputs and computing the
union of all collected dependences.

However, a serious limitation of data-dependence profiling
is high runtime overhead in terms of both time and space.
The former may significantly prolong the analysis, some-
times requiring an entire night [15]. The latter may prevent
the analysis completely [16]. This is because dependence
profiling requires all memory accesses to be instrumented
and records of all accessed memory locations to be kept.
To lower the overhead, current profiling approaches limit
their scope to the subset of the dependence information
needed for the analysis they have been created for, sacrificing
generality and, hence, discouraging reuse. Moreover, since
current profilers mainly concentrate on the discovery of par-
allelization opportunities, they only support sequential pro-
grams, although they are also needed for parallel programs.
For example, there may still be unexploited parallelism
hidden inside a parallel program. Furthermore, knowledge of
data communication patterns, which are nothing but cross-
thread dependences, can help identify critical performance
bottlenecks. Finally, debugging approaches such as data race
detection can also benefit from data dependence information
to improve their accuracy.

To provide a general foundation for all such analyses,
we present the first generic data-dependence profiler with
practical overhead, capable of supporting a broad range
of dependence-based program analysis and optimization
techniques—both for sequential and parallel programs. To
achieve efficiency in time, the profiler is parallelized, taking
advantage of lock-free design [17]. To achieve efficiency
in space, the profiler leverages signatures [18], a concept
borrowed from transactional memory. Both optimizations are



application-oblivious, which is why they do not restrict the
profiler’s scope in any way. Our profiler has the following
specific features:

• It collects pair-wise data dependences of all the three
types (RAW, WAR, WAW) along with runtime control-
flow information

• It is efficient with respect to both time and memory
(average slowdown of only 86×, average memory con-
sumption of only 1020 MB for benchmarks from NAS
and Starbench)

• It supports both sequential and parallel (i.e., multi-
threaded) target programs

• It provides detailed information, including source code
location, variable name, and thread ID

The remainder of the paper is organized as follows. First,
we summarize related work in Section II. Then, we describe
our profiling approach for sequential target programs in
Section III. At this point, emphasis is given to the reduction
of space overhead. In Section IV, we describe the efficient
parallelization. An extension in support of multi-threaded
target programs is presented in Section V. We evaluate
the accuracy and performance of the full profiler design in
Section VI, while we showcase several applications of our
profiler in Section VII. Finally, we conclude the paper and
outline future prospects in Section VIII.

II. RELATED WORK

After purely static data-dependence analysis turned out to
be too conservative in many cases, a range of predominantly
dynamic approaches emerged. In previous work, their over-
head was reduced either by tailoring the profiling technique
to a specific analysis or by parallelizing it.

Using dependence profiling, Kremlin [2] determines the
length of the critical path in a given code region. Based on
this knowledge, it calculates a metric called self-parallelism,
which quantifies the parallelism of the region. Instead of
pair-wise dependences, Kemlin records only the length of the
critical path. Alchemist [4], a tool that estimates the effec-
tiveness of parallelizing program regions by asynchronously
executing certain language constructs, profiles dependence
distance instead of detailed dependences. Although these
approaches profile data dependences with low overhead, the
underlying profiling technique has difficulty in supporting
support other program analyses.

There are also approaches that reduce the time overhead of
dependence profiling through parallelization. For example,
SD3 [16] exploits pipeline and data parallelism to extract
data dependences from loops. At the same time, SD3 reduces
the significant space overhead of tracing memory accesses
by compressing strided accesses using a finite state machine.
Multi-slicing [19] follows the same compression approach
as SD3 to reduce the memory overhead, but leverages
compiler support for parallelization. Before execution, the
compiler divides the profiling job into multiple profiling

1 1:60 BGN loop
2 1:60 NOM {RAW 1:60|i} {WAR 1:60|i}
3 {INIT *}
4 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}
5 1:64 NOM {RAW 1:60|i}
6 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}
7 {WAR 1:67|temp2} {INIT *}
8 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2}
9 {RAW 1:67|temp1} {INIT *}

10 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}
11 1:70 NOM {RAW 1:67|temp1} {INIT *}
12 1:74 NOM {RAW 1:41|block}
13 1:74 END loop 1200

Figure 1. A fragment of profiled data dependences in a sequential program.

tasks through a series of static analyses, including alias/edge
partitioning, equivalence classification, and thinned static
analysis. According to published results, the slowdown of
these approaches stays close to ours when profiling the
hottest 20 loops (70× on average using SD3 with 8 threads),
but remains much higher when profiling whole programs
(over 500× on average using multi-slicing with 8 threads).

Like SD3 and multi-slicing, we parallelize the data-
dependence profiling algorithm instead of customizing it.
Unlike these methods, we profile detailed data dependences
and control-flow information for not only sequential but also
multi-threaded programs. Furthermore, our parallelization
is achieved through lock-free programming, ensuring good
performance without loss of generality.

III. DATA-DEPENDENCE PROFILING

To explain how we reduce the space overhead via signa-
tures, we start with the profiling approach that supports only
sequential programs. Our profiler, which is implemented
in C++11 based on LLVM [20], delivers the following
information:

• pair-wise data dependences
• source code locations of dependences and the names of

the variables involved
• runtime control-flow information
We profile detailed pair-wise data dependences because

we want to support as many program analyses as possible.
Control-flow information is necessary for some program
analyses such as parallelism discovery and code partitioning.

A. Representation of data dependences

A sample piece of profiling data is shown in Figure 1. A
data dependence is represented as a triple <sink, type,
source>. type is the dependence type (RAW, WAR or
WAW). Note that a special type INIT represents the first
write operation to a memory address.
source and sink are the source code locations

of the former and the latter memory accesses, re-
spectively. sink is further represented as a pair



<fileID:lineID>, while source is represented as a
triple <fileID:lineID|variableName>. As shown
in Figure 1, data dependences with the same sink are
aggregated together.

The keyword NOM (short for “NORMAL”) indicates that
the source line specified by aggregated sink has no control-
flow information. Otherwise, BGN and END represent the
entry and exit point of a control region, respectively. In
Figure 1, a loop starts at source line 1:60 and ends at
source line 1:74. The number following END loop shows
the actual number of iterations executed, which is 1200 in
this case.

B. Profiling with signatures

Traditional data-dependence profiling approaches record
memory accesses using shadow memory. In shadow mem-
ory, the access history of addresses is stored in a table
where the index of an address is the address itself. This
approach results in a table covering the memory space from
the lowest to the highest address accessed by the target
program, which wastes a lot of memory. Although this
problem can be partially solved by using multilevel tables,
the memory overhead of shadow memory is still too high.
According to previous work [16], it is often impossible to
profile even small programs using shadow memory if no
more than 16 GB of memory is available.

An alternative is to record memory accesses using a hash
table, but this approach incurs additional time overhead since
when more than one address is hashed into the same bucket,
the bucket has to be searched for the address in question.
Note that profiling data dependence pair-wise requires an
exhaustive instrumentation on all memory accesses in the
target program. The number of memory accesses in an
ordinary benchmark can easily reach one billion. With all
these accesses instrumented, a tiny time cost of the instru-
mentation function will accumulate into a huge overhead.
Based on our experiments, the hash table approach is about
1.5 – 3.7× slower than our approach.

A solution to decrease the profiling overhead is to use
approximate representation rather than instrument every
memory access. Previous work [21] tried to ignore memory
accesses in a code section when it had been executed more
than 232−k times. However, when setting k = 10, only
33.7% of the memory accesses are covered, which can lead
to significant inconsistency in profiled data dependences.

To lower the memory overhead without increasing the
time overhead, we record memory accesses in signatures. A
signature is a data structure that encodes an approximate rep-
resentation of an unbounded set of elements with a bounded
amount of state [18]. It is widely used in transactional
memory systems to uncover conflicts. A signature usually
supports three operations:

• Insertion: inserts a new element into the signature. The
state of the signature is changed after the insertion.

Global signatures sig write and sig read

for each memory access c in the program do
index = hash(c)
if c is write operation then

if sig write[index] is empty then
c is initialization

end
else

if sig read[index] is not empty then
buildWAR()

end
buildWAW()

end
sig write[index] = source line number of c

end
else

if sig write[index] is not empty then
buildRAW()

end
sig read[index] = source line number of c

end
end

Algorithm 1: Algorithm for signature-based data-
dependence profiling (pseudocode).

• Membership check: tests whether an element is already
a member of the signature.

• Disambiguation: intersects two signatures. If an ele-
ment was inserted into both of them, the resulting
element must be present in the intersection.

A data dependence is similar to a conflict in transactional
memory because it exists only if two or more memory
operations access the same memory location in some order.
Therefore, a signature is also suitable for detecting data
dependences. Usually, a signature is implemented as a bloom
filter [22], which is a fixed-size bit array with k different
hash functions that together map an element to a number
of array indices. Here, we adopt a similar idea, using a
fixed-length array combined with a hash function that maps
memory addresses to array indices. We use only one hash
function to simplify the removal of elements because it is
required by variable lifetime analysis, an optimization we
implemented to lower the probability of building incorrect
dependences. In variable lifetime analysis, addresses that be-
come obsolete after deallocating the corresponding variable
are removed from signatures. Also, each slot of the array is
three bytes long instead of one bit so that the source line
number where the memory access occurs can be stored in
it. Because of the fixed length of the data structure, memory
consumption can be adjusted as needed.

To detect data dependences, we apply Algorithm 1. It
deploys two signatures: one for recording read operations



and one for recording write operations. When a memory
access c at address x is captured, we first determine the
access type (read or write). Then, we run the membership
check to see if x exists in the signatures. If x already exists,
we build a data dependence and change the source line
number to where c occurred. Otherwise, we insert x into
the signature. Note that we ignore read-after-read (RAR)
dependences because in most program analyses they are not
required.

With signature, we sacrifice a slight degree of accuracy
of profiled dependence for profiling speed. When more than
one address is hashed into the same slot, false dependences
are created instead of building additional data structures
to keep the addresses, saving time for maintaining the
structures and searching the address from them. Signatures
are implemented in fixed-size arrays so that the overhead of
new/delete or malloc/free is eliminated.

A signature is an approximate representation where hash
collisions can happen. A hash collision in signatures can
lead to both false positives and false negatives in profiled
dependences. In Section VI-A, we show that the false
positive and false negative rates of profiled dependences are
negligible if sufficiently large signatures are used. Nonethe-
less, sufficiently large is still small in comparison to shadow
memory. If an estimation of the total number of memory
address accesses in the target program is available, the
signature size can also be estimated using formula 2 in
Section VI-A. A very practical alternative is to use all the
memory of the target system for profiling that remains after
subtracting the memory space needed for the target program
itself, which is usually more than enough to yield perfect
dependences.

Finally, we merge identical dependences to reduce the
runtime memory overhead and the time needed to write the
dependences to disk. Based on our experience, this step is
necessary to arrive at a practical solution. Merging identical
dependences decreased the average output file size for NAS
benchmarks from 6.1 GB to 53 KB, corresponding to an
average reduction by a factor of 105.

IV. PARALLELIZATION

The basic idea behind the parallelization of our approach
is to run the profiling algorithm in parallel on disjoint subsets
of the memory accesses. To determine the dependence type
(RAW, WAR, WAW) correctly, we need to preserve the
temporal order of memory accesses to the same address.
For this reason, a memory address is assigned to exactly one
worker thread, which becomes responsible for all accesses
to this address. To buffer incoming memory accesses before
they are consumed, we use a separate queue for each worker
thread, which can fetch data only from the queue assigned
to it.

Figure 2 shows how our parallel design works. The main
thread executes the program to be analyzed and collects
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Figure 2. Architecture of a parallel data-dependence profiler for sequential
programs.

memory accesses in chunks, whose size can be configured in
the interest of scalability. One chunk contains only memory
accesses assigned to one thread. Once a chunk is full, the
main thread pushes it into the queue of the thread responsible
for the accesses recorded in it. The worker threads in
turn consume chunks from their queues, analyze them, and
store detected data dependences in thread-local maps. Empty
chunks are recycled and can be reused. The use of maps
ensures that identical dependences are not stored more than
once. At the end, we merge the data from all local maps
into a global map. This step incurs only minor overhead
since the local maps are free of duplicates. Since the major
synchronization overhead comes from locking and unlocking
the queues, we made the queues lock-free to lower the
overhead.

A. Load balancing

In our profiler, memory accesses are distributed among
worker threads using a simple modulo function:

worker ID = memory address % W (1)



1 4:58|2 NOM {WAR 4:77|2|iter}
2 4:59|2 NOM {WAR 4:71|2|z_real}
3 4:64|3 NOM {RAW 3:75|0|maxiter}
4 {RAW 4:58|3|iter} {RAW 4:61|3|z_norm}
5 {RAW 4:71|3|z_norm} {RAW 4:73|3|iter}
6 4:69|3 NOM {RAW 4:57|3|c_real}
7 {RAW 4:66|3|z2_real} {WAR 4:67|3|z_real}
8 4:71|2 NOM {RAW 4:69|2|z_real}
9 {RAW 4:70|2|z_imag} {WAR 4:64|2|z_norm}

10 4:80|1 NOM {WAW 4:80|1|green} {INIT *}

Figure 3. A fragment of data dependences from a parallel program
captured by our profiler. Thread IDs are highlighted.

with W being the number of worker threads. According to
our experiments, this simple function achieves an even distri-
bution of accessed memory addresses. A similar conclusion
is also drawn in SD3 [16]. Although memory addresses are
distributed evenly, not all of them are accessed with the
same frequency. Some addresses may be accessed millions
of times while others are only accessed a few times. To
avoid the situation where all heavily accessed addresses
are assigned to the same worker thread, we also monitor
how many times an address is accessed dynamically. These
access statistics are stored in a map and updated every time
a memory access occurs. The access statistics are needed to
ensure that the top ten most heavily accessed addresses are
always evenly distributed among worker threads.

The access statistics are evaluated at regular intervals. If
we notice that the distribution of heavily accessed memory
addresses is out of balance, we initiate redistribution. If
an address is moved to another thread, its signature state
has to be moved as well. After redistribution, accesses to
redistributed addresses will always be directed to the newly
assigned worker thread. Redistribution rules are stored in a
map and have higher priority than the modulo function.

Redistribution is costly, which is why it should not be
performed too frequently. In our implementation, we check
whether redistribution is needed after every 50,000 chunks.
Consequently, for the benchmarks used in this paper, re-
distribution is performed at most 20 times when profiling a
single benchmark, which is enough to have a positive impact
on the time overhead.

V. MULTI-THREADED TARGET PROGRAMS

A data dependence in a parallel program is still
represented as triple <sink, type, source>.
However, to distinguish different threads, we add thread
IDs to the sink and source fields. Now, sink
has the form <fileID:lineID|threadID> and
source has the form <fileID:lineID|threadID|
variableName>. Control-flow information is recorded
in the same way as shown earlier in Section III. Figure 3

store i32 3, i32* %x

call push_write(...)

%2 = load i32* %x

call push_read(...)

thread 1 thread 2

lock region

lock region

time

Figure 4. Instrumentation functions for memory accesses are always
inserted in the same lock region.

shows a fragment of dependences captured in a parallel
program.

A. Modified parallelization strategy

In a sequential program, the temporal order of memory
accesses is automatically preserved. Thanks to this property,
we can easily ensure that our parallel profiler produces
the same data dependences as the serial version—provided
we push a memory access into chunk immediately after
encountering it. However, parallel programs do not have
this property. In a multi-threaded environment it is not
guaranteed that the push operation is always executed imme-
diately after the memory access, resulting in incorrect data
dependences.

To solve this problem, we need to make a memory
access and its corresponding push operation atomic. Thus,
we require that accesses to the same address from multiple
threads are protected by locks, and we insert the push
operation into the same lock region, as shown in Figure 4. So
far we support only parallel programming languages where
locking/unlocking primitives have to be written explicitly
in the source code. However, programing languages with
implicit synchronization can be easily supported by auto-
matically discovering implicit synchronization patterns. [23]

B. Data races

We generally do not know whether the cross-thread de-
pendences we report are enforced or not, that is, whether
they will be reproduced when the program is run again. In
this sense, they can also be regarded as incidental happens-
before relationships. Unless a data race is acceptable, a
correct program would always enforce such dependences.
An example of an acceptable data race is the concurrent
update of a flag indicating whether a parallel search was
successful. Since acceptable data races are rare, it is usually
desirable to know whether a dependence is enforced or not.
One way of detecting unenforced dependences is to run the



Table I
FALSE POSITIVE AND FALSE NEGATIVE RATES OF PROFILED DEPENDENCES FOR STARBENCH.

Program LOC # addresses # accesses # dependences # slots = 1.0E+6 # slots = 1.0E+7 # slots = 1.0E+8
FPR FNR FPR FNR FPR FNR

c-ray 620 1.1E+6 1.9E+9 574 19.95 1.34 6.00 0.24 0.00 0.00
kmeans 603 6.9E+5 1.9E+9 281 5.46 0.75 0.21 0.00 0.00 0.00

md5 661 2.6E+5 4.8E+8 859 3.08 0.15 0.03 0.00 0.00 0.00
ray-rot 1425 4.0E+5 9.8E+8 862 11.82 1.64 1.19 0.00 0.00 0.00
rgbyuv 483 6.3E+6 2.1E+8 155 47.67 15.74 4.44 1.90 0.21 0.05
rotate 871 3.1E+6 3.7E+8 278 55.92 15.68 4.50 3.02 0.00 0.00
rot-cc 1122 6.3E+6 4.9E+8 372 63.15 19.52 24.08 2.04 0.39 0.00

streamcluster 860 8.6E+3 1.2E+7 780 1.55 0.42 0.84 0.12 0.55 0.06
tinyjpeg 1922 4.2E+2 2.3E+7 1711 17.37 0.54 4.23 0.11 0.02 0.00

bodytrack 3614 4.4E+6 4.8E+9 3422 25.07 3.56 3.69 0.32 0.75 0.30
h264dec 42 822 8.7E+5 3.6E+8 31 138 18.10 0.23 2.63 0.03 1.95 0.01
average — — — — 24.47 5.42 4.71 0.71 0.35 0.04

program more than once and hope that a different thread
schedule will reverse the order and expose the race. Because
this can be a successful strategy for finding races, reporting
potentially irreproducible dependences is also valuable from
a correctness perspective.

However, there are also cases where we can actually
prove the occurrence of a data race even after a single
run. The situation where the atomicity of access occurrence
and reporting is violated can only happen if there are
no synchronization mechanisms in place to keep the two
accesses to memory location mutually exclusive. For this
reason, the reported dependence may show the reverse of
the actual execution order. To catch such cases, we acquire
the timestamp of every memory access and pass it to the
corresponding push operation as a parameter. Whenever a
worker thread fetches memory accesses from its queue it
usually expects increasing timestamps. A violation of this
condition indicates that the memory accesses were pushed
in a different order from the one in which they occurred. In
this case, we mark the dependence accordingly. Moreover,
whenever we see such a reversal, we can conclude that
the memory accesses were not guaranteed to be mutually
exclusive. Although mutual exclusion does not necessarily
enforce a particular access order, its absence definitely
exposes a potential data race.

VI. EVALUATION

We conducted a range of experiments to evaluate both the
accuracy of the profiled dependences and the performance
of our implementation. Test cases are the NAS Parallel
Benchmarks 3.3.1 [24] (NAS), a suite of programs derived
from real-world computational fluid-dynamics applications,
and the Starbench parallel benchmark suite [25] (Starbench),
which covers programs from diverse domains, including
image processing, information security, machine learning
and so on. Whenever possible, we tried different inputs to
compensate for the input sensitivity of dynamic dependence
profiling.

A. Accuracy of profiled dependences

We first evaluate the accuracy of the profiled data de-
pendences since we build upon the idea of a signature
as an approximate representation of memory accesses. As
it is described in Section III-B, the membership check of
this approximate representation can deliver false positives,
which further lead to false positives and false negatives in
dependences.

To measure the false positive rate (FPR) and the false
negative rate (FNR) of the profiled dependences, we imple-
mented a “perfect signature”, in which hash collisions are
guaranteed not to happen. Essentially, the perfect signature
is a table where each memory address has its own entry, so
that false positives are never produced. We use the perfect
signature as the baseline to quantify the FPR and the FNR
of the dependences delivered by our profiler.

Table I shows the results for Starbench. Three groups of
FPR and FNR are shown under three different signature sizes
in terms of the total number of slots. When using 1.0E+6
slots, the average FPR and FNR are 24.47% and 5.42%,
respectively. The values are significantly reduced to 4.71%
and 0.71% when the signature size is increased to 1.0E+7.
Finally, hardly any incorrect dependences appear when the
signature has 1.0E+8 slots as the average value of both FPR
and FNR are lower than 0.4%. In our implementation, each
slot is four bytes. Thus, 1.0E+8 slots consume only 382 MB
of memory, which is adequate for any ordinary PC.

c-ray, rgbyuv, rotate, rot-cc and bodytrack have higher
FPR and FNR than other programs because they access
a large number of different addresses. This observation
matches the theory of predicting the false positive rate of
a signature. Assume that we use a hash function that selects
each array slot with equal probability. Let m be the number
of slots in the array. Then, the estimated false positive rate
(Pfp), i.e., the probability that a certain slot is used after
inserting n elements is:

Pfp = 1− (1− 1

m
)n. (2)
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Figure 5. Slowdowns caused by the data-dependence profiler for sequential NAS and Starbench benchmarks.

Clearly, Pfp is inversely proportional to m and proportional
to n. In our case, m is the size of signature and n is the
number of addresses.

B. Performance

We conducted our performance experiments on a server
with 2 x 8-core Intel Xeon E5-2650 2 GHz processors
with 32 GB memory, running Ubuntu 12.04 (64-bit server
edition). All the test programs were compiled with option
-g -O2 using Clang 3.3. For NAS, we used the input set
W; for Starbench, we used the reference input set.

1) Time overhead: First, we examine the time overhead
of our profiler. The number of threads for profiling is set
to 8 and 16. The slowdown figures are average values
of three executions compared with the execution time of
uninstrumented runs. The negligible time spent in the in-
strumentation is not included in the overhead. For NAS and
Starbench, instrumentation was always done in two seconds.

The slowdown of our profiler when profiling sequential
programs is shown in Figure 5. The average slowdowns for
the two benchmark suites (“NAS-average” and “Starbench-
average”) are also included. As the figure shows, our se-
rial profiler has a 190× slowdown on average for NAS
benchmarks and a 191× slowdown on average for Starbench
programs. The overhead is not surprising since we perform
an exhaustive profiling for the whole program.

When using 8 threads, our lock-free parallel profiler
gives a 97× slowdown on average for NAS benchmarks
and a 101× slowdown on average for Starbench programs.
After increasing the number of threads to 16, the average
slowdown is only 78× for NAS benchmarks, and 93×
for Starbench programs. Compared to the serial profiler,
our lock-free parallel profiler achieves a 2.4× and a 2.1×
speedup using 16 threads on NAS and Starbench benchmark
suites, respectively.

Our profiler may seems slightly slower than SD3, which
has a 70× slowdown on average using eight threads [16].
However, the slowdown of SD3 is measured by profiling
the hottest 20 loops from each benchmark. When profiling
data dependences all across the target program, multi-slicing,
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Figure 6. Slowdown of the profiler for parallel Starbench programs
(pthread version, T = thread for profiling, Tn = thread for benchmark).

which is essentially SD3 but parallelized in a different way,
has a more than 500× slowdown on average using eight
threads [19].

The speedup is not linear for two reasons. Firstly, data-
dependence profiling always has imbalanced workload due
to uneven accesses, as we discussed in Section IV-A. In
this case, simply introducing more worker threads does not
help balance the workload. Similar behavior is also observed
in related work [19]. Profiling performance is affected by
this problem on five benchmarks: kMeans, rgbyuv, rotate,
bodytrack and h264dec.

Secondly, determining detailed data dependence types
(RAW, WAR, WAW) requires retaining the temporal order
of memory accesses to the same address, which means such
accesses have to be processed sequentially. Obviously, deter-
mining only a binary value (whether a dependence exists or
not) instead of detailed types would allow a more balanced
workload and lead to better performance. Moreover, the
performance of the profiler can be further improved by
performing set-based profiling, which tells whether a data
dependence exists between two code sections instead of two
statements. However, all these optimization will decrease the
generality of the profiler, which is contrary to our purpose.

Figure 5 also shows the slowdown of our lock-based
profiler when eight threads are used. Compared to the lock-
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Figure 7. Memory consumption of the profiler for sequential NAS and Starbench benchmarks.

based version, our lock-free version gives a 1.6× speedup
on average for NAS benchmarks, and a 1.3× speedup on
average for Starbench programs. A faster lock-free imple-
mentation that only allocates memory but never de-allocates
will further boost performance, but increase the memory
overhead significantly.

When profiling multi-threaded code, our profiler has a
higher time overhead because more contentions are intro-
duced. Native execution time of the parallel benchmarks is
calculated by accumulating the time spent in each thread.

Slowdowns of our profiler for parallel Starbench programs
(pthread version, 4 threads) are shown in Figure 6. We
only tested Starbench because our profiler currently requires
parallel programs with explicit locking/unlocking primitives.
Using eight threads for profiling, the average slowdown of
our profiler for Starbench is 346×, and further decreases to
261× when 16 threads are used for profiling. Again, kMeans,
rgbyuv, rotate, bodytrack and h264dec do not scale well
because of their imbalanced memory access pattern.

2) Memory consumption: We measure memory consump-
tion using the “maximum resident set size” value provided
by /usr/bin/time with the verbose (-v) option. Fig-
ure 7 shows the results when 6.25E+6 signature slots are
used in each thread, which aggregated to 1.0E+8 slots in
total of 16 threads. This configuration leads to a memory
consumption of 191 MB and 382 MB by the signatures for
8 threads and 16 threads, respectively.

When using 8 threads, our profiler consumes 473 MB
of memory on average for NAS benchmarks and 505 MB
of memory on average for Starbench programs. After in-
creasing the number of threads to 16, the average memory
consumption is increased to 649 MB and 1390 MB for
NAS and Starbench programs, respectively. The worst case
happens when 16 threads are used to profile md5, which
consumes about 7.6 GB of memory. Although this may
exceed the memory capacity configured in a three-year-
old PC, it is still adequate for up-to-date machines, not
to mention servers that are usually configured with 16 GB
memory or more.
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Figure 8. Memory consumption of the profiler for parallel Starbench
programs (pthread version, T = thread for profiling, Tn = thread for
benchmark).

Memory consumption of our profiler for parallel Star-
bench programs (pthread version, 4 threads) is shown in
Figure 8. Our profiler consumes 995 MB and 1920 MB
memory on average using 8 and 16 threads for profiling,
respectively. The consumption is higher than profiling se-
quential benchmarks (505 MB and 1390 MB) because of
the different implementation of lock-free queues, additional
data structures to record thread interleaving events, and
extended representation of data dependency. However, the
consumption is still moderate for an ordinary PC.

VII. APPLICATION

In this section, we demonstrate two applications of our
profiler, showcasing its ability to support a broad variety of
program analyses. First, we apply our profiler to discover
potential parallelism in loops of sequential programs. After
that, we examine how our profiler can be used to detect com-
munication patterns in multi-threaded code. If not stated, we
always use signatures big enough to produce dependences
without false positives and false negatives.

A. Discovering potential loop parallelism

To show how our profiler supports dependence-based
program analysis and further evaluates the quality of the
data dependences it delivers, we fed DiscoPoP [3], a tool



Table II
DETECTION OF PARALLELIZABLE LOOPS IN NAS BENCHMARKS.

Program # OMP # identified
(DP)

# identified
(sig)

# missed
(sig)

BT 30 30 30 0
SP 34 34 34 0
LU 33 33 33 0
IS 11 8 8 0
EP 1 1 1 0
CG 16 9 9 0
MG 14 14 14 0
FT 8 7 7 0

Overall 147 136 136 0

to detect potential parallelism in sequential programs, with
the output of our profiler. With its own data-dependence
profiling component (no wrong dependences, equivalent to
a perfect signature), DiscoPoP was able to identify 92.5% of
the loops in the sequential versions of the NAS benchmarks
that appear parallelized in the parallel ones. With sufficiently
large signatures, we expect that our dependences will lead
to the same results.

Table II shows the results of the experiment. The column
”# OMP” shows the number of annotated loops in the
OpenMP versions of the benchmarks. The two columns
labeled with ”# identified” list how many annotated loops
were identified as parallelizable by DiscoPoP (DP) and our
profiler (sig), respectively. As shown in Table II, as many
as 92.5% (136/147) of the annotated loops were identified
based on our profiled dependences, and the loops identified
in each benchmarks are exactly the same as those identified
by DiscoPoP.

This application proves that our profiler can support paral-
lelism discovery techniques, and the quality of the profiled
dependences are high enough to support such techniques
when using sufficiently large signatures. With the help of
our profiler, parallelism discovery techniques can share a
common base where they can benefit from both high-quality
dependence and efficiency.

B. Detecting communication patterns

The performance of parallel applications very often de-
pends on efficient communication. This is as true for mes-
sage passing as it is for communication via shared variables.
Knowing the communication pattern of a shared-memory
kernel can therefore be important to discover performance
bottlenecks such as true sharing or to support software-
hardware co-design. In shared-memory programming, com-
munication often follows the pattern of producer and con-
sumer. The producer thread writes a variable, after which
the consumer thread reads the written value. The read
happens before the next write occurs. Such a pattern can
be represented as a matrix, showing the communication
intensity between producer and consumer threads.

Producer-consumer behavior describes a read-after-write
relation between memory operations, which can be easily

Figure 9. Communication pattern of splash2x.water-spatial derived from
the output of our profiler.

derived from the RAW dependences produced by our pro-
filer. With detailed information such as thread IDs available,
we can generate the communication matrix directly from the
output of our profiler. Figure 9 shows the communication
pattern of splash2x.water-spatial [26] that we computed. The
ticks of the vertical and horizontal axes represent producer
and consumer threads, respectively. The darker the square
the stronger communication between the the two threads.
Compared to an earlier analysis [27], we identified exactly
the same communication pattern.

Previous approaches [27], [28] that characterize commu-
nication patterns are usually built on top of simulators,
which can easily have a slowdown of more than a factor
of 1,000× if in-order processing is required (and it is
required to produce communication patterns as producers
and consumers need to be distinguished). With the help
of our profiler, the same communication patterns can be
obtained more efficiently since our profiler has only a
261× slowdown on average when profiling multithreaded
Starbench benchmarks.

VIII. CONCLUSION

Many program analysis and tuning tools are built on
top of data-dependence profilers. To keep the profiling
overhead within reasonable limits, the underlying profilers
are usually customized so that only the information needed
for a specific analysis or tool is collected. This solution leads
to a dissatisfactory situation: every time a new analysis tool
is constructed, existing profilers cannot be reused. Creating
a new one is not only expensive and inconvenient, but it also
makes the final analyses or tools hard to compare since they
are based on different profiling techniques.

To enable reuse without having to accept compromises
in terms of efficiency, we developed a parallel and lock-
free data-dependence profiler that can serve as a uniform
basis for different dependence-based analyses. While its time



and space overhead stays within practical limits, our profiler
also supports multi-threaded code. In this way, it sup-
ports not only date-dependence analyses for multi-threaded
code, but also tuning and debugging approaches where the
necessary information can be derived from dependences.
While performing an exhaustive dependence search with 16
profiling threads, our lock-free parallel design limited the
average slowdown to 78× and 93× for NAS and Starbench,
respectively. Using a signature with 108 slots, the memory
consumption did not exceed 649 MB (NAS) and 1390 MB
(Starbench), while producing less than 0.4% false positives
and less than 0.1% false negatives.

An integrated program-analysis framework with APIs to
retrieve dependence information is already in development.
The framework reorganizes profiled data into multiple rep-
resentations, including dynamic execution tree, call tree,
dependence graph, loop table, etc., and a dependence-based
program analysis can be implemented as a plugin. Our plan
is to release an open-source version of our tools in the near
future.
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