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ABSTRACT

Discovery of parallelization opportunities in sequential pro-
grams can greatly reduce the time and effort required to par-
allelize any application. Identification and analysis of code
that contains little to no internal parallelism can also help
expose potential parallelism. This paper provides a tech-
nique to identify a block of code called Computational Unit
(CU) that performs a unit of work in a program. A CU can
assist in discovering the potential parallelism in a sequen-
tial program by acting as a basic building block for tasks.
CUs are used along with dynamic analysis information to
identify the tasks that contain tightly coupled code within
them. This process in turn reveals the tasks that are weakly
dependent or independent. The independent tasks can be
run in parallel and the dependent tasks can be analyzed to
check if the dependences can be resolved. To evaluate our
technique, different benchmark applications are parallelized
using our identified tasks and the speedups are reported. In
addition, existing parallel implementations of the applica-
tions are compared with the identified tasks for the respec-
tive applications.

1. INTRODUCTION

As a result of the stagnating single core performance, mul-
ticore processors with several cores on a single chip have
become widely popular. This trend will continue to speed
up in the coming years and will require software develop-
ers to focus more on parallel programming, especially at
the thread level. Hence, discovering potential paralleliza-
tion targets in sequential programs can be very helpful. It
would be a very likely scenario in a major organization that
the developer who is tasked with parallelizing an application
had not developed the original sequential version. In such
cases, the discovery of available parallelization opportunities
can greatly reduce the time and effort required to parallelize
the application. The use of these types of analyses can not
only save time, but also help improve the performance of
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the application and ease the developer into the process of
parallelizing the application.

As programmers try to solve more complex problems and
use more sophisticated algorithms to do it, the program code
written to implement these algorithms becomes complex as
well. This type of code may be better parallelized by us-
ing techniques other than data-parallelism. Although this
complexity does not necessarily prevent data-parallelism,
the identification of tasks and use of task-parallel constructs
could prove to be more efficient in certain cases [5]. Focusing
on loops for discovering potential parallelism in sequential
programs has already been covered in the previous works
[12] [13] [14] . In this paper, our focus is on identifying tasks
that can run in parallel.

There are two main categories of tasks that can be identi-
fied for parallelism. A task in data-parallelism is similar to
OpenMP task construct which runs the same code on dif-
ferent threads. The tasks involved in task parallelism are
similar to the OpenMP sections construct. They can be
two completely different code sections that perform differ-
ent operations with no clear relation between them and run
in parallel.

Our analysis defines a concept called Computational Unit
(CU) [13] [14]. A CU can be used as a building block for
various purposes like forming parallel tasks, creating stages
of a pipeline, or forming the nodes of a flow graph. Every
CU follows a read-compute-write pattern. It means that a
program state is first read from the memory, a new state is
computed, and finally the new state is written back. This
characteristic makes CU a logical unit for forming larger
tasks. A CU is a code-granularity level which is independent
of the language and can be used for both program analysis
and expressing the parallelism in programs. It is the smallest
unit of code that can be assigned to a thread while running it
in parallel with other CUs or with tasks formed by merging
these CUs. A CU itself has little to no further (internal)
parallelism.

This paper proposes a static technique to identify CUs.
The identification of CUs takes place at different levels of the
program, taking the various program regions into account.
The next step is to merge the CUs to form tasks that can be
run in parallel with other tasks. The computation performed
by these tasks can be scattered throughout the program. As
a result, we can find the different types of tasks mentioned
above.

Dynamic data dependences are used to check the available
parallelism in sequential programs. Based on the absence
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Figure 1: A task graph with control and data dependences.

of dependences between these tasks, it can be concluded
whether the tasks can be run in parallel with other tasks.
Dependences can also be used to detect various patterns for
parallelism. For instance, the CUs can be merged to form
the various stages of a pipeline. The number of dependences
between the tasks also provides an indication of the amount
of effort required to run the tasks in parallel. The analy-
sis for CU identification and task formation takes place at
compile time and keeps a low time and memory overhead in
order to deal with the sequential programs of realistic size.
To account for the input sensitivity of the dynamic anal-
ysis, a representative input is chosen to cover most of the
execution pathways and the code is also run multiple times.

Identifying parts of the code that are tightly bound to-
gether and have very little internal parallelism in turn re-
veals the code sections that require little effort to be run
in parallel with other similar code sections. Figure 1 shows
tasks Ty - T4 which are code sections formed by putting
CUs together and have high number of control and data
dependences within them. They have very little internal
parallelism. Grouping the sequential code in this way re-
veals the parts of the code that are not dependent on each
other or are very weakly dependent. In Figure 1, it can be
observed that the pair of tasks Ty, T» or the pair Ty, 11 is
tightly coupled because of the presence of control and data
dependences that prevent parallelism. However, tasks T}
and T» have no control or data dependence between them
and hence they can be run in parallel. Similarly if the data
dependences between tasks 75 and Ty are weak and can be
resolved then the two tasks can be run in parallel with each
other.

In essence, our work provides a technique to discover po-
tential parallelism in sequential programs by identifying tasks
that can run in parallel with other tasks and have little to
no internal parallelism. This is accomplished by

1. Defining CUs that perform a unit of work in a program
and act as a building block for parallel tasks.

2. Expressing the sequential program with a CU graph
using CUs and data dependences.

3. Partitioning the CU graph to produce meaningful tasks
or other parallel patterns.

4. Evaluating the tasks to determine whether they can
run in parallel with other tasks.

To evaluate our results we have analyzed applications from
the STARBENCH Parallel Benchmark Suite [2] and the

PARSEC Benchmark Suite [3] and generated tasks for the
applications. Based on the program regions analyzed, we
narrowed our results to the most important tasks taking
the total execution time of the code regions into account.
For tasks that can run different code on different threads,
we have parallelized some of the applications by assigning
these tasks to different threads and reported the speedups
based on suggested parallelization opportunities. For tasks
that run the same code on multiple threads, we have com-
pared the existing parallel version of the applications with
the identified tasks to verify their validity.

The rest of this paper is organized as follows. Section
2 discusses the current state of the art and related work.
Section 3 provides a detailed explanation of the aforemen-
tioned technique that identifies the CUs and uses them to
form tasks. Section 4 provides analysis and evaluation of
this technique using applications of the STARBENCH and
the PARSEC benchmark. Finally, Section 5 provides a con-
clusion and a summary of our approach and discusses our
future work.

2. RELATED WORK

Several attempts have been made to identify coarse-grained
parallelism in sequential programs by partitioning the code.
Sura, O’Brien, and Brunheroto [19] identify fibers as a se-
quence of instructions without any control flow or memory
carried dependences. They partition the code into fibers and
also build a code graph. However, the code sections gener-
ated by their approach target very fine grained parallelism
using dedicated hardware queues for low latency transfer of
values. Lauderdale and Khan [11] have attempted to iden-
tify fine-grained units of work called Codelets that can be
described by the application for parallelism. They propose a
codelet runtime that represents these units of work as small
descriptor objects. These objects reference run/cancel fork
functions and include a description to store the codelet’s
state information. Their work however did not describe
how the identification of these codelets takes place. They
also propose a C-based language SCALE because generat-
ing codelets manually and ensuring they interact correctly
would be a daunting task.

MAPS [4] is an integrated framework that mainly concen-
trates on MPSoC application parallelization for embedded
systems. It only focuses on parallelization for sequential
C programs since a majority of the MPSoC software has
been written in C. It identifies code sections called Coupled
Blocks. These code blocks are identified with the constraints
that they should be schedulable and should be tightly cou-
pled by data dependences. The task suggestions from MAPS
are contiguous blocks of code. Our approach identifies tasks
based on the computation being carried out and the tasks
can be scattered across the program or a code construct.
Ottoni et al [16] propose a Decoupled Software Pipelining.
They analyze the dependence graph and merge the strongly
connected components to generate a directed acyclic graph
(DAG) out of a loop. Their approach targets loops and ex-
ploits pipeline parallelism in sequential applications. Li et al
[13] [14] use dynamic analysis to form CUs by monitoring the
memory accesses and identifying read-after-write patterns.
Since, a simple assignment operation could correspond to
such a pattern, the CUs produced are very fine grained.

Other works that try to assess the extent of potential par-
allelism in sequential programs primarily perform dynamic
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Figure 2: Overview of the technique for CU identification
and task formation.

dependence analysis or use runtime scheduling frameworks
or utilize a combination of both. Kremlin [6] computes a
metric called self-parallelism which is calculated by deter-
mining the length of the critical path of a given program
region using the dependence information. This metric lets
Kremlin quantify parallelism for every region analyzed. Al-
chemist [21] tries to identify predefined constructs that can
be treated as candidates for asynchronous execution. It esti-
mates the effectiveness of parallelizing a certain construct by
profiling the dependence distance using Valgrind [15]. Par-
wiz [9] records data dependencies and attaches them to the
nodes of the execution tree it maintains. These tools try
to measure the amount of parallelism available between two
predefined points in the code sections. While these tools
might identify tasks for data parallelism, they might not de-
tect the tasks that do not confine to the constructs of the
source code and are useful for task parallelism.

3. APPROACH

This section introduces the concept of regions and CUs
with the help of examples. Then we describe our approach
that identifies CUs and uses them to form tasks that can be
parallelized at different levels of the program. An overview
of our approach can be seen in Figure 2. There are two
main phases of the analysis. The first phase comprises the
steps performed during the compilation of the source code.
The second phase processes the data gathered during the
first phase and identifies the tasks for parallelism.

Our analysis is based on LLVM [10]. LLVM is a collection
of modular and reusable compiler and toolchain technolo-
gies. In the first step of our analysis, we convert the source
code of the program into the intermediate representation
specified by LLVM (LLVM-IR) [1]. Based on this IR, we
analyze the application to recognize the various program re-
gions. The regions are helpful in defining the boundaries for
the formation of CUs. The next step is to perform an anal-
ysis within every region to classify and group instructions
together. The grouping of instructions is based on the com-
putation they carry out. This step is followed by identifying
the CUs using the information gathered from the instruc-
tions. The next step is to use the dynamic data dependences
and CUs together to create a CU graph. The partitioning
of the graph provides us with a list of tasks. The tasks that
belong to functions or code regions with a large percentage
of the total execution time of the program are analyzed as
potential candidates for parallelism.

3.1 Phase 1: Compile time analysis

The first phase of the analysis takes place during the com-
pilation of the program. The source code is converted into

LLVM-IR and the instructions of each region are analyzed to
identify CUs. It is important to note that the instructions in
the context of our analysis refer to the instructions available
through LLVM-IR and not machine-level instructions.

3.1.1 Region identification

A Region is a connected sub-graph of a control-flow graph
that has exactly two connections to the remaining graph [7].
Every region has a single entry and a single exit. A region
contains another region if the nodes of the other region are
a subset of the nodes of the first region. The analysis first
identifies all the regions of the input program based on the
information available at the compile time.

Every function in the program is considered a top-level
region for the analysis. A region can be contained within
another region and is considered as a sub-region of the en-
closing region. Listing 1 shows a code region. The func-
tion netlist::get_random_pair is the top-level region. A re-
gion may contain further sub-regions in the form of loops
or other control structures. The regions and sub-regions are
important to decide the granularity or the program level at
which the identification of parallel tasks would be beneficial
to the programmer.

3.1.2  CU identification

The concept of CUs is central to our method of identify-
ing the tasks for parallelism in sequential programs. A CU
is defined as a set of instructions that form a read-compute-
write pattern. A CU differs from the basic block such that
a basic block contains operations that are consecutive and
has only one entry and one exit point. A CU however, is
a grouping of instructions that are not necessarily consecu-
tive but perform a computation and is based on the use of
a set of variables together. A single CU or a group of CUs
merged together can provide the code sections that perform
a task. The grouping takes place considering the amount
of computation that CUs share and the data dependences
between them. Hence a group of CUs have little to no in-
ternal parallelism. These code sections can be examined to
see if they can be run concurrently with other code sections
or themselves to exploit the available parallelism.

Listing 1: Function netlist::get_random_pair to demonstrate
two CUs

1

2 | //Region 0; Depth 0

3 void netlist::get_random_pair(netlist_elem** R
a, netlist_elem** b, Rng* rng)

4 ||

5 //get a random element

6 long id_a = rng->rand(_chip_size);

7 netlist_elem* elem_a = &(_elements[id_al);

8

9 //now do the same for b

10 long id_b = rng->rand(_chip_size);

11 netlist_elem* elem_b = &(_elements[id_b]l);

12

13 *a = elem_a;

14 *b = elem_b;

15 return;

16 |}

To better understand what a CU is, consider the example
in Listing 1. The source lines 6 and 10 perform the initial-
ization of variables id_a and id_b with a random value. Lines
7 and 11 perform the task of calculating elem_a and elem_b
by using the variables id_a and id_b respectively. These two
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7 netlist_elem* elem_a =
&(_elements[id_a]);

11 netlist_elem* elem_b =
&(_elements[id_b]);

*h = .
13 *a=elem_a; 14 *b = elem_b;

cu, cu,
Figure 3: A code section separated into two CUs.

operations are performed independently of one another. Fi-
nally, the lines 13 and 14 are responsible for writing the
final computation back to *a and *b. In essence, the set of
LLVM-IR instructions corresponding to the lines {6, 7, 13}
perform one computation and the ones corresponding to the
lines {10, 11, 14} perform another computation and these
computations are independent of each other.

The two computations mentioned above follow a basic rule
where a variable or a group of variables are read and then
they are used to perform another calculation. This is fol-
lowed by the final state being written to another variable
as a store operation. Hence, these two computations can be
said to follow a read-compute-write pattern. The two com-
putations can be visualized as seen in Figure 3. The final
store instruction that writes a value to *a uses all the in-
structions that correspond to the lines {6, 7, 13} to perform
that write operation. Similarly, the group of instructions
that correspond to the lines {10, 11, 14} are used for the
final store instruction that writes *b. These two sets of in-
structions can individually be defined as CUs. These CUs
form the building blocks of the tasks which can be created
for exploiting parallelism in the sequential programs.

The highest level at which the analysis for the identifica-
tion of CUs is performed is a function. Identifying parallel
tasks at a function level or within a function would be a
logical choice since a function in itself is normally designed
to perform a specific task.

To identify CUs within a function, every region within
the function is identified first. Every function is considered
a top level region and the information necessary to identify
the regions within it is gathered. Once every region inside
a function is identified, the next step is to collect all the
instructions that belong to every region and proceed with
the analysis of the instructions.

3.1.3 CU initialization

In order to create a list of CUs for every region, every
store instruction within this region is firstly identified. A
store instruction that initializes a variable with a constant
value and does not use any other variables is marked as
an initialization and is not considered a part of any CU.
For every other store instruction within the region, a CU is
created. For every store instruction that redefines a variable,
a new CU is created as well.

Listing 2 shows some of the instructions that belong to
CU, = {6, 7, 13} of Figure 3 and are responsible for compu-
tation of *a in the form of LLVM-IR. The store instruction
in line 15 is responsible for the final write operation. The
next step is to identify the remaining instructions of the
CU that are used to perform this final write operation. To
identify and add the remaining instructions that belong to
a CU, an analysis is performed on the instructions. LLVM
provides a variety of inspection and traversal routines and
defines classes that can be very useful for this purpose. This
also includes a use-def chain where all the instances of Value

class used by an instance of User class can be iterated over.
Instances of class Instruction are common Users. This al-
lows us to iterate over all the operands that any particu-
lar instruction uses. The operands for the instructions in
LLVM-IR are either the variables defined in the program
or they are other instructions of LLVM-IR. Consider the
store instruction at line 7 of Listing 2. The operands for
this instruction are %call and %id_a. The operand id_a is a
variable and looking at the IR it can be observed that the
operand %call is another instruction which is defined at line
6. %call is used by the store instruction at line 7 and even-
tually at line 15. Hence, the rest of the instructions that
belong to a CU can be identified by iterating recursively
over the operands which are instructions themselves. This
also lets us keep track of all the variables that are used to
perform the final write operation.

Listing 2: LLVM-IR instructions for calculation of *a from
Listing 1

1
2 store %class.netlist_elemx** %a, <
%class.netlist_elem*** %a.addr, align 8
3 | %thisl = load Y%class.netlist** %this.addr

4 | %_chip_size = getelementptr inbounds <>
%class.netlist* %thisl, i32 0, i32 3

5 | %1 = load i32#% J_chip_size, align 4

6 | %call = call i64 @_ZN3Rng4randEi(/class.Rng* <>
%0, 132 1)

7 | store i64 Y%call, i64x* %id_a, align 8

8 | %_elements = getelementptr inbounds <

%class.netlist* Ythisl, i32 0, i32 4
9 | %2 = load i64%* Yid_a, align 8

10 | %call2 = call %class.netlist_elemx* <
@_ZNSt6vectorIl2netlist_elemSaISO_EEixEm
11 (%"class.std::vector"* %_elements, i64 ¥%2)

12 store Y%class.netlist_elemx* Y%call2, <
%class.netlist_elem** jelem_a, align 8

13 %11 = load Y%class.netlist_elemx** Jelem_a, <
align 8

14 | %12 = load Y%class.netlist_elem*** %a.addr, <«
align 8

15 | store Y%class.netlist_elem* 11, <«
%class.netlist_elem*x 712, align 8

Data: Region, CUSet
Result: List of CUs within a region.
Get all the instructions for the Region;
for every instruction do
if isa<Storelnst > then
GetOperandFrom (instruction);
Get variable name from Operand;
Create a new CU for this variable;
Add instruction to CU.Computelnstructions;
Insert CU in CUSet for this region;
AnalyzelnstructionForCU(CU, instruction);
end
end
Insert CUSet in map <Region >.

Algorithm 1: Finding CUs for a region.

The method for finding all the CUs is shown in Algorithms
1 and 2. Algorithm 1 shows how each region is identified first
and then every region is associated with a list of CUs iden-
tified within the region. All the instructions belonging to
a region are collected first. For every store instruction, the
variable defined is identified. A new CU is created and the
store instruction is added to the list of computation instruc-



tions for it. The next step is to identify other instructions
that belong to this CU. This is done to complete the CU
and analyze the remaining instructions of the region.

3.1.4 CU completion

Algorithm 2 shows the process of identifying all the in-
structions of a CU. To identify the remaining instructions
that belong to a CU, we create a list of all the variables
used by the defining variable of a CU. This involves ana-
lyzing all the instructions that are used by the final store
instruction and updating the list of used variables that be-
long to this CU. Every operand of the instruction is checked
to see if it is an instruction in itself. As demonstrated earlier
in Listing 2, the operand %call in line 7 actually corresponds
to an instruction which is defined at line 6. All the variables
that are involved in the computation are identified and they
are added to the list of used variables for the CU.

Once all the CUs are updated according to the instruc-
tions of the region, the set of CUs is associated with the re-
gion along with the details like the depth of the region with
respect to the top-level region, and the instruction count for
the region. A list of CUs with a corresponding ID and the
instruction count is created for the entire program to better
identify and process the code sections as tasks. All the in-
structions that belong to the top level region and any region
within a region are collected and this analysis is performed
on them.

Data: CU, Instruction
Result: A complete CU based on the use-def chain of
the Instruction.
for every operand in the Instruction do
Get variable name from operand;
if isa<Instruction > (operand) then
Add instruction to CU.Computelnstructions;
AnalyzelnstructionForCU(CU, instruction);
end
Add wvariable to CU.usedVariables;
end

Algorithm 2: Identifying all the instructions of a CU.

3.2 Phase 2: Data analysis - Post processing

To form the tasks using CUs, we perform the following
steps:

1. Collect information about the common instructions be-
tween every two CUs.

2. CU graph formation:

e Use the dynamic analysis to identify the depen-
dences and apply them between the CUs.

e Create a CU graph using common instructions
and dependences as the edges with CUs as the
vertices.

3. Graph Partitioning: Partition the CU graph where
CUs are weakly connected based on the weights of the
edges.

4. Task formation: Create a list of all the CU groups
that are formed because of the partitioning as identi-
fied tasks. Prioritize the tasks that correspond to the

functions taking a large percentage of the total execu-
tion time of the program.

Listing 3: Code from function RebuildGrid of par-
sec.fluidanimate to demonstrate common instructions.
1

2 Cell *cell2 = &cells2[il;

3 int np2 = cnumPars2[i];

4 //iterate through source particles

5 for(int j = 0; j < np2; ++j)

6 {

7 //get destination for source particle

8 int ci = (int) ((cell2->pl[j % <+
PARTICLES_PER_CELL].x - domainMin.x) / <«
delta.x);

9 int c¢j = (int) ((cell2->p[j % <«
PARTICLES_PER_CELL].y - domainMin.y) / <
delta.y);

10 int ck = (int) ((cell2->p[j % <«
PARTICLES_PER_CELL].z - domainMin.z) / <
delta.z);

11

12 }

3.2.1 Use of common instructions

Since regions can exist within other regions, the CU anal-
ysis identifies the CUs in such a way that the code sections
can overlap with each other. For instance, a CU could be
a subset of another CU or two CUs could have instructions
(and therefore, lines of code) that are common to each other.
This is possible because the same set of instructions or same
computation in the program code can be used to eventu-
ally define more than any one particular variable. Also,
more than one task can share the same code. Understand-
ing which code is shared among tasks can help introduce
parallelism by narrowing parts of the code that would re-
quire replication, privatization etc. Consider the code snip-
pet from Listing 3. It belongs to the function RebuildGrid
of the program Fluidanimate from the PARSEC benchmark.
The CU analysis identifies following CUs for this code region:
CU;, = {2,5,8}, CUz = {2,5,9} and CU3 = {2,5,10}. It can
be observed that the definition of variables ci, ¢j and ck uses
and shares the computation from the lines {2,5} which is the
overlap between the three CUs. This overlap exists because
all the three variable definitions use the variables cell2 and
j. If the overlap between any two CUs is large, it is not
logical to place them in different tasks. Hence, for every
region, if one CU is a subset of another CU, then only the
larger of the two CUs is considered for the analysis. Also, if
the two CUs only partly overlap with each other, then the
information about the common and the unique instructions
between the two CUs is recorded. To store the common and
unique instructions between two CUs,; the intersection and
symmetric difference of the set of instructions of both the
CUs is calculated. This information is one of the metrics
used for deciding if the two CUs should be put together or
separated when tasks are formed.

3.2.2  Using data dependences

The next step is to gather data dependences of the target
program. The data dependences are collected by dynamic
program analysis using the tool DiscoPoP [13]. The dy-
namic analysis information obtained from this tool provides
us read-after-write (RAW) dependences between the source
lines of the program. We only consider RAW dependences



No. of Common Instructions

——>  No. of Dependences — Affinity

(a) CU graph with CUs as ver-  (b) CU graph with affini-
tices and RAW dependences  ties between the CUs
and common instructions as

edges.

(c¢) CU graph with a min-
imum cut.

-—— - Min Cut

(d) CU graph parti-
tioned to identify tasks.

Figure 4: Demonstration of a CU graph and graph partitioning to form tasks.

since write-after-write (WAW) and write-after-read (WAR)
dependences can usually be resolved by techniques like pri-
vatization. The RAW dependences can be used to identify
dependences between the CUs. For every RAW dependence,
identifying the source CU and the destination CU provides
us the dependences between all the CUs of the program.
The number of dependences between any two CUs can be
more than one since a CU contains more than one source
line. This number is another criterion to determine if the
two CUs should be put together to form tasks or if they can
be separated. If the number of dependences between any two
CUs is high, then the two CUs are strongly dependent and
resolving these dependences to separate them would require
more effort.

3.2.3 CU graph formation

Using the common instructions and the RAW dependences
between the CUs, a CU graph is constructed. The nodes of
this graph are the CUs identified. The CU graph has two
types of edges. The first type of edge between any two CU
nodes signifies RAW dependence between them and is a di-
rected edge. The weight of a RAW edge is the number of
RAW dependences between the two CUs. The second type
of edge signifies that there are common instructions between
the two CUs and hence they share computation. This is an
undirected edge and its weight is the number of common
instructions between the two CUs. Figure 4a shows a CU
graph with red edges as RAW dependences between the CUs
and blue edges as the CUs connected because of the com-
mon instructions between them. A CU graph is generally a
disconnected graph with several connected components.

3.2.4 Graph partitioning and task formation

In graph theory, a connected component of an undirected
graph is a subgraph in which any two vertices are connected
to each other, and which is not connected to any additional
vertices in the remaining graph. KEvery connected compo-
nent of each CU graph is analyzed to identify tasks. As
established earlier, a high value of weight on the edges be-

tween any two vertices indicates that those two CUs either
share large amount of computation or they are strongly de-
pendent on one another. Using these two criteria, we cal-
culate a value called affinity for every pair of CU nodes in
the graph. The affinity between any two CU nodes hence
indicates how tightly coupled the two CUs are. A low value
of affinity between two CUs signifies that it is logical to
separate the two CUs for forming tasks. The two types of
edges in the CU graph are replaced by a single undirected
edge. The weight of this edge is the affinity between the two
CUs. Figure 4b demonstrates the graph with the two types
of edges between the vertices replaced by single edge with
affinity as the weight.

For the purpose of the analysis, every connected compo-
nent of a CU graph is considered a graph in itself. The next
step is to calculate the minimum cut in a connected compo-
nent using Stoer-Wagner’s algorithm [20]. In graph theory,
a cut of a graph is a partition of the vertices of a graph
into two disjoint subsets that are connected by at least one
edge. A minimum cut is a set of edges that has the smallest
number of edges (for an unweighted graph) or smallest sum
of weights possible (for a weighted graph).

Identifying the minimum cut of a CU graph divides the
graph into two components that were weakly linked. This
indicates that the code is being separated with the minimum
number of dependences and common instructions affected.
For each component, the minimum cut is calculated further
to divide it into two more components. The process is re-
peated recursively over all the components of the CU graph
until the components available are CUs themselves. Figure
4c shows the CU graph with a minimum cut. Removing
edges 54-56 and 55-57 together partitions the graph into
two disjoint connected components with the smallest sum of
weights between them removed. Thus these two edges are
the minimum cut for the graph.

The output of this process are several groups of CUs where
CUs are strongly linked within the group and can be con-
sidered tasks. Since this process is repeated recursively on
all the connected components, the tasks are produced at



various levels of granularity and can later be analyzed to
identify the optimal level at which they can be parallelized.
The end result is a list of tasks that contains tasks ranging
from coarse-grained to fine-grained. The next step is to rank
these tasks by putting the most promising tasks first. This
is done by the identifying the functions that take the largest
percentage of the program execution time and prioritizing
tasks formed from these functions in the decreasing level of
their granularity. The program execution tree generated by
our dynamic analysis provides any control dependences ex-
isting between the tasks. In the absence of control or data
dependences, any two tasks can be considered a valid paral-
lelization opportunity.

4. EVALUATION

To measure the effectiveness of our approach, we ana-
lyzed applications from the STARBENCH parallel bench-
mark suite [2] and the PARSEC benchmark suite [3]. We
chose these benchmark suites because both cover a broad
range of application domains, various parallel patterns, and
various sizes of applications. The test cases were compiled
using a modified version of Clang 3.3 which integrates our
analysis programs with the existing inspection and traversal
routines of LLVM. All experiments were run on a server with
2 x 8-core Intel Xeon E5-2650, 2 GHz processors with 32 GB
memory, running Ubuntu 12.04 (64-bit server edition). All
the benchmark programs were compiled with option -g -O0.

We have applied two separate strategies to evaluate our
approach. Firstly, we use some of the sequential programs
from the PARSEC benchmark and parallelize these appli-
cations based on the tasks which are identified as poten-
tial candidates for task parallelism. Secondly, we compare
the parallel implementations of the applications from the
STARBENCH benchmark suite with the tasks identified by
our analysis for their sequential versions. In this case, our
goal is to verify whether the approach identifies valuable and
logical tasks.

4.1 Parallelization based on the suggested tasks

In this section, we investigate some of the applications of
the PARSEC benchmark suite. We parallelized these ap-
plications based on the tasks formed by using CUs or by
directly considering CUs as tasks. We assigned these tasks
to separate threads and calculated the speedup obtained.
We parallelized these cases mainly using OpenMP section
and task directives. Speedup reported refers to the ratio of
execution time of the tasks run in parallel to the execution
time of the sequential version of the same code region (func-
tion). As a result, it is called local speedup. The speedups
represent an average of five independent executions of the
programs. Table 1 shows the results of the applications par-
allelized. 7# of Threads” shows the number of threads used
to parallelize the suggestions. Local speedups for each case
can also be seen for the given number of threads in the ta-
ble. Column ”"Code Refactoring” indicates whether refac-
toring the code was necessary to parallelize the program.
Refactoring the code mainly involved privatization, adding
necessary synchronization or replicating some part of the
code across multiple threads.

In addition to revealing the existing parallelism, the pro-
cess of grouping tightly coupled code to identify tasks also
reduces the number of dependences that need to be ana-
lyzed and resolved to parallelize any given suggestion. This

for(int j = 0; j <np2; ++j) {

bool cfl cond satisfied=false;
for(int di = -1; di <= 1; ++di) {

int index = (ck*ny + ¢j)*nx + ci;
Cell *cell = last_cells[index];

cell->v[np %
PARTICLES_PER CELL].y =

if(!cfl_cond_satisfied) {

<<std::endl;

cell2->v[j %
exit(1); PARTICLES_PER_CELL].y;
} ...
} .
}
Task, Task,

Figure 5: Tasks identified using the CU graph for the func-
tion RebuildGrid() of Fluidanimate.

reduces the amount of effort required to parallelize the ap-
plication. In Table 1, "# of RAW dep.” shows the total num-
ber of RAW dependences identified by our dynamic analysis
within the given function. "# of RAW dep. resolved” shows
the actual number of RAW dependences that needed to be
resolved to run the identified tasks in parallel.

It is important to note that when a loop is considered as
an identified task, it is assigned to a separate thread. It is
not examined whether the individual iterations (a group of
iterations) of the loop are independent of each other. Sev-
eral loop analysis techniques (e.g. our previous works [12]
[13]) have already identified and explored independent itera-
tions for loop parallelism. In this paper, our focus is mainly
on identifying code blocks that can be considered as tasks
and our evaluation does not consider concurrent execution
of iterations for loop parallelism.

4.1.1 Fluidanimate

Fluidanimate uses an extension of the Smoothed Particle
Hydrodynamics (SPH) method to simulate an incompress-
ible fluid for interactive animation purposes. We identified
tasks that are useful for parallelism in three different places
in Fluidanimate.

RebuildGrid() : Analyzing the tasks found in the func-
tion RebuildGrid, we realized that a code section perform-
ing Courant-Friedrichs-Lewy (CFL) condition check can be
executed in parallel with the remaining part of the function.
Three CUs correspond to the first task which performs the
CFL condition check.The other 9 CUs belonging to the sec-
ond task represent the remaining part of the function.

Figure 5 shows the tasks identified by merging the two sets
of CUs separately. The task on the left represents the CFL
condition check while the task on the right represents the
remaining part of the function. As suggested, we parallelized
RebuildGrid using two threads, with each thread executing a
task. The for loop enclosing the two tasks in the sequential
version of the program was replicated over both the tasks for
parallelization and is highlighted in red. Local speedup for
this case was found to be 1.6 with the two tasks running in
parallel. The total number of RAW dependences within this
function were found to be 300. The RAW dependences that
actually prevented parallelism were resolved by replicating
the loop over both the tasks. The remaining dependences
were within the tasks identified.

ProcessCollistons() : This function contains six loop nests
checking if a particle hits any of the six surfaces of the 3-
D cube space. The order in which the checking of surfaces
takes place does not affect the correctness of the process.



Table 1: Summary of parallelization results.

. Code # of Local 7 of # of RAW dep.
Program Function Refactoring Threads Speedup RAW dep. resolved
Fluidanimate RebuildGrid() Yes 2 1.60 300 16
Fluidanimate ProcessCollisions() No 4 1.81 121 0
Canneal netlist_elem::routing_cost_given_loc() Yes 2 1.32 19 2
Blackscholes CNDF() No 2 0.98 38 0
Fluidanimate ComputeForces() Yes 3 1.52 32 6

The analysis identified a CU for every for loop which was
considered as an independent task. We parallelized the func-
tion using four threads and assigned the tasks to different
threads. The local speedup achieved was 1.81. Since the
loops were independent of each other, none of the 121 RAW
dependences in the function had to be resolved.

ComputeForces() : While analyzing this function, we came
across a case where a pipeline is discovered while examining
our tasks with data dependences between them. The tasks
formed by merging the CUs and dependences between the
tasks are shown in Figure 6. The edges signify the RAW
dependences between the tasks with the number of depen-
dences as weights. The four tasks represent the four stages
of the pipeline, where each of them is a loop nest within the
function. These stages perform the following tasks in the
given order: read input data, compute density (two steps),
and compute force.

Tasky takes only a small amount of time to read the in-
put data. Since it is the smallest task (and a single CU) out
of the four tasks, implementing it as an individual stage in
the pipeline is not efficient. As a result, ComputeForces()
is transformed into a pipeline with three stages. Stage 1
performs step one of the density computation, stage 2 per-
forms step two of the density computation, and stage 3 of
the pipeline performs force computation, respectively. We
compared the performance of our parallel implementation
with the sequential version using the simlarge input from
the PARSEC benchmark. The sequential version took 12.66
seconds on an average, while the parallel version took only
8.35 seconds, leading to a speedup of 1.52 with three threads.

4.1.2 Canneal

Canneal is a kernel application that uses cache-aware sim-
ulated annealing (SA) to minimize the routing cost of a chip
design. In Canneal, task parallelism is found in the func-
tion netlist_elem::routing_cost_given_loc . The function first
calculates in and out cost separately. Then it adds them
together as the routing cost. Figure 7 shows the CUs iden-
tified corresponding to this calculation. In this case, the
CUs themselves were considered as tasks. We parallelized
this function using two threads by adding the necessary syn-
chronization and obtained a local speed up of 1.32. Only 2
out of 19 RAW dependences had to resolved which were ad-
dressed by the synchronization.

4.1.3 Blackscholes

In Blackscholes, the body of the function CNDF() is iden-
tified as a task and there are two independent calls to this
function. Both the calls are assigned to two different threads
but the overhead of creating/destroying threads is found to
be more than the benefit of parallelization. In these cases,
our parallel version runs slower than the sequential version.

The pipeline discussed for ComputeForces() in Fluidan-
imate is only one of the many parallel patterns that can
be found by combining CUs with the dynamic analysis in-
formation. With more investigation, CU graph can be also
mapped to a TBB Flow Graph [17], which is a more general
parallel programming construct. It can be observed that in
general, identification and parallelization of tasks could be
useful in cases where the tasks identified are computation
intensive and are largely independent of each other. How-
ever, it also needs to be observed that the identification of
tasks that can run in parallel cannot keep up with the in-
creasing number of cores, and hence this type of parallelism
does not scale well. Balancing the workload of these tasks
across multiple threads is also a challenge.

4.2 Comparison with the existing parallel im-
plementations

Our next evaluation strategy involves providing a compar-
ison of the identified tasks with the existing parallel versions
of the applications for the STARBENCH parallel benchmark
suite. Table 2 shows the overview of the evaluation per-
formed. Column 2 of the table shows the location in the
sequential version of the program that was parallelized in
the parallel version. Table 2 also shows the matching task
identified using our approach in the sequential version. The
tasks were identified by prioritizing the main algorithm func-
tions and the functions that consumed the majority of the
total execution time of the program as shown in Table 2.

4.2.1

c-ray is a simple brute-force ray tracer. It takes an input
file with simple scene description and renders an image in
PPM binary format. The function render_scanlines() per-
forms this operation as seen from Table 2. This function
was prioritized in particular to select tasks because it takes
approximately 100% of the total execution time as observed
from the call graph of the program. The analysis identified
a task corresponding to the body of this function from the
CU graph and it was made up of 4 CUs. Figure 8 shows
a connected component from the CU graph of c-ray which
was identified as a task. This connected component was one
of the tasks identified for the function render_scanlines(). It
can be observed in this figure that the CUs contain code
sections that use a group of variables together to perform a
computation and the connected component represents these
code sections together as a task. Listing 4 shows the output
produced corresponding to this task by our analysis. The
task identified contains the 4 CUs demonstrated in Figure 8
and the line numbers that correspond to the task.

c-ray



for(int i = 0; i < numCells; ++i)

Cell *cell = &cells[i];
int np = cnumPars[i];
for(int j = 0; < np; ++){

:
) }

Task;
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Figure 6: Tasks as stages of a pipeline for the function ComputeForces of Fluidanimate.

Table 2: Summary of comparison results.

Location Parallelized in the % of Execution : : # of CUs
Program Parallel Implementation Time Matching Task Suggestion used
c-ray c-ray-mt.c : render_scanlines() : 273-296 ~100 c-ray-mt.c : render_scanlines() : 277-292 4
k-means k-means.c : cluster() :71-85 99.6 k-means.c : cluster() :72-83 3
md5 md5_bmark.c : process() : 113-122 93.5 md5.c : MD5_Update() : 215-238 7
rotate rotation_engine.cpp : RotateEngine::run() 90.3 rotation_engine.cpp : RotateEngine::run()

1 97-183 ' : 111-158 6
rgbyuv bmark.c : processImage() : 138-171 ~100 bmark.c : processImage() : 145-162 7

c-ray-mt.c : render_scanlines() : 273-296 97.9 c-ray-mt.c : render_scanlines() : 277-292 4
ray-rot rotation_engine.cpp : RotateEngine::run() 1 3 rotation_engine.cpp : RotateEngine::run() 6

1 97-183 ' : 111-158

rotation_engine.cpp : RotateEngine::run() 547 rotation_engine.cpp : RotateEngine::run() 6
rot-cc 1 97-183 25'5 : 111-158 7

bmark.c : processImage() : 138-171 ' bmark.c : processImage() : 145-162

Observation.cpp : observe_tfunc() : 117-124
bodytrack  ParticleFilter.cpp : pfworker_tfunc() : 55-95 NA NA NA

Projection.cpp : pj-tfunc() : 154-151

for (int i = 0; i< fanin.size(); ++i) { for (int i = 0; i< fanout.size(); +i) {
fanout_cost += fabs(loc.x -
fanout_loc->x);
fanin_cost += fabs(loc.y - fanout_cost += fabs(loc.y -
fanin_loc->y); fanout loc->y);

} }

routing_cost_t total_cost = fanin_cost +
fanout cost;

fanin_cost += fabs(loc.x -
fanin_loc->x);

Task,
Figure 7 CUs for the
netlist_elem::routing_cost_given_loc of Canneal.

Task,
function

CU-38 [277,288,289,290,292]

for(i=0;i<n;i++) {
t

CU-35 [275,284,289]
double rcp_samples = ..;
g+=coly;

g = g* rcp_samples;

CU-34 [275,283,288]

| [ double rcp_samples = ...;
r+= colx;

r = r* rcp_samples;

r = r* rcp_samples;
g =g* rcp_samples;
b= b * rcp_samples;
folil = ((...
}

CU-36 [275,285,290]
double rcp_samples = .;

b= b * rcp_samples;

Figure 8: Connected Component of the CU Graph of c-ray
corresponding to function render_scanlines().

Listing 4: Task output corresponding to Figure 8 for c-ray
produced after graph partitioning.

16 | <TaskList>

17 <Task id="0:1">

18 <CUs count="4">34,35,36,38,</CUs>

19 <lines count="12">1:275,1:277,1:279,1:281,
20 1:282,1:283,1:284,1:285,

21 1:288,1:289,1:290,1:292

22 </lines>

23 </Task>

24

25 | <TaskList>

In the parallel implementation of the program, the target
image is divided into three work units. The threading over-
head is reduced by coarsening the task granularity. This is
achieved by grouping the scanlines together into blocks. In
the PThreads version, the function render_scanlines() is ex-
ecuted by the different threads. Table 2 shows the location
where parallelization is performed in c-ray. Comparing the
parallelization performed in c-ray with the identified task
confirms that the the proposed task is valid and logical.

4.2.2

The kmeans kernel executes the k-means clustering algo-
rithm [8]. It is used in the domains of data-mining and
artificial intelligence. The application consists of two iter-
atively repeated phases. One is a clustering phase and the
other is a reduction phase that computes new clusters. In the
sequential version, the function kmeans() calls the function
cluster() which performs the clustering phase. The remain-
ing body of the function kmeans() performs the reduction
phase. The function cluster() takes 99.6% of the total exe-
cution time of the program. This makes it a good candidate
for analysis of the tasks from the list of the tasks identified
for the program.

The analysis identifies both of the aforementioned phases
individually as tasks. The cluster() function is identified as
a task by grouping 3 CUs from the CU graph. For the reduc-
tion phase, the part of the function kmeans() that performs
this phase is identified as task. The task corresponding to

k-means



second phase is dependent on the first.

Comparison between the PThreads implementation of the
clustering phase to the sequential task can be seen in Table
2. In the PThreads version of the program, every thread
executes the function work(). The body of this function
contains the same code as the sequential version of cluster().
The reduction phase is run by the main thread after this.

4.2.3 md5

mdb uses a standard implementation of the MD5 hash
algorithm [18] and produces hash values. In the applica-
tion, the function process(), which takes 93.5% of the to-
tal execution time, calls MD5_Init(), MD5_Update() and
MDb5_Final(). These three functions take approximately
0.0%, 46.7% and 46.7% of the total execution time respec-
tively. These three functions need to run in the mentioned
order. Our analysis does not directly identify the function
process() as a task since it does not contain any computa-
tion but only contains function calls. However, the body of
the function MD5_Update() is identified as a potential task
using 7 CUs from the CU graph. The functions MD5_Init()
and MD5_Final() perform initialization and assignment op-
erations that are largely independent of each other. Hence,
their contents were not identified as a task.

Table 2 shows the parallelization in md5. In the PThreads
version of the program, the function process() is run on ev-
ery thread. While the analysis does not provide an exact
match with respect to this function, the task identified for
MDb5_Update() from the sequential version serves as a partial
representation of the parallelized task from the PThreads
version.

4.2.4 rotate

rotate takes the binary representation of an image and
rotates it by 0, 90, 180 or 270 degrees. The parallelization
approach in rotate is similar to c-ray. The function that per-
forms the main algorithm is RotateEngine::run(). It takes
90.3% of the total execution time of the program. In the first
step, this function determines the target image size. Then
it operates on each pixel as the second step. Our analysis
identifies two tasks within the body of the function Rota-
teEngine::run(). Both the steps are individually identified
as tasks with RAW dependences between them. The first
step calls a function RotateEngine::rotatePoint(). The sec-
ond step comprises of the rest of the body of the function
RotateEngine::run().

The PThreads version of the program is implemented in
the same way as c-ray. A new function RotateEngine::compu-
teRow() is defined and holds the contents of one of the
tasks identified. It performs the second step from the Ro-
tateEngine::run() of the sequential version. Table 2 shows
the comparison. Use of a new function in this way to per-
form the operations identified as tasks also confirms that our
analysis can identify tasks that are logical.

4.2.5 rgbyuv

rgbbyuv is an RGB to YUV colour converter which pro-
cesses PPM format pictures. The function processImage() is
the main algorithm function performing the actual conver-
sion and controlling the iterations in the sequential version
of the program. This function takes approximately 100% of
the total execution time of the program. Table 2 shows the
task identified for this function. The task corresponds to the

body of processImage() and is formed using 7 CUs from the
CU graph.

In the parallel version, processImage() controls the itera-
tions but a new function convertThread(), is created. This
function contains the rest of the code from the sequential
version of processImage(). Table 2 also shows the paral-
lelization in rgbyuv. This is similar to the application rotate
as it confirms that the part of the function which was iden-
tified as a task is the same part that is parallelized in the
PThreads version.

4.2.6 rot-cc and ray-rot

rot-cc and ray-rot contain a combination of rotate, rgbyuv
and c-ray, rotate kernels respectively. The task identification
and corresponding matches in the parallel versions for these
kernels is discussed above.

4.2.7 bodytrack

bodytrack is a computer vision application which tracks
a human body with multiple cameras through an image se-
quence. The parallel implementation of bodytrack features
three thread functions that run the functions observe_tfunc(),
pfworker_tfunc() and pj_tfunc() in parallel. All the functions
have little to no computation within them which can be seen
from their size in Table 2. These functions call other library
functions which were not analyzed for the identification of
tasks. Hence, our analysis could not report any tasks corre-
sponding to the parallelized version of bodytrack.

S. CONCLUSION AND FUTURE WORK

This paper discusses a novel approach to identifying com-
putational units (CU) that form the basic building block of
a parallel task. These CUs are detected across the bound-
aries of the program regions and are used to form tasks that
can run in parallel. The identified tasks contain code that
is tightly coupled because of the dependences within them.
This in turn reveals the code sections that can run in parallel
or the code sections that are weakly dependent but can still
run in parallel after applying techniques like replication of
code, privatization or other synchronization methods. Use
of dynamic analysis information is also demonstrated to en-
hance the task formation and to check whether the tasks
can be run in parallel. We evaluated our approach by an-
alyzing applications from two benchmarks. We parallelized
the applications based on the task suggestions obtained. We
also analyzed the parallel implementations of the sequential
programs to verify that the code sections parallelized have
a matching task suggestion based on our approach.

In the future, we would like to extend our work to support
various parallel patterns which will require better utilization
of the dynamic analysis information. Support will be added
for mapping a CU graph to parallel constructs like TBB
Flow Graph to exploit more general parallelism. Automatic
identification of the code sections that would be involved
in code refactoring like replication, privatization etc., and
scheduling the identified tasks for parallelization will be ex-
plored in detail. Load balancing the tasks that can run in
parallel across multiple threads will be investigated. Use of
machine learning techniques to estimate the proper size of
tasks for different applications will also be investigated in
the future.
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