
Estimating the Impact of External
Interference on Application Performance

Aamer Shah1, Matthias Müller1, and Felix Wolf2(B)

1 IT Center, RWTH Aachen University, Aachen, Germany
{shah,mueller}@itc.rwth-aachen.de

2 Laboratory for Parallel Programming, TU Darmstadt, Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract. The wall-clock execution time of applications on HPC clus-
ters is commonly subject to run-to-run variation, often caused by exter-
nal interference from concurrently running jobs. Because of the irregu-
larity of this interference from the perspective of the affected job, perfor-
mance analysts do not consider it an intrinsic part of application execu-
tion, which is why they wish to factor it out when measuring execution
time. However, if chances are high enough that at least one interference
event strikes while the job is running, merely repeating runs several times
and picking the fastest run does not guarantee a measurement free of
external influence. In this paper, we present a novel approach to estimate
the impact of sporadic and high-impact interference on bulk-synchronous
MPI applications. An evaluation with several realistic benchmarks shows
that the impact of interference can be estimated already based on a single
run.

1 Introduction

On many HPC systems, the execution time of applications varies considerably
between runs, which makes performance measurements hard to reproduce and
challenges their validity. Possible sources of variation include operating system
jitter, different process-to-node mappings, or contention on shared resources.
While modern operating systems reduced their noise footprint [16], contention
on heavily loaded centralized file systems and communication interconnects, such
as torus and dragonfly networks, are still contributing to performance varia-
tion [3,21]. Because such external interference occurs randomly, benchmarking
has become complicated.

Usually, performance analysts prefer measurements that are as close as pos-
sible to an application’s intrinsic behavior, that is, without external influence
beyond their control. To achieve this on a system with strong performance inter-
ference among jobs, one could take multiple measurements and pick the run with
the shortest execution time or the average or median if a certain degree of inter-
ference is considered natural. No matter how, this strategy is both expensive
and unreliable because neither may the minimum be free of interference nor the

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 46–58, 2018.
https://doi.org/10.1007/978-3-319-96983-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_4&domain=pdf

Estimating the Impact of External Interference 47

average or median representative. After all, the system load also changes along
macroscopic time scales (e.g., daytime or season).

To help performance analysts decide how much they can “trust” their bench-
marking results and whether they need to repeat measurements, we present a
novel approach to estimate the impact of external interference on the execu-
tion time of a common class of MPI applications. As a distinctive feature, our
method can deliver such an estimate with negligible overhead based on a single
run. Moreover, it is agnostic to the source of interference. Instead, it exploits the
properties of bulk-synchronous MPI applications that perform frequent global
all-to-all operations. Such applications not only make up a significant portion of
HPC workload (almost two-thirds of unique benchmarks in the SPEC MPI suite
fall in this category), they are also most sensitive to external interference [1,7,10].

The remainder of the paper is structured as follows. While Sect. 2 provides
the details of our approach, Sect. 3 demonstrates the accuracy of our estimates
in a series of experiments. After presenting related work in Sect. 4, we review
our results in Sect. 5.

2 Approach

Most HPC applications are iterative in nature. After a brief initialization, they
go through different phases that are repeated over and over. Similar phases have
similar execution times unless a phase instance is struck by external interference.
The stronger the impact, the greater the elongation of the execution time.

Figure 1a shows a trace snippet of a typical HPC application. The application
performs several iterations, whose execution times are, however, not uniform.
The execution-time histogram in Fig. 1 illustrates two sources of variation – one
intrinsic and one extrinsic. Intrinsic variation arises from programmatic differ-
ences because, for example, some iterations may calculate some extra physics
every once in a while or store checkpoints. The example shows two classes of
iterations, A and B, distinguished by their programmatic characteristics and
visible as two peaks in Fig. 1b. The variation that remains after separating these
two classes, as shown in Fig. 1c and 1d, is extrinsic and the result of noise such
as interference from other jobs that happen to run at the same time.

The key idea of our approach is to divide the execution of a program into
segments and classify them according to their intrinsic characteristics. In a noise-
free environment, segments within each class are then expected to consume the
same amount of time. Conversely, variations that occur within each class are
likely caused by noise. Because execution time is subject to such noise, we have
found hardware and software counters that reflect computation, communication,
and file I/O features to be suitable metrics for our programmatic classification
of execution segments.

To identify segments, we take advantage of the bulk-synchronous nature of
many HPC applications, specifically we exploit periodic (blocking) all-to-all com-
munication. Although this practically restricts our method to such applications,
we claim that we can still cover major portions of today’s HPC workloads. After

48 A. Shah et al.

Iteration 1

Class A

Iteration 2

Class B

Iteration 3

Class B

Iteration 4

Class A

Iteration 5

Class B

Iteration 6

Class A

(a) An example application trace

0

50

100

150

200

Time

It
er
at
io
n
co
un

t

(b) Combined histogram

0

50

100

150

200

Time

It
er
at
io
n
co
un

t

(c) Class A histogram

0

50

100

150

200

Time

(d) Class B histogram

Fig. 1. Application iterations and their histograms.

all, this is not an uncommon feature. For example, almost two-thirds of unique
benchmarks in the SPEC MPI suite fall into this category. At the same time,
applications with frequent all-to-all communication suffer more than others from
external interference because every delay of a process will likely induce waiting
time in all others.

We use global all-to-all communication operations as a boundary between
execution segments. These might not exactly match programmatically specified
iterations, but are expected to divide the execution into repeatedly executed
pieces. For example, an all-to-all operation will likely appear at least once in
every iteration of the core loop. Furthermore, such all-to-all operations consti-
tute global synchronization points among processes. Although the MPI standard
does not explicitly require it, the nature of all-to-all operations implies it. This
makes the execution segments between them independent with respect to the
propagation of wait states that occur in response to external interference. A
wait state whose root cause lies within a segment will not propagate across a
global synchronization point [4]. For applications using non-blocking collectives,
the wait operation of the collective call could be used as a boundary indica-
tor, while for non-bulk-synchronous applications recurring MPI calls may serve
this purpose. However, in both cases, adjacent execution segments may not be
fully independent, with wait states and interference-induced delays potentially
propagating across segment boundaries. We therefore concentrate on blocking
collectives in this study and consider the remaining cases as future work.

Profiling Methodology. To classify segments, we count computation, com-
munication, and file I/O operations or volumes per segment and process using
LWM2 [18], a low-overhead profiler, which leverages the PMPI interface to find
segment boundaries and collect metrics related to MPI. The specific metrics we
capture are discussed further below. At the end of each all-to-all collective call,
the profiler stores information pertaining to the completed segment in memory.

Estimating the Impact of External Interference 49

To reduce storage requirements, the values for each metric are quantized into 256
unique bins. When the number of unique values exceeds the number of bins, the
two bins with the least distance between them are merged. Instead of actual val-
ues, a segment profile stores the indices of the corresponding bins. Whenever bins
are merged, the indices in the segment profiles are updated accordingly. After
the program has ended, we merge per-process bins into 512 unique program-wide
bins. To keep computation diversity among segments manageable, a segment is
always represented by the median of the computation feature metric across pro-
cesses. For communication and file I/O, such aggregation is only performed if
the diversity among segments exceeds a threshold.

Grouping Segments Based on Computation Features. To classify seg-
ments, we first compare them in terms of the amount of computation they are
supposed to complete. To measure the amount of work, we count the number
of floating-point instructions using hardware counters. When the floating-point
counter is not available, as on some generations of modern processors, we use the
total number of completed instructions as a proxy. To shield them from noise, we
only count them outside communication or I/O operations. While the captured
values are still perturbed by OS jitter, we have found floating-point operations
to be most stable. The total instruction count shows still less than 1% variability.

We establish similarity among segments by clustering them based on the
above instruction counts as features. As the duration of segments in an appli-
cation can vary widely, the possible range of feature values can be quite large.
Furthermore, OS jitter and inaccuracies introduced when reading and storing
hardware counters [6] cause variation among hardware-counter values from sim-
ilar segments. Therefore, the most appropriate clustering algorithm for our task
needs to handle a large range of values, and at the same time be tolerant to
variations inside a cluster.

Common clustering algorithms such as k-means require the number of clus-
ters to be known a priori. If such information is not available, such algorithms
are executed for a range of cluster counts and an internal cluster criterion, such
as the Calinski and Harabasz (CH) criterion, is applied to identify the most
appropriate number of clusters. Even for a particular number of clusters, these
clustering algorithms require several iterations to find the optimum centroids.
These factors result in algorithms that, overall, are complex to implement and
can take a significant amount of time for large numbers of data points.

Clustering with Relative Distance. Density-based algorithms such as
DBScan seem to present an alternative. They can identify the appropriate num-
ber of clusters in a single pass. Such algorithms use a distance threshold to split
the data points into clusters. However, relying on a fixed distance for a large
range of values results in either merging distinct clusters with lower values if the
threshold is too large, or splitting a single cluster with a modest range of higher
values into multiple clusters if the threshold is too small.

To overcome these difficulties, we designed a simple clustering algorithm that
can identify clusters in one-dimensional data even with a large value range in

50 A. Shah et al.

a single pass. The algorithm requires the data type to have a total order and
a threshold for the maximum relative distance between any two data points in
a cluster. We define the relative distance between two points as their distance
divided by the smaller of the distances of the two points from the origin. As
the algorithm relies on relative distance, it can identify clusters with a modest
degree of internal variance both at the lower and higher end of the value range.
Our algorithm first sorts all the values in ascending order and then assigns the
smallest element to the first cluster. After that, it iterates through the remaining
sequence and, at each step, picks the value at position i from the sorted list that
was assigned to a cluster in the previous step and determines the relative distance
to the next value at i + 1. If the relative distance is less than the threshold, the
value at i + 1 is placed in the same cluster as the value at i. Otherwise, a new
cluster is created for the value at i + 1.

Using SPEC MPI benchmarks, we compared our new algorithm with k-
means and an expectation-maximization (EM) algorithm that assumes the data
to exhibit a mixed Gaussian distribution. Specifically, we analyzed the mean
normalized standard deviation of the created clusters and the percentage of
segments that ended up in clusters of less than five elements, which is the min-
imum size below which clusters are not considered for interference estimation.
K-means identified tightly fitting clusters but left a larger portion of segments
unclustered (up to 8%). EM, on the other hand, clustered almost all segments,
but created clusters of high internal variance. We tried our new algorithm with
several relative-distance thresholds, including 0.2, 0.1, and 0.05. With a relative-
distance threshold of 0.1, the threshold we use in the remainder of this study,
our customized algorithm identified clusters with slightly higher variance than
k-means, but left only half the number of segments unclustered.

Grouping Segments Based on Communication and File I/O Features.
As communication and I/O features of a segment we consider the number and
accumulated volume of communication and I/O operations, including the num-
ber of point-to-point send/receive calls broken down by their blocking seman-
tics, the number of collective calls broken down by their number of senders vs.
recipients, and the number of bytes sent or received through them. Similarly, as
file-I/O features we capture the number of open/close operations, the number
of read/write operations and the accumulated number of bytes read or written.
Since there is no clear relationship between these metrics and the execution time
of a segment, we consider the corresponding values as nominal data. For exam-
ple, a segment may run longer than another segment, although its number of
sends is smaller. At the same time, these metrics are fairly stable and usually
not subject to any jitter. Thus, we consider all segments that share the same
unique combination of communication and file I/O metrics a separate group.

Estimating Interference. We estimate the impact of interference based on the
segment profile of a single run. First, we cluster the segments according to their
computation features, as described earlier. After that we split each cluster into

Estimating the Impact of External Interference 51

groups according to the communication and file-I/O features of its elements.
The segments in each of the resulting groups are assumed to exhibit similar
behavioral characteristics and consume about the same intrinsic execution time.

Any segment in a group that has a significantly higher execution time is
considered to be affected by interference. More precisely, we classify a segment as
interfered if its execution time is four MAD greater than the median of the group,
with MAD (Median Absolute Deviation) being MAD = median(|Xi−median(X)|).
Median and MAD are known for their robustness to variability. The threshold of
four MAD greater than median gives a confidence interval of more than 99.5%.
The impact of interference on a segment is estimated as the portion of execution
time of the segment in excess of the threshold. Adding the interference impact
computed for all segments yields the interference impact for the entire program
and is provided as a percentage of the (interfered) execution time.

Separating Instantaneous Interference from Continuous Interference.
Execution time variation can arise from either high-frequency but usually low-
impact interference such as certain types of OS jitter or from low-frequency
but often high-impact interference such as sudden I/O contention. We call the
former kind continuous interference, and the latter kind instantaneous interfer-
ence. Continuous interference affects almost all segments of a profile, and as a
result also affects the median in a group. In contrast, instantaneous interference
only affects selected segments, and the median remains largely unaffected. While
both kinds of interference prolong execution time, instantaneous interference is
more likely to create undesirable artifacts in performance measurements a perfor-
mance analyst may wish to remove. In contrast, continuous interference is often
seen as an unavoidable evil one has to live with on a given system. Our app-
roach only reports instantaneous interference. The median displacement caused
by continuous interference ensures that it leaves no imprint on our estimates.

Tool Workflow. LWM2 profiles the target application during execution, cap-
turing the required metrics separately for each segment. At the end of the exe-
cution, LWM2 writes a segmented profile to disk. Later, the profile is subjected
to automatic interference estimation in Matlab. First, we classify the segments
into different groups based on their features. Later, we estimate the impact of
interference first for each segment group, and then aggregate the results for the
whole application.

3 Evaluation

To evaluate our approach, we use the following benchmarks: (i) those seven
codes from the SPEC MPI 2007 suite V2.0 that are bulk-synchronous accord-
ing to our definition and that have a large data set available; (ii) Sweep3D, a
time-independent 3D neutron transport simulation; and (iii) HACC, an appli-
cation that simulates the formation of collision-less fluids and whose regular

52 A. Shah et al.

checkpointing behavior makes it a popular I/O benchmark. We test our method
both in a controlled environment with artificially injected interference, and on a
production system with real interference.

Experimental Setup. Because of its low OS jitter, we chose JUQUEEN, an
IBM BlueGene/Q system, as our controlled environment. Each of its 28,672
compute nodes consist of a 16 core IBM PowerPC R©A2 processor and 16 GB
of memory. JUQUEEN has a 5D Torus communication interconnect and mini-
mizes network interference by making node boards with 512 cores the smallest
allocation unit. Since its GPFS file system is shared, JUQUEEN cannot be con-
sidered controlled for I/O intensive workloads though, which, however, among
our benchmarks only affects HACC. For our tests under production conditions,
we use Hazel Hen, a Cray XC40 system with 7712 compute nodes, each of them
featuring two 12-core Intel Haswell E5-2680v3 processors and 128 GB of memory.
Applications running on Hazel Hen are known to experience significant run-to-
run variation, majorly due to cache misses in the Aries chip under heavy network
load from multiple applications [9].

Evaluation Methodology. With the exception of the file system, our con-
trolled environment is without any significant natural interference. This is why
the runtime of a job is usually close to its intrinsic execution time, providing us
with a ground truth for interference-free execution. To test our method, we inject
artificial interference into application runs using a tool called intM (interference
Modeler), which we have developed for this purpose. intM sits as an interposition
wrapper between an application and the runtime, and mimics network and file
I/O interference by introducing delays in function calls. intM supports interfer-
ence injection in MPI communication and I/O functions, as well as in POSIX
I/O. The interference added to the regular execution time follows a Gaussian
distribution, with configurable mean and standard deviation. The probability of
when an interference event strikes a communication or file I/O operation is also
configurable.

Specifically, we inject gradually increasing interference into multiple runs of
a benchmark. Figure 2 shows such runs for the SPEC MPI benchmark tera tf as
an example. We compare the estimated with the measured impact of interference
on each run. Measured interference is the execution-time difference between a
run and the fastest run in percent of the (interfered) runtime. Estimated inter-
ference is calculated individually for each run as percentage of its runtime using
our approach without considering any other run. To clean the measured interfer-
ence from effects of continuous interference and other influences that are largely
constant across the entire duration of a run but may vary between runs, such as
different process-to-node mappings, we reduce the measured interference by the
amount of time the medians are displaced. We observe the median displacement
during clustering, and attribute it to continuous interference.

We categorize the impact of interference into the classes low, medium, and
high, as shown in Fig. 2. A low-interference run is perturbed to a negligible degree

Estimating the Impact of External Interference 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

Medium

Low

High

Runs

In
te

rf
er

en
ce

[%
]

Measured Estimated

Fig. 2. Multiple runs of tera tf on JUQUEEN, with measured and estimated interfer-
ence classified as low, medium, or high. Runs are sorted by execution time in descending
order.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Medium

Low

High

(11.25, 0.5)

Interference [%]

P
ro

ba
bi

lit
y

(a) Logistic function

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Medium

Low

High

Runs

P
ro

ba
bi

lit
y

Measured Estimated

(b) Highly interfered run probabilities

Fig. 3. Logistic function and the highly interfered run probabilities, when the function
is applied on the tera tf runs.

and can be used for performance analysis, whereas a high-interference run is
heavily perturbed and should be discarded. The medium category is between
these extremes: It might be worthwhile to invest in a new performance mea-
surement, while, at the same time, the run can be used to gauge performance
at large. Using the analogy of a traffic light, low means green light for perfor-
mance analysis, medium means yellow light, and high red light. We have set
the threshold for low interference to below 7.5%, for high interference to above
15%, and classify everything in-between as medium. While such categorization is
useful to distinguish runs in practice, accuracy evaluation via hard classification
into these three categories can run into pitfalls. For example, even if the dif-
ference between measured and estimated interference of a run is small, the two
interference values can still fall into different classes, as it happened for runs 12
and 13 in Fig. 2. An alternative way of aggregating our results is calculating the
percentage-point difference between measured and estimated interference. The

54 A. Shah et al.

downside of this approach is that for highly interfered runs, the percentage-point
difference is not that critical as long as both agree on the judgment that the run
is highly interfered. Runs 1 and 2 in the figure are such cases.

Based on the intuition that the impact of interference is a measure of a run’s
suitability for performance analysis, we use a logistic function as a soft classifier
to convert the magnitude of interference into the probability of a run being
highly interfered. Using soft classification, the probability that a run previously
categorized as low is actually highly interfered should be close to zero, while for
runs categorized as high it should be near one. Similarly, at the mid-point of
the medium category, the probability should be exactly 0.5. Figure 3a shows a
logistic function that we have designed for this purpose, while Fig. 3b shows the
corresponding probabilities for the tera tf runs.

Formally, a logistic function is an“S” shaped function that maps values from
(−∞,∞) onto (0, L). It is defined as f(x) = L

1+ exp−k(x−x0) , where k is the
steepness, x0 is the inflection point, and L is the maximum. As explained before,
we define the inflection point, x0, to be 11.25, the mid-point of the medium
class. Similarly, setting the maximum value, L, to 1, and steepness, k to 0.35,
the probabilities at interference magnitudes of 7.5%, 11.25%, and 15% are 0.21,
0.5, and 0.79, respectively.

Using this logistic function, we derive probabilities for measured and esti-
mated interference for each run of a benchmark. The difference between the
two probabilities is the inaccuracy of interference prediction, and its compli-
ment is the accuracy. We determine the accuracy of our approach for all the
runs of each benchmark and draw the results as boxplots (Fig. 4). As the logistic
function in Fig. 3a shows, an accuracy of less than 0.5 means a significant devi-
ation between measured and estimated interferences. To also give a more direct
impression of the results, we complement probability differences with boxplots
of the percentage-point difference between measured and estimated interference.

Results. On JUQUEEN, our controlled environment, each benchmark was exe-
cuted at least 15 times with a gradually increasing amount of artificial interfer-
ence injected. Figure 2 shows the series for tera tf as an example. The inter-
ference was adjusted in such a way that multiple runs were produced for each
interference class. We executed each benchmark on 256 nodes, with 4 processes
running on each node. Figure 4a presents on the left how accurately we pre-
dict the interference probabilities and on the right the percentage-point differ-
ence between measured and estimated interference. Except for GAPgeofem, the
median accuracy for all the benchmarks on JUQUEEN is above 0.9. Similarly,
for most benchmarks, the minimum accuracy is above 0.8. This shows that in
most cases estimated and measured interference leads to the same conclusion.
That the accuracy of our predictions for certain runs of GAPgeofem was low can
be attributed to its high collective-call rate of around 300 Hz. At such a high
frequency, large numbers of small execution segments are created, easily leading
to measurement artifacts that disturb our analysis.

Estimating the Impact of External Interference 55

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

0.2

0.4

0.6

0.8

1
P

re
di

ct
io

n
ac

cu
ra

cy

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

5

10

15

P
er

ce
nt

ag
e

po
in

t
di

ffe
re

nc
e

(a) JUQUEEN

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

0.2

0.4

0.6

0.8

1

P
re

di
ct

io
n

ac
cu

ra
cy

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

5

10

15

P
er

ce
nt

ag
e

po
in

t
di

ffe
re

nc
e

(b) Hazel Hen

Fig. 4. Prediction accuracy as difference of soft classification probability (left) and
percentage-point difference (right) between measured and estimated interference.

Because of its low run-to-run variation, we also used JUQUEEN to evaluate
the overhead of our profiler. Using the same set of benchmarks, we executed
each benchmark on 128 nodes, with 4 processes running on each node. For each
benchmark, we executed two series of experiments, one instrumented and one
uninstrumented. To avoid bias caused by daytime differences, we interleaved
the execution of the two series, alternating between the instrumented and the
uninstrumented version. Each series consisted of nine experiments. Measured by
comparing execution time medians of the two series of experiments, the max-
imum dilation of execution time induced by our profiler was around 4%, but
stayed below 1% for the majority of benchmarks.

On Hazel Hen, our production environment, we executed the benchmarks
using 16 nodes, with 24 processes on each node. Each benchmark was executed
12 times. Due to the relative small scale of the runs and the sporadic nature of
interference, many benchmarks were affected by interference to a smaller degree.
Nonetheless, highly interfered runs were encountered and were accurately clas-
sified. On the left, Fig. 4b shows the prediction accuracy of benchmark runs,
complemented by the percentage-point difference between measured and esti-
mated interference on the right. The figures show that, except for GAPgeofem,
the impact of interference was estimated with a high degree of accuracy. GAP-
geofem shows again low accuracy, which may again be attributable to its high
collective-call frequency. Since the call frequency is measurable, we believe that

56 A. Shah et al.

it would be generally possible to warn the user of possible inaccuracies in such
rare cases. Finding an appropriate threshold, however, is left to future work.

4 Related Work

Performance interference from operating system jitter has been the subject of
several studies [2,5,11,17,20]. However, recent work has shown that modern
operating systems managed to reduce their noise footprint [16]. Our approach
therefore focuses on interferences from other jobs that cause contention on shared
resources such as the network or the file system. Moreover, we base our estimates
of interference on software and hardware counters that are insensitive to oper-
ating system jitter.

At the same time, network and file I/O interference became the focus of more
recent studies: Jokanovic et al. attributed loss in network throughput on slim
fat trees to inter-application contention [12]. Bhatele et al. observed significant
performance variation on Hopper due to neighbor jobs [3]. Yang et al. evalu-
ated different job placement strategies on dragonfly networks to reduce inter-
application interference [21]. Similarly, several studies identified variability in
applications I/O performance and listed simultaneous file access as one of the
possible reasons [14,15,19]. Furthermore, Kuo et. al. investigated how file access
patterns influence the degree of I/O contention [13]. All these studies show that
simultaneous access to shared resources is a major source of interference, which
our method now allows users of HPC systems to quantify.

Mondragon et al. applied extreme value theory to create interference models
that predict the execution times of bulk-synchronous applications under interfer-
ence from OS noise, asynchronous checkpointing, and in situ analytics [16]. Our
approach estimates the amount of low-frequency but high-impact interference
such applications suffer in actual runs with the goal of obtaining performance
data with low degrees of interference.

To identify similarity among execution phases of an application for the pur-
pose of performance analysis, Gonzalez et. al. used the density-based cluster-
ing algorithm DBScan [8]. To estimate interference impact, we designed a 1D-
clustering algorithm based on relative distance.

5 Conclusion

We have demonstrated that we can estimate the impact of interference with high
accuracy based on a single run. Our tool chain now provides a warning light to
performance analysts that tells them when they need to rerun their experiments
because the data they have just collected was subject to interference. It can
be integrated with other performance-analysis tools using the PnMPI interface.
In the future, we plan to create composite performance profiles free of perfor-
mance artifacts from multiple interfered measurements. This will allow judging
the intrinsic performance of applications in environments where interference is
random but due to its frequency unavoidable, making performance measure-
ments (e.g., of different code versions) easier to compare.

Estimating the Impact of External Interference 57

Acknowledgment. This work has been supported by the German Research Founda-
tion (DFG) through the Program Performance Engineering for Scientific Software and
the ExtraPeak project, by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IH16008D, and by the US Department of Energy under
Grant No. DE-SC0015524. Additional funding was provided through the Hessian
LOEWE initiative within the Software-Factory 4.0 project. Finally, we would like to
express our gratitude to Jülich Supercomputing Centre and High Performance Com-
puting Center Stuttgart for giving us access to their supercomputers JUQUEEN and
Hazel Hen, respectively.

References

1. Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collec-
tives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna,
V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280–289. Springer, Heidelberg (2005).
https://doi.org/10.1007/11602569 31

2. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., Nataraj, A.: Benchmarking the
effects of operating system interference on extreme-scale parallel machines. Cluster
Computing 11(1), 3–16 (2008)

3. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2013). IEEE Computer Society, November
2013

4. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: Proceedings of the 39th International
Conference on Parallel Processing (ICPP), San Diego, CA, USA, pp. 90–100. IEEE
Computer Society, September 2010. https://doi.org/10.1109/ICPP.2010.18

5. De, P., Kothari, R., Mann, V.: Identifying sources of operating system jitter
through fine-grained kernel instrumentation. In: Proceedings of the IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pp. 331–340, September
2007

6. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M.:
Experiences and lessons learned with a portable interface to hardware performance
counters. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–6, April 2003

7. Garg, R., De, P.: Impact of noise on scaling of collectives: an empirical evaluation.
In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006.
LNCS, vol. 4297, pp. 460–471. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945918 45

8. Gonzalez, J., Gimenez, J., Labarta, J.: Automatic detection of parallel applications
computation phases. In: Proceedings of IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pp. 1–11, May 2009

9. HLRS: Communication on Cray XC40 Aries network, May 2017.
wickie.hlrs.de/platforms/index.php/Communication on Cray XC40 Aries network

10. Hoefler, T., Schneider, T., Lumsdaine, A.: The impact of network noise at large-
scale communication performance. In: Proceedings of the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pp. 1–8, May 2009

https://doi.org/10.1007/11602569_31
https://doi.org/10.1109/ICPP.2010.18
https://doi.org/10.1007/11945918_45
https://doi.org/10.1007/11945918_45
https://wickie.hlrs.de/platforms/index.php/CommunicationonCrayXC40Ariesnetwork

58 A. Shah et al.

11. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system
noise on large-scale applications by simulation. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2010), pp. 1–11. IEEE Computer Society,
Washington, DC, USA (2010)

12. Jokanovic, A., Rodriguez, G., Sancho, J.C., Labarta, J.: Impact of inter-application
contention in current and future HPC systems. In: Proceedings of the IEEE Sym-
posium on High Performance Interconnects, pp. 15–24, August 2010

13. Kuo, C.S., Shah, A., Nomura, A., Matsouka, S., Wolf, F.: How file access pat-
terns influence interference among cluster applications. In: Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–8 (2014)

14. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance
challenges at leadership scale. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC 2009), pp. 40:1–40:12. ACM, New York (2009)

15. Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan,
K., Wolf, M.: Managing variability in the IO performance of petascale storage
systems. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC
2010), pp. 1–12. IEEE Computer Society, Washington, DC, USA (2010)

16. Mondragon, O.H., Bridges, P.G., Levy, S., Ferreira, K.B., Widener, P.: Understand-
ing performance interference in next-generation HPC systems. In: Proceedings of
the ACM/IEEE Conference on Supercomputing (SC 2016), pp. 384–395, November
2016

17. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer per-
formance: achieving optimal performance on the 8,192 processors of ASCI Q. In:
Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003) (2003)

18. Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application inter-
ference on clusters. In: Proceedings of IEEE International Conference on Cluster
Computing (CLUSTER), pp. 1–5, September 2013

19. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC platforms.
In: Cray User Group Conference (2007)

20. Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock
ticks, and fine-grained parallel applications. In: Proceedings of the 19th annual
International Conference on Supercomputing (ICS 2005), pp. 303–312. ACM, New
York (2005)

21. Yang, X., Jenkins, J., Mubarak, M., Ross, R.B., Lan, Z.: Watch out for the bully!
job interference study on dragonfly network. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2016), pp. 750–760, November 2016

	Estimating the Impact of External Interference on Application Performance
	1 Introduction
	2 Approach
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

