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Abstract—Multithreaded programs are subject to data races.
Data race detectors find such defects by static or dynamic
inspection of the program. Current race detectors suffer from
high numbers of false positives, slowdown, and false negatives.
Because of these disadvantages, recent approaches reduce the
false positive rate and the runtime overhead by applying race
detection only on a subset of the whole program. To achieve
this, they make use of parallel test cases, but this has other
disadvantages: Parallel test cases have to be engineered manually,
cover code regions that are affected by data races, and execute
with input data that provoke the data races.

This paper introduces an approach that does not need ad-
ditional parallel use cases to be engineered. Instead, we take
conventional unit tests as input and automatically generate
parallel test cases, execution contexts and input data. As can
be observed, most real-world software projects nowadays have
high test coverages, so a large information base as input for our
approach is already available. We analyze and reuse input data,
initialization code, and mock objects that conventional unit tests
already contain. With this information, no further oracles are
necessary for generating parallel test cases. Instead, we reuse
the knowledge that is already implicitly available in conventional
unit tests.

We implemented our parallel test case generation strategy
in a tool called TestMerge. To evaluate these test cases we
used them as input for the dynamic race detector CHESS that
evokes all possible thread interleavings for a given program.
We evaluated TestMerge using six sample programs and one
industrial application with a high test case coverage of over 94%.
For this benchmark, TestMerge identified all previously known
data races and even revealed previously unknown ones.

Index Terms—Data Races, Unit Testing, Multicore Software
Engineering

I. INTRODUCTION

Many developers use unit tests to find defects in their

programs and for regression testing. A unit test is a small

piece of code that tests a single method or functionality

of a program. However, unit tests are rarely used to detect

concurrency bugs such as data races or atomicity violations.

If these bugs manifest depends on the schedule used during

execution. Conventional unit tests might be categorized as

spurious tests, which is a code smell. Therefore, unit testing is

not popular for finding concurrency bugs; instead, tools such as

data race detectors are used. However, most data race detectors

are not sound, present many false positives or have intensive

resource requirements.

To overcome these limitations, recent research combines unit

testing and data race detection. Szeder [1] introduces parallel

unit tests. These test cases are executed by a data race detector,

not by a conventional test runner. Szeder proposes to write

such test cases manually - a time intensive and error prone

task. Therefore, automatic generation of parallel unit tests gets

into focus [2], [3]. In this paper, we present a novel approach

for automatic generation of parallel unit tests: Combining

existing conventional unit tests. When a parallel test case for

concurrent execution of two given methods m1 and m2 is

required, we search available conventional test methods for

m1 and m2. We then combine the setup code of both source

methods into a new test method, calling both m1 and m2 after

the initialization. A data race detector can execute the new

parallel test case.

Using our approach, the knowledge of the test case authors

about the program under test is reused: We do not need

oracles for input values, we do not have to cope with external

resources, and faking code from the source test methods is

reused.

The paper is structured as follows: Section II presents

parallel unit test and their generation by capturing executions.

Section III presents our approach to combine test cases, our

implementation is shown in IV. Section V shows our results.

We show related work in Section VI and conclude in Section

VII.

II. PARALLEL UNIT TESTS

The major difference between conventional and parallel unit

tests is the number of Methods Under Test (MUTs): While

conventional tests that follow accepted coding guide lines [4]

contain one single MUT and verify one distinct assertion,

parallel tests consist of at least two methods, depending on the

number of threads that are involved in the observed scenario.

Parallel tests hereby adhere to the well-known execution

pattern for conventional tests arrange-act-assert from [5]:

1) Arrange: Define and initialize input variables, call re-

quired initialization methods, and set up dependencies.

2) Act: Execute the MUT.

3) Assert: Define and validate expected constraints caused

by the execution of the MUT.

Although parallel unit tests follow this execution pattern,

we extend the pattern and add an additional stage for safe

multithreading. It is therefore called arrange-act-wait-(assert):
1) Arrange: Define and initialize input variables and depen-

dencies for all MUTs, and execute required initialization
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code sequentially for all MUTs.

2) Act: Instantiate a thread for each MUT and execute it.

3) Wait: Wait for the termination of all threads executing

MUTs.

4) Assert: Validate assertions. This stage is optional.

Before executing the MUT in parallel, the unit test must

have performed all necessary initializations. After the exe-

cution, the test execution has to wait until all MUTs have

successfully terminated. In contrast to conventional unit tests

though, the assert stage is not used to decide over a successful

or unsuccessful execution, so it is made optional. As a simple

assertion statement cannot identify racy code, the validation of

success in parallel test cases is done using data race detection.

Nevertheless, assertions can still be used for conventional

assertions. As parallel test cases can include assertions for

correct program semantics and absence of data races, we call

such test cases enriched.

A. Generation of Parallel Unit Tests

Currently, automatic generation tools for parallel unit tests

mainly use capture and replay approaches [3] or static inspec-

tion of class structures [2]. However, these approaches have

several drawbacks: Capture and replay approaches require

input data that lead through program paths that contain the

potential data race code sections. Static inspection on the

other hand relies on oracles, so these approaches suffer from

the same problems as conventional unit test generation. Our

decision to reuse already existing tests as the starting point

for parallel test generation implicitly solves these problems:

Most unit tests are still written by hand today, especially

when following test-driven methods like extreme program-

ming. From this fact we infer that relevant input data and

correct object initialization code can be found when analyzing

these tests. Additionally, we make use of testing infrastructure

already available and in use, which cannot be used by both

aforementioned approaches. This involves these three aspects:

• Usage of test object hierarchies

• Usage of fakes

• Usage of existing assertions

a) Usage of Test Object Hierarchies: Today, many de-

velopers use patterns and well-known architecture approaches

to design their unit tests [5], [4]. They create helper classes

specifically designed for test cases. Such approaches make test

code more readable, trustworthy, and easier to update when the

code under test changes. Captured parallel codes tends to be

neither readable nor easy to update. When combining hand-

written sequential unit tests, we create parallel test cases that

re-use helper classes and architectures.

b) Usage of Fakes: A major drawback of capture and

replay approaches is that everything is captured: When an

application uses objects to encapsulate database accesses or

web service calls, the full state is captured. For sequential

unit tests, fake objects are used to overcome such external

dependencies. Such fake classes are either created by hand or

by an isolation framework [6], [7]. Testers use these classes

when needed. If we use the test contexts of two sequential

unit tests to create a parallel test context, we automatically

use these fake classes.

c) Usage of Existing Assertions: The goal of a parallel

unit test is to find parallelization bugs, not to find conventional

bugs. Therefore, a parallel unit test usually has no assert

statements - as the decision whether a parallelization bug

exists cannot be cast by an assert statement, but by an external

testing tool. Therefore, most generation approaches for parallel

unit tests omit any assert statements - conventional bugs

may still be found using conventional unit tests. When using

combinational unit test generation, we have the option to reuse

the assert statements from our source test cases and create

parallel tests that also check the correctness of the methods

under test. We call such unit tests enriched.

III. COMBINING UNIT TESTS

In this section we describe, how we automatically generate

parallel unit tests from existing source code.

A. Finding Methods Under Test

The input for our approach are method pairs that are

executed in parallel at runtime and might contain a data

race. In preliminary work [3] we implemented a tool called

AutoRT that automatically identified these code sections, but

it is also possible to provide them manually. In another

preliminary work [8] we extended AutoRT to also detect

correlated variables.

In order to create a parallel unit test for a given method

pair, we need to find all conventional unit tests that test

either method. Methods under test (MUTs) directly write to

variables from assert statements or mock objects. We also

follow naming conventions that is cited in current literature

[5]. It recommends to name test methods after the method

under test. We identify the MUT by taking the immediate

method call before the first assert statement. For the future

we will enhance this by checking whether the return value of

this method call is actually used within assertions. Whenever

we are unable to identify the method under test, we ask the

user to add an attribute annotation to the corresponding test

method.

B. Extracting and Combining Test Contexts

After the MUT has been identified, we construct the basic

test corpus: We consider any statement before the MUT call

to be test initialization. These statements have to be copied to

the parallel test case. Any statements that follow the MUT call

are required for assertion, so they may be ignored or added

to the parallel test case turning it into an enriched test case.

Some conventional tests contain clean up code after the MUT

call, especially when using a testing framework. Such code is

usually contained in special cleanup methods that can easily

be identified by name.

Conventional unit tests often contain mock objects. In contrast

to stub objects, mocks contain assertions that are necessary

to evaluate the success of a test execution. With enriched
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Fig. 1. Two conventional unit tests. The dashed lines indicate the arrange-act-assert structure.

parallel unit tests, these mocks will deliberately be reused. For

non-enriched parallel test cases, any assert statements will be

removed from the mock objects.

C. Example

Figure 1 shows two test cases for a method pair that may

run in parallel, so we create a parallel unit test from both tests

shown in Figure 2. Both tests are split into the three parts

initialization, MUT call, and assertion. Both conventional test

cases adhere to best practice guidelines and use a single mock

object (tm). The resulting parallel test case, however, includes

both source mock objects. We assume one mock object for

each MUT to be valid, as long as the objects aren’t used by

multiple methods at the same time. The assert statements in

both conventional tests refer to different fields of the class that

contain the MUT. In case the assert statements tested the value

of the same field, at least one of the assert statements would

fail in the parallel test case, because this value would now be

influenced by two methods; the assertions might even check

for different values. For this situation, it is not possible to reuse

the assertions in a successful execution of the parallel test case.

This explains why pure parallel test cases without enrichment

are still necessary. Luckily, we can detect this situation, as it

occurs when an assertion variable is written by both MUTs.

Whenever we detect this situation, we execute the parallel test

case and expect it to fail. We then forward this information to

the engineer to correct the assertion.

D. Compatible Test Contexts

The set of method calls and objects that are required

before a method under test can be executed is called the test
context. The most complex task when merging two or more

conventional test cases is merging each test’s context. It is

possible that we want to merge test cases that set different

values to the same shared variable. If this is the case, we

call the test contexts incompatible, otherwise we say the test

contexts are compatible.

If contexts are compatible, it is straight forward to merge them:

The new parallel context contains all statements that can be

found in the original test context code. However, we have

to check if an object reference from the originating contexts

refers to the same object: for example, if both methods under

test have to be called with the same object instance.

Fig. 2. Generated parallel test case based on test cases from figure 1.

If test contexts are incompatible, they may be altered to obtain

compatibility: For example, if two test cases set a common

global variable to different values, we might decide for one of

these values for the resulting parallel test context. If this is the

case, we generate a parallel test case for each combination.

Alteration may break some of the assertions, and may even

result in different control flow. This is not critical for parallel

unit tests, as we remove assertions. For enriched unit tests,

only compatible test contexts should be used.

E. Data Races and Isolation Frameworks

An advantage of combining unit tests is the implicit usage

of fakes and isolation frameworks. Fake classes remove code

from unit tests that is not intended to be tested. As can be

seen in figure 1, a common approach is to have a fake class

return expected values instead of performing time-consuming

computations. This is important for unit testing: units may be

tested before their dependencies are tested or implemented at

all. Even worse: If the original code were executed, it would

be far more complex to track down bugs, as it wouldn’t be

obvious if the error stems from the actual method under test

or wrong dependency behavior. This is also true for parallel

unit testing: A parallel unit test aims to detect whether or
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TABLE I
PARALLEL TEST CASE GENERATION RESULTS OF TESTMERGE.

Program Simple Bank Bank Stack Bounded Queue Double Wrapper Fakes Dynamics CRM Add-On

Lines of Code 6 14 24 29 22 13 3410
Lines of Test Code 15 12 43 36 28 23 4180

Conv. Test Cases 4 4 9 5 7 2 134
Parallel Test Cases 2 1 6 7 2 2 0

Detected MUTs 3 3 4 4 7 1 47
MUT identified in Conv. Test Cases 100% 100% 100% 100% 100% 100% 96%

Input Method Sets 5 3 7 8 6 3 15
Parallel Test Cases generated 13 6 87 62 32 72 78

Known Data Races 3 0 3 0 2 2 0
Data Races Detected 3 0 4 0 2 2 7

False Positives 0 0 0 0 0 0 2

not a race exists within the methods under test - not within

their dependencies. This is a drawback of capture-and-replay

approaches: they execute all external dependency code. Tools

such as CHESS [9] rely on short running unit tests; calling

dependency code instead of fakes leads to extended runtimes

and more schedules that have to be executed - possibly

rendering the test case useless.

IV. IMPLEMENTATION

We implemented the approach in C#. TestMerge offers

two modes: test-analysis and test-generation. In test-analysis

mode, TestMerge receives a Microsoft Visual Studio solution

file as input. TestMerge identifies all unit test projects and

files in the solution. We analyze all test cases found using

Microsoft Roslyn [10] and identify the methods under test

covered by each test method in the project. We save MUT

information in a MUT-info file. We use OpenCover [11] as

a coverage analysis framework to generate and append IDs

for each MUT branch covered by a given test method to the

MUT-file.

In test-generation mode, TestMerge accepts a list of method

sets. Each method set may be extended by path IDs, detailing

which paths in the MUTs should be reached by the combined

test cases. For each set, we search test cases for these

methods and generate according parallel test cases. If path

IDs are included, only test methods reaching these paths

are considered for combination. If no path information is

specified, parallel test cases are generated to visit all possible

paths - if fitting conventional test cases are available. If

multiple test methods are available for a method, we generate

several parallel test cases. Our tests contain necessary

metadata to be executed by CHESS.

TestMerge combines test context creation code of both input

test methods. The state of both source test contexts may not

be fully compatible: If, for example, a singleton object has

different states in both source tests, we generate two resulting

parallel test methods - one with each object state. We do

not take assert statements into the resulting parallel test case.

However, if assert statements are included in mock methods,

they will still be called by a data race detector executing our

tests. As assertions are usually performed by a single class

in a given unit test framework, this can easily be solved: We

will mock the assert class itself in future releases to perform

no action for parallel test cases.

V. RESULTS

We evaluated our implementation using different example

applications from the CHESS race detector. We also used some

samples written on our own. These programs are intended to

verify our tool in different situations, for example valid test

case generation in the presence of mock objects. As a larger

example, we used an add-on for Microsoft Dynamics CRM

[12]. A summary of these examples is given in table I.
The CHESS samples are small applications accompanied

with conventional as well as parallel test cases. For each

example, we defined a set of method pairs, for which we

wanted TestMerge to generate parallel test cases. As the

samples are small, the method pairs are obvious. Using the

generated parallel test cases as input for CHESS, the races

where successfully reported. After fixing the races, our unit

tests did no longer report any races. We also successfully

generated functional test cases with three MUTs, which might

be useful for more complex parallel methods.

The Stack sample application does not contain intentional

races. Therefore, we removed synchronization and created

3 data races. Using our generated test cases, CHESS could

identify all of them. In Bounded Queue, we could identify all

documented data races as well as an additional, undocumented

data race.
The only data races that we were unable to find were

atomicity violations: CHESS is not able to detect all possible

atomicity violations. In the Bank sample, a unit test is designed

to contain an assert statement to identify this violation if a

certain schedule is applied - this is to verify that CHESS is able

to produce such schedules; without knowing that this violation

exists, no tester would have added such an assert statement.

Therefore, our generated test cases cannot detect this race.

However, a race detector designed to detect such violations

should succeed.
As a larger example, we generated parallel unit tests using

a double-opt-in newsletter registration add-on for Microsoft

Dynamics CRM [12]. The add-on contains 134 conventional

unit tests; it consists of 3410 code-lines accompanied by

4180 lines of test code. The test code includes faking of

CRM server logic to enable test execution in absence of a

CRM server. Currently, this add-on is executed using multiple

threads. However, transactions deny any parallel accesses to

4646464646



relevant data, restarting the add-on, if necessary. So the races

we found are benign. However, due to the task based structure,

true parallel execution is possible without code changes. The

races we found will then require explicit synchronization.

Some samples generate many parallel test cases. For ex-

ample, Stack generates 74 test methods. This may happen if

there exists more than one unit test per method in a method

pair that consists of m1 and m2: In this case, we currently

combine any unit test for m1 with any unit test for m2. It is

also possible that the context of such tests is contradictory,

for example a global object might contain different values.

This raises two possible combinations. We also used method

sets with three and four methods, combining three or four test

methods to a single parallel unit test with as many threads. At

the moment, we generate all possible distinct combinations.

The large number of test cases does not harm precision: no

false positives are introduced. However, avoiding unnecessary

test cases is best practice, so we will develop strategies for

test case pruning in the future.

VI. RELATED WORK

Ballerina [2] is a tool to automatically generate parallel

unit tests for Java classes. These test cases aim to identify

racy usage scenarios of the public interface of the class under

test. Ballerina uses Java PathFinder for thread interleaving

exploration and checks for serializability. In contrast to our

work, Ballerina generates test cases using static class analysis

and does not take existing unit tests into account. The test

methods generated by Ballerina also use the arrange-act-wait

pattern proposed in our work. As in our work, only the

methods under test are executed in parallel, any other method

calls are executed sequentially in front. In our case, these

method calls stem from a conventional unit test, whereas

Ballerina randomly generates a method call sequence and

guesses input values.

In ConSuite [13], a test case is defined as a triple consisting of

object creation code, a sequence of method calls on the object,

and a schedule. The sequence of method calls is generated

by ConSuite in such a way, that synchronization points are

covered. This is accomplished using a genetic algorithm.

ConSuite is only designed to test the public interface of

classes. Ballerina and ConSuite could in principle also make

use of existing tests using seeding [14].

Krena et al. [15] built a framework for search-based testing

and apply it to data race detection by linking it to ConTest.

They use the built-in metrics of ConTest to define fitness

rules for schedule selection. They do not generate unit tests.

However, their approach might be applied to the parallel unit

tests generated in our work.

DejaVu [16] is a capture-and-replay system for Java. It ensures

deterministic replay by recording results of non-deterministic

events such as date functions. Thread switches are separated

into deterministic and non-deterministic switches: Determinis-

tic switches are triggered by events such as notify or monitor

exit. Such events can be replayed as DejaVu records the lock

state for each thread. Non-deterministic switches include timed

events such as sleep or thread preemption. DejaVu can handle

these switches, as they only occur on yield points, which

are fixed points in execution defined within Jalapeño. DejaVu

focuses on deterministic replay of a given recording, which

can be seen as a test case. However, they rely to complete

program execution, while we focus on unit tests. Such replay

approaches may be applied to our parallel test methods.

VII. CONCLUSION

We presented an approach to generate parallel unit tests

using existing unit tests. These test cases can be used as input

for a race detector. In contrast to other approaches, we avoid

the problems of realistic test context creation, as we inherit

them from existing cases. We also use existing fake classes.

Our evaluation showed that we can generate test cases and

detect real data races in different applications. We proposed the

generation of enriched parallel test cases containing assertions.

Future work will investigate their utilization.
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