®

Check for
updates

Using Deep Learning for Automated
Communication Pattern Characterization:
Little Steps and Big Challenges

Philip C. Roth!®)®, Kevin Huck?, Ganesh Gopalakrishnan®, and Felix Wolf*

L Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
rothpcQornl.gov
2 University of Oregon, Eugene, OR 97403, USA
khuck@cs.uorgeon.edu
3 University of Utah, Salt Lake City, UT 84112, USA
ganesh@cs.utah.edu
4 Technische Universitat Darmstadt, 64289 Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract. Characterization of a parallel application’s communication
patterns can be useful for performance analysis, debugging, and system
design. However, obtaining and interpreting a characterization can be
difficult. AChax implements an approach that uses search and a library
of known communication patterns to automatically characterize com-
munication patterns. Our approach has some limitations that reduce
its effectiveness for the patterns and pattern combinations used by some
real-world applications. By viewing AChax’s pattern recognition problem
as an image recognition problem, it may be possible to use deep learn-
ing to address these limitations. In this position paper, we present our
current ideas regarding the benefits and challenges of integrating deep
learning into AChax and our conclusion that a hybrid approach com-
bining deep learning classification, regression, and the existing AChax
approach may be the best long-term solution to the problem of parame-
terizing recognized communication patterns.

Keywords: Deep learning - Automation - Application characterization

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
000R22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

© Springer Nature Switzerland AG 2019

A. Bhatele et al. (Eds.): ESPT/VPA 2017/2018, LNCS 11027, pp. 265-272, 2019.
https://doi.org/10.1007/978-3-030-17872-7_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17872-7_16&domain=pdf
http://orcid.org/0000-0001-9583-1103
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-17872-7_16

266 P. C. Roth et al.

(a) (b) (c)

Fig. 1. Removing a recognized, parameterized communication pattern (b) from an
example residual communication matrix (a), resulting in a new residual matrix (c).
Screen captures originally presented in [9].

1 Introduction

Over the past few years, one of us (Roth) has been developing an approach
for automatically recognizing and characterizing the communication patterns of
parallel applications [7,9]. The approach uses search and a library of known com-
munication patterns like Broadcast and 3D Nearest Neighbor. The input to the
approach is a representation of a parallel application’s communication behav-
ior. Logically, this information is represented as an Augmented Communication
Graph [7] (ACG), a graph that captures the volume and operation count of the
collective and point-to-point communication operations performed by each pro-
cess during an application run. At each step of its search, the approach examines
the communication data that has yet to be explained (called the residual) to see
if it can recognize any communication patterns from its pattern library. If it rec-
ognizes a pattern in a residual, it determines the parameters of the pattern (such
as its scale, the amount of data that was transferred in the operation) and then
refines its search by removing the contribution of the parameterized pattern to
form a new residual, from which it continues its search. Figure 1 demonstrates
this recognize-parameterize-remove operation. Because the approach might rec-
ognize multiple patterns within a residual, the search results form a tree where
each path from the tree’s root to its leaves represent a collection of parameter-
ized patterns that have been recognized in the original communications data.
The path whose leaf has the smallest residual represents the collection of pat-
terns that best explains the original communications data. By reporting the
name and parameters of each pattern along this path, the approach generates
a concise description of the application’s communication behavior that is eas-
ier to manage than a full communications event trace and more accurate than
summary statistics.

The approach has a few known limitations. One important limitation is that
it does a poor job of handling patterns where the amount of data transferred



Deep Learning for Automated Communication Pattern Characterization 267

between senders and receivers may vary, such as a nearest-neighbor pattern
used in a molecular dynamics simulation. Although we have explored heuristic
techniques for determining a pattern’s scale that avoid trapping the search in
local search space minima [7], our recognition implementation still assumes that
the amount of data transferred in a pattern does not depend on the particular
sender and receiver and thus may fail to explain all of the application’s observed
communication behavior if this assumption is not true.

AChax is a Python-based tool that implements this automated communi-
cation characterization approach for applications that use a Message Passing
Interface [4] (MPI) implementation for communication and synchronization. The
tool’s distribution includes a library that provides interposition functions for
many MPI communication calls made by an application as it runs, and outputs
an ACG that captures the application’s MPI communication behavior. After a
brief dalliance with using graphs built using the Graph-tool Python module [3]
as an internal ACG representation, the tool once again represents ACGs using an
adjacency matrix encoded in a NumPy [5] matrix because the tool’s analysis per-
formance is much better using matrices than when using the Graph-tool-based
ACG representation.

A presentation at a recent tools workshop describing AChax [8] spurred us to
form an informal working group techniques and challenges with automated pat-
tern recognition in performance, debugging, and characterization tools. Although
our discussion ranged widely, the AChax pattern recognition challenges turned
out to be the dominant topic. We have long known that we can view the AChax
pattern recognition problem as an image recognition problem. (Indeed, captur-
ing the human expertise required to recognize patterns within visualizations of
communications adjacency matrices is the primary motivation for the AChax
work.) Because of deep learning’s well-demonstrated capability for automatic
image classification, including images that are “fuzzy” or otherwise obfuscated,
deep learning seems tailor-made for the AChax communication pattern recogni-
tion problem and we spent a significant part of our working group discussion on
exploring the potential benefits and challenges of its use in the AChax context.

In this position paper, we capture the gist of our workshop discussion, and
add more detail and perspective based on subsequent consideration and hands-on
experimentation using deep learning for the AChax image recognition problem.
We describe how we might use our current AChax implementation to train a
model using a deep neural network (DNN) and how we might use that model
for communication pattern recognition. We discuss the challenges of using a
model for parameterizing a recognized pattern. And we present our very early
experience with training and using a model to recognize some of the patterns
from AChax’s current pattern library that lead us to propose that a hybrid
strategy combining deep learning with our traditional recognition approach may
be the best option for a future AChax implementation. It is also worth noting
that at least some of us are not deep learning experts and are approaching this
study to establish whether the proposed approach is feasible enough to warrant
further investigation that includes team members with stronger deep learning
expertise.



268 P. C. Roth et al.

2 Integrating Deep Learning into AChax

At first blush, the integration of deep learning into our existing communication
pattern characterization approach seems like an easy prospect. From a high-
enough conceptual level, it seems as simple as replacing our current pattern
recognition approach with one that feeds a residual matrix into a model trained
to recognize the patterns from our existing library. From a practical perspec-
tive, because AChax is implemented using Python and because several of the
common deep learning implementations such as TensorFlow [1], Theano [2], and
PyTORCH [6] provide well-documented Python interfaces, it should be rela-
tively easy to make use of one of these frameworks in our current AChax soft-
ware. Nevertheless, considering the details reveals several significant challenges
to be overcome.

2.1 Training

A model’s DNN must be trained to recognize the patterns from the AChax
pattern library. AChax’s current implementation eases this training activity,
because each pattern in AChax’s pattern library is implemented as a Python
class that implements both a generator and recognizer method.! A pattern’s
generator method takes a collection of parameters meaningful to the pattern
(such as the dimensions of a 3D nearest neighbor pattern), and generates a
matrix representing the parameterized ACG of that pattern. This “pure” matrix
is used by some patterns as a mask during the pattern recognition step, and by
all patterns when removing the recognized pattern from a residual.

A version of AChax that uses deep learning could use these generated matri-
ces to produce training data. How best to label that data remains an open
question. At a minimum, the label could include only the pattern’s name, in
which case we expect the resulting model to be useful only for identifying the
type of pattern that is most strongly represented in the input residual matrix.
Some other method would be needed to determine the pattern’s parameters (e.g.,
the approach currently used within AChax). Although this approach might seem
to add little value over the existing AChax approach, we believe it could be a
necessary part of adding the ability to recognize patterns with varying amounts
of data transferred between source and destination processes. At the other end
of the spectrum, we could include the pattern’s name and all of the parame-
ters used to generate the training matrix in its training set label. This approach
would likely result in an unfeasible number of classification categories, and we
suspect that this level of specification would result in a model that is overfitted
to the training data.

! The Garbage pattern is an exception: it only provides a generator method because
this pattern’s only purpose is to introduce “noise” into synthetic workloads used in
unit testing.



Deep Learning for Automated Communication Pattern Characterization 269

The sweet spot is likely to be somewhere between these extremes, leading to a
model that can identify not only the pattern’s name but also some information
about its parameters that would accelerate the AChax recognizer’s ability to
determine the complete parameterization. For instance, it may be the case that
a trained model can recognize the dimensions of a 2D or 3D nearest neighbor
pattern, or from which side or corner a sweep pattern originates. It may also be
beneficial to use a two-phase approach whose first phase involves classification
of the basic pattern, and whose second phase attempts to discriminate between
the specific alternatives that might be present for that basic pattern. We discuss
a few more aspects of parameterization in Sect. 2.2.

In addition to these questions of how to train a model to support identifica-
tion of a pattern’s parameters, there is also a question of when to do this train-
ing. Because we would be training our model with ACG matrices representing
“pure” patterns, it might be an appealing idea to pre-generate an application-
independent library of trained models for process counts commonly used in appli-
cation runs (e.g., all powers of two between 16 and 16384). In practice, however,
we expect this general-purpose library of trained models to be of limited use: by
definition, it would not support applications for which non-power-of-two process
counts are the best choice, and it would not support applications that subdivide
their processes into smaller groups and communicate within these subgroups
(e.g., using MPI sub-communicators). Instead, it seems more likely that a deep
learning-based AChax would train its model on demand when invoked with a
specific ACG matrix, though it may be possible to save its trained model to an
application-specific model library.

2.2 Recognition and Parameterization

Applying the trained model to a residual matrix results in a vector of proba-
bilities P, one per training category, such that the probability of the residual
containing training specification category ¢ is P;. If one of these probabilities
is much larger than the others, the model has given clear indication that the
associated training category is highly likely to be present in the residual. But if
several probabilities are nearly equal, the meaning is less clear. If those probabil-
ities are large, we would interpret the model’s output as indicating the patterns
are present in the residual at nearly equivalent scales. In this case, AChax would
refine its search along each of the patterns and rely on its ability to eventually
distinguish between the quality of the resulting search paths once its search is
done. On the other hand, if the probabilities are small, we assume that patterns
from the associated training categories are not present and the search can be
pruned at that point.

As noted above, there are many open questions regarding use of deep learning
for parameterization of recognized patterns, and using classification can take us
only so far with respect to parameterization. We expect that some parameters
will require us to use a regression model instead. In particular, we expect to
need regression to predict the scale of a recognized pattern. The scale indicates
how much data was transferred between source and destination processes during



270 P. C. Roth et al.

the communication operation. It remains to be seen whether using regression to
estimate the pattern’s scale outweighs the accuracy of AChax’s current approach
of examining each of the values associated with the recognized pattern within
the residual and setting the scale based on those values (e.g., their maximum
or average), but the regression approach may prove to be more useful for pat-
terns with varying amounts of data transferred between source and destination
processes.

3 Early Experiments

As a first step in determining whether it is both feasible and useful to incor-
porate deep learning into AChax, we conducted a few simple experiments to
determine whether we could train a model to recognize several of the basic pat-
terns from the existing AChax pattern library. We conducted our experiments
using TensorFlow 1.10.1, Python 3.6, and a development version of AChax from
the “acg-matrix” branch of its repository. Because we were more concerned with
the trained model’s accuracy than its performance, we ran the experiments on
a Mac OS X laptop that already had the required software stack to run Ten-
sorFlow models. For all experiments, we constructed models for a hypothetical
application that was run with 256 MPI processes.

In our simplest experiment, we constructed 1000 images, each of which rep-
resented a “pure” Broadcast or Reduce pattern with randomly-selected root
process, or 2D 5-point Nearest Neighbor pattern, each with randomly selected
scale. We used 950 images to train our model, and 50 to test its accuracy. With
this simple training/testing set, the model reached close to 100% accuracy in five
training epochs, but still achieved 100% accuracy on its training images. Adding
noise to the training and testing images caused a slight decrease in the model’s
training accuracy, but it still achieved nearly 100% accuracy with its training
set.

Although the ability to recognize a single communication pattern from a (pos-
sibly noisy) image is a necessary capability for use within AChax, it is hardly
sufficient. Rather, AChax needs the ability to recognize communication pat-
terns in images with multiple patterns. To test this capability, we trained a
model as described above, and used it to predict the likelihood of presence of its
known patterns in a test set of 5 images, each containing all three communication
patterns, with noise. Figure2 shows an example of one of these multi-pattern
images. For each of the five images, with or without noise, the trained model
predicted the image contained one of the three patterns with 100% confidence.
From an AChax perspective, this may be a desirable behavior because it allows
the tool to easily choose which pattern remove next, we mistakenly expected
the model to output priorities that reflected each pattern’s degree of “presence”
within the image as determined by each pattern’s scale. We assume that the
model chose exactly one pattern in each of our test matrices because each of
our training matrices contained only one pattern, and we assume that we would
have to train using matrices representing combinations of patterns to obtain the
prediction behavior we originally expected.



Deep Learning for Automated Communication Pattern Characterization 271

ece CMViewer - mp_1.mtx

Zoom: (1 2| Min: 00 Max: 36537.0 Reset Fange

Coordinates: Value:

Fig. 2. Example multi-pattern image used to test our trained deep learning model.

4 Summary

Deep learning seems tailor-made for the pattern recognition problem of the
AChax automated communication pattern recognition tool. It seems especially
attractive for addressing the current AChax limitation of being unable to com-
pletely account for the communication from patterns where the amount of data
transferred depends on the specific source and destination processes. In this
position paper, we discussed our current ideas about how deep learning might
be integrated into the AChax search-based communication pattern recognition
approach, the challenges of doing so, and some very early experiences in using a
trained model to recognize synthetic communication patterns generated by the
current AChax implementation. Our experience indicates that using a trained
deep learning model to recognize patterns is feasible, but may require both clas-
sification and regression, or a hybrid approach combining deep learning with
our existing parameterization techniques to identify the full parameter set to
associate with recognized patterns.

Acknowledgments. We thank David Poliakoff of Lawrence Livermore National Lab-
oratory for his helpful feedback about this paper and the tools workshop presentation
that motivated it.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research under contract
number DE-AC05-000R22725.

This work is supported in part by the US Department of Energy Office of Science
SciDAC RAPIDS project under subcontract 4000159855 to the University of Oregon
from Oak Ridge National Laboratory.



272 P. C. Roth et al.

References

@

Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous
distributed systems (2015). http://download.tensorflow.org/paper/whitepaper2015.
pdf

Al-Rfou, R., et al.: Theano: a Python framework for fast computation of math-
ematical expressions. arXiv e-prints abs/1605.02688, May 2016. http://arxiv.org/
abs/1605.02688

Graph-tool: efficient network analysis (2018). https://graph-tool.skewed.de

Gropp, W., Lusk, E.; Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-passing Interface. Scientific and Engineering Computation, 2nd
edn. MIT Press, Cambridge (1999)

NumPy (2018). http://www.numpy.org

Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS 2017 Autodiff
‘Workshop, December 2017

Roth, P.C.: Improved accuracy for automated communication pattern characteriza-
tion using communication graphs and aggressive search space pruning. In: Bhatele,
A, et al. (eds.) ESPT/VPA 2017/2018. LNCS, vol. 11027, pp. 38-55. Springer,
Cham (2019)

Roth, P.C.: Scalable, automated characterization of parallel application communi-
cation behavior. In: 2018 Scalable Tools Workshop, July 2018

Roth, P.C., Meredith, J.S., Vetter, J.S.: Automated characterization of parallel
application communication patterns. In: Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC 2015),
Portland, Oregon, USA, pp. 73-84, August 2015. https://doi.org/10.1145/2749246.
2749278


http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://graph-tool.skewed.de
http://www.numpy.org
https://doi.org/10.1145/2749246.2749278
https://doi.org/10.1145/2749246.2749278

	Using Deep Learning for Automated Communication Pattern Characterization: Little Steps and Big Challenges
	1 Introduction
	2 Integrating Deep Learning into AChax
	2.1 Training
	2.2 Recognition and Parameterization

	3 Early Experiments
	4 Summary
	References




