
J Supercomput (2015) 71:824–839
DOI 10.1007/s11227-014-1327-2

Resource and application-aware resource discovery
in computing environments

Mohammad Norouzi · Ali Jannesari

Published online: 14 November 2014
© Springer Science+Business Media New York 2014

Abstract Efficient resource discovery plays a vital role in the effective management of
resources and applications in heterogeneous computing environments. Therefore, the
knowledge of applications’ behavior and resources’ usage pattern improves resource
discovery decisions. This knowledge can be provided for the resource discovery mech-
anism by cooperating with the load balancing mechanism. In this paper, we formulate
their cooperation by considering some parameters that represent applications’ behav-
ior and resources’ usage patterns and extract the relation between them to introduce a
formula using mathematical methods. Further, the resource discovery mechanism uses
the formula to predict resources’ load before assigning them new processes and thus it
prevents resource overloading which happens frequently in computing environments.

Keywords Computing environments · Resource discovery · Load balancing ·
Application process behavior · Resource capacity · Multivariate regression

1 Introduction

Regarding today’s science and industry interest to reach higher computing power,
systems that aim to provide such information processing rate are growingly analyzed,

M. Norouzi (B)
Iran University of Science and Technology, Tehran, Iran
e-mail: gmnorouzi@gmail.com; noroozi@comp.iust.ac.ir

A. Jannesari
German Research School for Simulation Sciences, Aachen, Germany
e-mail: a.jannesari@grs-sim.de

A. Jannesari
RWTH Aachen University, Aachen, Germany

123

Resource and application-aware resource discovery 825

Fig. 1 Some mechanisms in a
distributed computing
environment

designed and implemented [1]. Examples range from Grid, Cluster, Peer-to-Peer com-
puting environments and to multi- and many-core processors. One of the biggest issues
in such environments is efficient discovery of resources for applications’ processes,
namely resource discovery. There are many issues including heterogeneity, dynam-
icity and failure of resources that make resource discovery a challenging process. In
addition to resource-related issues, different classes of applications and resource usage
patterns complicate this challenge. Also, Network-related issues add up to the problem.

On the other hand, there are several mechanisms in a distributed computing envi-
ronment. Figure 1 shows some of the common mechanisms. Each of the mechanisms
is designed for a certain goal and obtains related knowledge about the environment to
fulfill its goal. For example, load balancing mechanism balances load on resources and
it monitors resources status information, applications’ behavior and the environment’s
policies to maintain this goal. Thus, it has a thorough knowledge about the mentioned
aspects of the computing environment. However, this knowledge can improve resource
discovery decisions significantly since the mechanism discovers suitable resources for
running processes considering applications requirements and resources capacities and
usage policies, [2]. In addition, resource discovery mechanism can improve its deci-
sions by collaborating with inter-process communication mechanism. This mechanism
has significant knowledge about the network including its topology, the nearness of
nodes to each other and network traffic and congestion. Moreover, remote node selec-
tion mechanism finds a node which possesses a required resource from outside if no
suitable resource is present or available in the environment. Therefore, this mechanism
can provide resource discovery mechanism with a good knowledge about the outside
environment.

However, other mechanisms can act accordingly and improve their decisions.
Process migration mechanism migrates a process to another resource and remote
process management mechanism is responsible for installation and configuration of
all the mentioned mechanisms in a newly joint node.

123

826 M. Norouzi, A. Jannesari

Anyhow, we have already researched the impact of the load balancing knowledge
on resource discovery decisions in [2]. We proposed considering some parameters that
represent the behavior of applications as well as some parameters that characterize
resources’ usage patterns. In this paper, we are going to extract the relation between
those parameters using regression analysis and derive a formula. Indeed, regression
is a statistical process for estimating the relationships among variables. There are two
types of variables in a regression function namely dependent and independent. More
specifically, regression helps one understand how the typical value of the dependent
variable varies when any one of the independent variables is changed. Thus, resources
load can be predicted before running new processes on them using this formula and
their workload is automatically balanced; avoiding resource overloading.

Further, we can consider network and QoS parameters and improve resource discov-
ery decisions accordingly. In addition, each node makes resource discovery decisions
locally based on the formula which prevents transmission of resources information.
Simulation results showed that the mechanism increased scalability in size by 7 to
15 %, reduced message transmission rate by 15 % and improved hit rate by 51 %, [2].

The rest of the paper is organized as follows. Section 2 discusses related works.
Sections 3 and 4 introduce the formula and show the experimental results and finally,
Sect. 5 concludes the paper.

2 Related work

Many resource discovery and load balancing mechanisms have been introduced so
far. Concerning various computing environments and their design and implementation
purposes, these mechanisms are categorized. Resource discovery and load balancing
operations are carried out by one single mechanism called the scheduling in Clusters
like PBS, Maui, Torque, Mosix andCondor. These Cluster managers are based on
a central structure and, therefore, they suffer from low scalability, [3]. On the other
hand, resource discovery and load balancing operations are carried out by two separate
mechanisms in Grids and Cluster of clusters environments such as Mosix2 and Moab
[4]. In spite of Clusters, scalability is not the main obstacle of the latter environments,
but they require collecting and transferring a huge amount of resources information
periodically or based on some events to make resource discovery and load balancing
decisions, [5].

Being distributed purely, p2p environments are scalable and they do not need to
transfer resources’ information, [6]. Thus, many p2p-based resource discovery and
load balancing mechanisms have been introduced for Cluster and Grid environments,
[7,8]. However, these mechanisms neglect the fact that there are other mechanisms in
the computing environment that possess significant knowledge about the environment,
the node and its resources that can assist them in making more precise decisions. In [2],
the authors have introduced a model for communication between resource discovery
and load balancing mechanisms in computing environments. They have proposed to
extract the behaviors of running processes and make resource discovery decisions
according to them in addition to the loads of resources. As they have proposed, the
load balancing mechanism is in charge for the extraction of processes’ behavior and

123

Resource and application-aware resource discovery 827

Table 1 Applications behavioral parameters according to resource types

Attribute resource Static Dynamic

Processor • Processor_Scheduling_Algorithm • Process_Required_Load

Memory • Memory_Type • Memory_Size_Request

• Memory_Read_Speed • Memory_Access_Pattern

• Memory_Write_Speed

I/O • I/O_Device_Type • I/O_Usage_Pattern

File • File_System_Type • File_Access_Rate

• FileSys_Access_Type

it can utilize several techniques including simple source code analysis, sequential
access pattern extraction, history-based approaches, and on-line behavior extraction
[9]. Therefore, they have devised a method to prevent resource overloading which
occurs frequently in computing environments, in addition to the other mentioned
benefits. However, they have named some parameters that represent the behaviors of
processes as well as the resources’ load, but they have not pursued to represent a
formula that maintains the relation between the parameters so that the formula can be
used by resource discovery mechanism.

3 The proposed formula

We have proposed in [2] that 2 types of parameters improve resource discovery deci-
sions including applications behavior and resources capacities and usage patterns, [2].
Table 1 shows some applications’ behavioral parameters.

As proposed in [2], load balancing mechanism is responsible to extract the behav-
ior of processes in each node and obtain the actual values of parameters in Table 1.
For example, Processor_Scheduling_Algorithm is a static attribute of processors and
Process_Required_Load is a dynamic attribute. To show how this behavior would
improve resource discovery decisions consider a batch process. The idle situation for
this process is when the discovered processor’s scheduling algorithm is also batch,
such as FCFS. In addition, Process_Required_Load indicates how heavily the process
will use the processor. Therefore, resource discovery mechanism should discover a
processor which its current processes let the required load happen. Like processor, load
balancing mechanism extracts attributes of other resource types and feeds resource dis-
covery mechanism. Table 2 shows some sample values for parameters in Table 1 (Cur-
rently Light or Currently Heavy values are set by the environment’s administrators).

Once a process requires a resource, load balancing mechanism prepares a request
containing these attributes. Then, resource discovery mechanism considers resources
that have the mentioned static attributes merely and uses dynamic attributes to predict
their load assuming the new process is running on them. However, load prediction is a
function of current load on resources and the load generated by the new process. Both
these loads can be calculated; the new load is estimated by behavior of the process
and current load is obtained by calculating capacities of resources against how much
they are being used by their current processes.

123

828 M. Norouzi, A. Jannesari

Table 2 Applications behavioral parameters and their sample values

Resource type Behavioral parameter Sample values

Processor Process_Required_Load ‘Do not Care’ | ‘Currently Light’| ‘Currently Heavy’

Processor_Scheduling_Algorithm ‘Batch’ |‘Interactive’

Memory Memory_Type ‘Main’ |‘Secondary’

Memory_Read_Speed 1 MHz

Memory_Write_Speed 10 KHz

Memory_Size_Request 10 MB

Memory_Access_Pattern ‘Currently Heavy’ | ‘Currently Light’

I/O I/O_Device_Type ‘Network Bandwidth’

I/O_Usage_Pattern ‘Do not Care’ | ‘Currently Light’ | ‘Currently Heavy’

File FileSys_Access_Type ‘Sequential’ |‘Random’

File_Access_Rate ‘Heavy’ | ‘Light’

File_System_Type ‘ext2’ |‘ext3’ | ‘ext4’|‘NTFS’

Table 3 Some important parameters that influence resource usage patterns

Attribute ResourceStatic Dynamic

Processor • Processor_Type • Processor_Usage

• Processor_Speed •Processor_Queue_Length

Memory • Main_Memory_Size • Used_Main_Memory

• Page_Size • Used_Swap_Memory

• Swap_Memory_Size

• Method_Used (e.g., paging, segmentation)

I/O • I/O_Device_Data_Transmission_Rate • I/O_Device_Queue Length (e.g., network)

File • Disk_Management_Algorithm • Disk_Queue_Length

• Disk_Size

• Swap_Size

We have categorized them according to their type and dynamicity

Parameters in Table 3 are used to calculate current load on a resource. Again, we
can categorize them according to the types of resources and their static or dynamic
attributes. Static attributes are used to calculate capacities of resources and dynamic
attributes show how much they are being used by current processes.

Now, we can formulate load prediction considering parameters in Tables 1 and 3.
The general form of formulae for each resource type is as the following:

Decision = e(Processor_Predicted_Load, Memory_Predicted_Load,

I/O_Predicted_Load, File_Predicted_Load) (1)

Processor_Predicted_Load = f (Processor_Speed, Processor_Current_Load,

Processor_Queue_length, Process_Required_Load) (2)

123

Resource and application-aware resource discovery 829

Memor y_Predicted_Load = g(Main_Memor y_Size, Page_Size,
Swap_Memor y_Size, Method_Used, Used_Main_Memor y, Used_Swap_Memor y)

(3)

I/O_Predicted_Load = h(I/O_Data_T ransmission_Rate,

I/O_Queue_Length) (4)

File_Predicted_Load = i(Disk_Management_Algori thm,

Disk_Size, Swap_Size, Disk_Queue_Length) (5)

The scope of our proposed resource discovery mechanism is limited to computing envi-
ronments and thus we only explain how the formula for Processor_Predicted_Load,
i.e., function f in Eq. (2) is obtained hereafter.

Regression analysis extracts the relationship between dependent and independent
variables based on real data samples. To gain the real data, we have conducted an
experiment and consequently kept track of changes that have been made in Proces-
sor_Predicted_Load (as the dependent variable), Process_Required_Load, Proces-
sor_Current_Load, Processor_Queue_Length and Processor_Speed (as independent
variables). We have used least squares regression method to represent the relation
between the parameters. Equation (6) shows the regression function with the vari-
ables.

Processor_Predicted_Load

= β0 + β1 × Process_Required_Load + β2 × Processor_Current_Load

+β3 × Processor_Queue_Length + β4 × Processor_Speed (6)

We need to calculate the values of β0 to β4 in Eq. (6) to obtain the final format of
the formula. In this case, regression analysis proposes an equation set where β0 to β4
are considered as variables and the real data that we have obtained in experiments as
constants. Equations (7) to (11) constitute the equation set. The series in Eqs. (7) to
(11) are replaced with constant values obtained in experiments. In other words, the
series are sum of the real data we have obtained during experiments. Therefore, the
result is five equations which have β0 to β4 as variables.

n∑

i=1

Processor_Predicted_Loadi = β0.n + β1.

n∑

i=1

Process_Required_Loadi

+β2.

n∑

i=1

Processor_Current_Loadi + β3.

n∑

i=1

Processor_Queue_Lengthi

+β4.

n∑

i=1

Processor_Speedi (7)

123

830 M. Norouzi, A. Jannesari

n∑

i=1

Process_Required_Loadi × Processor_Predicted_Loadi

= β0.

n∑

i=1

Process_Required_Loadi + β1.

n∑

i=1

Process_Required_Load2
i

+β2.

n∑

i=1

Process_Required_Loadi × Processor_Current_Loadi

+β3.

n∑

i=1

Process_Required_Loadi × Processor_Queue_Lengthi

+β4.

n∑

i=1

Process_Required_Loadi × Processor_Speedi (8)

n∑

i=1

Processor_Current_Loadi × Processor_Predicted_Loadi

= β0.

n∑

i=1

Processor_Current_Loadi

+β1.

n∑

i=1

Processor_Current_Loadi × Process_Required_Loadi

+β2.

n∑

i=1

Processor_Current_Load2
i

+β3.

n∑

i=1

Processor_Current_Loadi × Processor_Queue_Lengthi

+β4.

n∑

i=1

Processor_Current_Loadi × Processor_Speedi (9)

n∑

i=1

Processor_Queue_Lengthi × Processor_Predicted_Loadi

= β0.

n∑

i=1

Processor_Queue_Lengthi

+β1.

n∑

i=1

Processor_Queue_Lengthi × Process_Required_Loadi

+β2.

n∑

i=1

Processor_Queue_Lengthi × Processor_Current_Loadi

123

Resource and application-aware resource discovery 831

+β3.

n∑

i=1

Processor_Queue_Length2
i

+β4.

n∑

i=1

Processor_Queue_Lengthi × Processor_Speedi (10)

n∑

i=1

Processor_Speedi × Processor_Predicted_Loadi

= β0.

n∑

i=1

Processor_Speedi

+β1.

n∑

i=1

Processor_Speedi × Process_Required_Loadi

+β2.

n∑

i=1

Processor_Speedi × Processor_Current_Loadi

+β3.

n∑

i=1

Processor_Speedi × Processor_Queue_Lengthi

+β4.

n∑

i=1

Processor_Speed2
i (11)

4 Experiments and results

We have conducted the experiments on a 3 node cluster using Rocks Cluster v5.2 and
Linpack which is a standard and well-known benchmark for computing environments.
Table 4 shows hardware and software specifications of the three nodes.

According to Table 4, Processor_Speed is a variable which took one of 3,300,
2,400 or 1,596 values. Also, we obtained Processor_Queue_Length using Linux

Table 4 Specifications of the cluster nodes

Hardware
specification

Software specification

Frontend node 4 GB RAM and a
3300 MHz Intel
Pentium D

Linux CentOS 5.2, HPL-2, Open MPI and ATLAS 3.8.3

Compute0-0 2 GB RAM and a
2,400 MHz Intel
Pentium D

Linux CentOS 5.2, HPL-2, Open MPI and ATLAS 3.8.3

Compute0-1 1 GB RAM and a
1,596 MHz Intel
Pentium D

Linux CentOS 5.2, HPL-2, Open MPI and ATLAS 3.8.3

123

832 M. Norouzi, A. Jannesari

Fig. 2 The relation between predicted load on a processor and required load for a process

commands to count the number of running processes. For example, “ps aux | wc -l”
counts the number of processes running on a Linux system by any user. There are also
other commands that can be used instead. In addition, we had to read the contents of
“/proc/stat” file at each node to get the values of Processor_Current_Load, since Linux
does not have any system variable that gives the current load on a processor. Moreover,
we have benchmarked the platform twice in identical situations and recorded the
required load of processes in the first run and used the data in the second run (i.e.,
history-based approach) to get data samples for Process_Required_Load. Finally, we
have recorded processors’ loads after running new processes on them so that we have
the data for Processor_Predicted_Load. Therefore, we have values of all the five
variables and we can derive the relation between them using regression analysis.

Figures 2, 3, 4, 5 show the experimental results. For the sake of represen-
tation, we have depicted the sample values of variables with regard to Proces-
sor_Predicted_Load. The R2 value in each diagram indicates how the two variables are
correlated. A higher R2 value shows a higher correlation between the independent vari-
ables and Processor_Predicted_Load. For example, an R2 value of 0.86 in Fig. 2 indi-
cates that Process_Required_Load has an 87 % effect on Processor_Predicted_Load.
This value shows that 87 % of changes in Processor_Predicted_Load can be predicted
by Process_Required_Load.

The horizontal axis in Fig. 2 shows the amount of load that is required by a process.
This value is extracted by load balancing mechanism using different approaches, e.g.,
history-based approach in this research. The vertical axis shows the amount of work-
load imposed on a processor after running the process on the processor. As it is
observed in Fig. 2, the diversity of sample data points shows a high correlation between
Process_Required_Load and Processor_Predicted_Load. This fact is approved by a
high value of R2 that exists in the relation.

The horizontal axis in Fig. 3 shows sample data points of Processor_Current_Load
taken during executions. This figure shows how current load on a processor influences
its future load. The R2 value quantifies this relation. The value of R2, in this case, is
0.737 which shows that almost 73 % of changes in the future load is partially caused

123

Resource and application-aware resource discovery 833

Fig. 3 The relation between processors predicted load and current load on processors

Fig. 4 The relation between processors predicted load and number of processes in their queues

by current load of the processor. This is an approximately high value as it is somehow
intuitive in real world.

Figure 4 shows the relationship between number of processes waiting in the queue
of processors and their predicted loads. However, each process exerts an additional
load on a processor and, therefore, the predicted load on a processor with more number
of processes in its queue is more than a processor with fewer waiting processes. This
fact is shown by a positive slope in Fig. 4. For example, the predicted load is between
80 and 93 % when there is only one process in the processor’s waiting queue while
the predicted load is between 90 and 100 % when there are 2 waiting processes in the
queue.

Figure 5 shows how the speed of a processor will influence its predicted load.
As a rule of thumb, the higher the speed of a processor is, the lower load on the
processor will be; considering the same amount of load and a certain time interval.
This is due to the fact that a faster processor processes workload faster and, therefore,
the amount of workload to process in the future will be less. This fact is, however,
indicated by a negative slope in the diagram of Fig. 5. The slope, in fact implies that
a slower processor will have more workload to process in the future. For example,

123

834 M. Norouzi, A. Jannesari

Fig. 5 The relation between processors predicted load and their speeds

Fig. 5 suggests thatcompute-0-1 node with a processing speed of 1,596 MHz has more
workload to process (approximately 10 % in average) than frontend node which has a
processing speed of 3,300 MHz.

Nevertheless, we have considered 32 irredundant data samples from the experi-
ments. Therefore, n in Eqs. (7) to (11) is equal to 32. By replacing the experimental
data, we reach to the following equalities:

32∑

i=1

Processor_Predicted_Loadi = 2848.89 (12)

32∑

i=1

Process_Required_Loadi = 2478 (13)

32∑

i=1

Processor_Current_Loadi = 733.36 (14)

32∑

i=1

Processor_Queue_Lengthi = 63 (15)

32∑

i=1

Processor_Speedi = 75252 (16)

n∑

i=1

Process_Required_Load2
i = 192866 (17)

n∑

i=1

Processor_Current_Load2
i = 17901.09 (18)

n∑

i=1

Processor_Queue_Length2
i = 143 (19)

123

Resource and application-aware resource discovery 835

n∑

i=1

Processor_Speed2
i = 191936592 (20)

32∑

i=1

Process_Required_Loadi × Processor_Predicted_Loadi = 221457.91

(21)
32∑

i=1

Processor_Current_Loadi × Processor_Predicted_Loadi = 66116.54

(22)
32∑

i=1

Processor_Queue_Lengthi × Processor_Predicted_Loadi = 5717.342

(23)
32∑

i=1

Processor_Speedi × Processor_Predicted_Loadi = 6618567.5 (24)

n∑

i=1

Process_Required_Loadi × Processor_Current_Loadi = 57466.87 (25)

n∑

i=1

Process_Required_Loadi × Processor_Queue_Lengthi = 4973 (26)

n∑

i=1

Process_Required_Loadi × Processor_Speedi = 5770356 (27)

n∑

i=1

Processor_Current_Loadi × Processor_Queue_Lengthi = 1574.52 (28)

n∑

i=1

Processor_Current_Loadi × Processor_Speedi = 1612607.3 (29)

n∑

i=1

Processor_Queue_Lengthi × Processor_Speedi = 133668 (30)

By substituting Eqs. (12), (13), (14), (15) and (16) in Eq. (7), we reach to Eq. (31):

32 × β0 + 2478 × β1 + 733.36 × β2 + 63 × β3 + 75252 × β4 = 2848.89 (31)

By substituting Eqs. (21), (13), (17), (25), (26) and (27) in Eq. (8), we reach to Eq. (32):

2478×β0 +192866×β1 +57466.87×β2 +4973×β3 +5770356×β4 = 221457.91
(32)

123

836 M. Norouzi, A. Jannesari

By substituting Eqs. (22), (14), (25), (18), (28) and (29) in Eq. (9), we reach to Eq. (33):

733.36 × β0 + 57466.87 × β1 + 17901.09 × β2 + 1574.52 × β3 + 1612607.3

×β4 = 66116.54 (33)

By substituting Eqs. (23), (15), (26), (28), (19) and (30) in Eq. (10), we reach to
Eq. (34):

63 × β0 + 4973 × β1 + 1574.52 × β2 + 143 × β3 + 133668 × β4 = 5717.342 (34)

By substituting Eqs. (24), (16), (27), (29), (30) and (20) in Eq. (11), we reach to
Eq. (35):

75252 × β0 + 5770356 × β1 + 1612607.3 × β2 + 133668

×β3 + 191936592 × β4 = 6618567.5 (35)

Eqs. (31) to (35) constitute an equation set with β0 to β4 as variables. Since there are
5 variables and 5 equations, the equation set has only one unique answer. By solving
this equation set, the values for β0 to β4 are determined as the following based on this
set of data samples:

β0 = 37.4 (36)

β1 = 0.628 (37)

β2 = 0.249 (38)

β3 = 0.007 (39)

β4 = −0.00115 (40)

Finally, by substituting the values of β0 to β4 in Eq. (6), we reach to Eq. (41) which
shows the relationship between Processor_Predicted_Load and Process_Required_
Load, Processor_Current_Load, Processor_Queue_Length and Processor_Speed.

Processor_Predicted_Load = 37.4 + 0.628 ∗ Process_Required_Load

+0.249 ∗ Processor_Current_Load + 0.007 ∗ Processor_Queue_Length

−0.00115 ∗ Processor_Speed (41)

The value of R2is 0.985 when all variables are considered. This value indicates that
almost 98 % of changes in Processor_Predicted_Load can be explained by the formula.

123

Resource and application-aware resource discovery 837

Fig. 6 The difference between real and predicted loads on processors in the data samples

In other words, the formula will generate a correct prediction with a probability of
98 %.

To check the accuracy of predictions, we have recorded the real load on processors
after executing processes. Figure 6 demonstrates the differences between real and
predicted loads considering the 32 data samples we have used.

As it is shown in Fig. 6, the difference between real and predicted loads is confined
to 2 % at most (it occurs at data sample 21). In worst case, if the formula gener-
ates a less accurate prediction, the process will pursue its execution on the processor
and overloads it. In this situation, load balancing mechanism asks resource discov-
ery mechanism to discover another processor and upon discovery, process migration
mechanism migrates the process to the new processor. Since we are not concerned
about time critical applications in this paper, the R2value (i.e., 0.985) has shown to
be an acceptable prediction in our research. Nevertheless, a higher probability can
be achieved by considering other parameters inside network, dependencies between
subtasks, network topologies, global scheduling policies, users’ QoS-related variables
etc. which we will consider in our future work.

Moreover, Fig. 7 shows how and where the formula will be used in a computing
environment. It represents some sample nodes containing load balancing and resource
discovery mechanisms in the environment. We have described the communication
model between resource discovery and load balancing mechanisms in detail in our
previous work, [2].

Figure 7 shows where the formula is used in a computing environment. As shown
in Fig. 7, load balancing mechanism extracts the behavior of running processes at
each node and when a resource is required, it prepares a request and forwards it to
its corresponding resource discovery mechanism. Further, resource discovery mech-
anism uses the formula to predict the future load on the processor and if it keeps the
load under a guaranteed threshold, it will pursue its execution in the host node. The
threshold is obtained according to the capacities of each processor. In case the process
overloads the processor, resource discovery mechanism will send a request containing
Process_Required_Load to other nodes. Resource discovery mechanisms at destina-

123

838 M. Norouzi, A. Jannesari

Fig. 7 Two sample nodes communicating with each other in the computing environment

tion nodes use the formula to calculate the future load for load checking. However,
the final decision is made by load balancing mechanisms at destination nodes and the
results are sent to the source node. Upon reception of results, resource discovery mech-
anism at source node selects the node with the lowest Processor_Predicted_Load.

Therefore, it can be predicted how heavily processors will be used before assign-
ing them new processes using this method and thus their workload will be balanced
automatically and no load redistribution will be required.

5 Conclusion and future work

In this paper, we proposed an application and resource aware resource discovery
mechanism in computing environments. The goal of this mechanism is to prevent
resource overloading through workload prediction. The prediction technique uses the
two basic elements of any computing environment, namely resources and applications.

123

Resource and application-aware resource discovery 839

The mechanism predicts how an application’s process influences a processor and if it
will keep its load under a certain threshold, the process will pursue its execution on
the processor. Otherwise another processor will be selected.

The mechanism uses a mathematical formula that parameterizes the behavior of
applications and resources’ usage patterns to perform predictions. To propose the
formula, we used regression analysis which is a statistical method for extracting the
relationship among dependent and independent variables based on actual data that
are obtained during previous executions of applications. The R2 value in regression
analysis shows how dependent and independent variables are correlated (a higher
value indicates a higher correlation). This value, which indicates how much we can
rely on predictions, is 98 % in this research with the current set of parameters we
have considered. However, we would like to extend the formula in our future work
and consider other parameters to make more precise predictions. Also, we would like
to investigate and apply this approach to multi- and many-core systems for thread
workload prediction and scheduling in our future work.

References

1. Tabbal A, Anderson M, Brodowicz M, Kaiser H, Sterling TL (2011) Preliminary design examination
of the ParalleX System from a software and hardware perspective. In: ACM SIGMETRICS, San Jose,
pp 81–87

2. Arab MN, Sharifi M (2014) A model for communication between resource discovery and load balancing
units in computing environments. J Supercomput 68(3):1538–1555

3. Nitzberg B, Schopf JM, Jones JP (2004) PBS Pro: grid computing and scheduling attributes. Kluwer
Academic Publishers, Norwell

4. Meiri E, Barak A (2007) Parallel compression of correlated files. In: Proceedings of IEEE Cluster
Computing, Austin, Texas

5. Trunfio P, Talia D, Papadakis H, Fragopoulou P, Mordacchini M, Pennanen M, Popove K, Vlassov V,
Haridi S (2007) Peer-to-peer resource discovery in grids: models and systems. J Comput Syst 20(3):864–
878

6. Ripeanu M, Foster I, Iamnitchi A (2002) Mapping the Gnutella Network: properties of large-scale
peer-to-peer systems and implications for system design. J Internet Comput 6(1):50–57

7. Talia D, Trun P, Zeng J (2007) Peer-to-peer models for resource discovery on grids. J Comput Syst
12(4):864–878

8. Arab MN, Mirtaheri SL, Khaneghah EM, Sharifi M, Mohammadkhani M (2011) Improving learning-
based request forwarding in resource discovery through load-awareness. In: International Conference
on Data Management in Grid and P2P Systems, Toulouse, pp 73–82

9. Dodonov E, Mello RFD (2010) Novel approach for distributed application scheduling based on predic-
tion of communication events. Future Gener Comput Syst 26(5):740–752

123

	Resource and application-aware resource discovery in computing environments
	Abstract
	1 Introduction
	2 Related work
	3 The proposed formula
	4 Experiments and results
	5 Conclusion and future work
	References

