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Abstract. The brain is probably the most complex organ in the hu-
man body. To understand processes such as learning or healing after
brain lesions, we need suitable tools for brain simulations. The Model
of Structural Plasticity offers a solution to that problem. It provides a
way to model the brain bottom-up by specifying the behavior of the
neurons and using structural plasticity to form the synapses. However, its
original formulation involves a pairwise evaluation of attraction kernels,
which drastically limits scalability. While this complexity has recently
been decreased to O(n · log2 n) after reformulating the task as a variant
of an n-body problem and solving it using an adapted version of the
Barnes–Hut approximation, we propose an even faster approximation
based on the fast multipole method (FMM). The fast multipole method
was initially introduced to solve pairwise interactions in linear time. Our
adaptation achieves this time complexity, and it is also faster in practice
than the previous approximation.

Keywords: Fast Multipole Method · Brain Simulation · Structural
Plasticity · Scalability

1 Introduction

The human brain undergoes constant change not only in children but throughout
the whole life [8]. These changes, especially in the form of synapse creation and
deletion, are believed to be responsible for a major portion of the brain dynamics.
There is overwhelming evidence that structural plasticity, i.e., the change of
connectivity of neurons, is responsible for learning, memory creation, and healing
after lesions [12, 23, 20, 24, 25]. However, current in vivo imaging techniques cannot
create connectivity maps for human brains at a scale comparable to the original [5,
12, 13]. This leaves a large portion of current research in need of simulations to
fill the gap. Many state-of-the-art simulators can mimic very complex behaviors
of a single neuron, however, they lack the possibility to let neurons freely connect
to others. This task inherently involves solving pairwise interactions. Seeing that
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the human brain contains 86 billion neurons [6], this drastically limits scalability.
Many simulators bypass this issue by only allowing already existing connections
to be strengthened or weakened (synaptic plasticity), bringing the complexity
down to linear in the number of neurons and synapses per neuron.

It is not fully understood how neurons form and delete synapses over time.
For a long time, Hebbian Plasticity [19] was the dominant opinion. In recent
times, however, homeostatic mechanisms—in which neurons pursue a stable
state and thus the whole brain reaches an equilibrium—have been suggested and
shown to be accurate [7, 10]. One of these mechanisms, the Model of Structural
Plasticity [7], predicts the recovery of lesions in mice very well. In a recent
publication, Rinke et al. [27] have reduced the quadratic complexity of solving
the pairwise interactions to O(n · log2 n). They achieved this by utilizing the
Barnes–Hut algorithm [3], which has been developed to approximately solve
pairwise interactions, which is popular in the context of physics.

We propose another approximation for the pairwise interactions based on
the fast multipole method (FMM) [28]. While Barnes–Hut calculates point-area
interactions, FMM calculates area-area interactions, reducing the complexity
from quadratic to linear. Current in vivo imaging techniques such as [9] cannot
precisely locate where synapses begin and end; they can only trace them to a
certain area. This, together with the fact that we do not know exactly why a
particular neuron formed a (long-reaching) synapse and not its direct neighbor,
gives us confidence that this approximation is reasonable.

In this publication, we build on the Barnes–Hut approximation and utilize
their distributed algorithm to implement our approximation in terms of the fast
multipole method. To summarize, our main contributions are:

– We integrated the fast multipole method into an existing parallel neuron
simulation and replaced the Barnes–Hut algorithm, which was responsible
for finding synapses.

– We reduced the theoretical complexity from O(n/p · log2 n) to O(n/p+ p),
when n is the number of input neurons and p the number of MPI ranks.

– We measured the influence on performance in practice for different numbers
of computing nodes.

The remainder of this paper is structured as follows. We firstly review related
work in Section 2 before we explain relevant background in Section 3. Afterward,
we present our algorithm in Section 4, and analyze it in terms of theoretical and
practical run time with multiple compute nodes in Section 5.

2 Related Work

There are many brain simulators freely available, for example, C2 [2], NEST [16],
and The Virtual Brain [29]. They allow initial connectivity of neurons to be
inserted, and during the simulation, they may strengthen and weaken those.
However, they do not create new connections.
This way, their connectivity update step has complexity O(n ·m), where n is the
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number of neurons and m is the number of synapses per neuron. The latter term
is most often bounded (e.g., at most 1000 synapses per neuron), and thus, it is
linear in the number of neurons.

Structural plasticity—the way in which neurons grow new and delete old
synapses—has gained track in recent years; see [31] for an overview of the current
state of the art. A simple model for structural plasticity, proposed by van Ooyen
et al. [30], achieves this by defining the outreach of a neuron to be a circle
around its center. The individual neurons form synapses proportional to the
overlapping area whenever two such circles overlap. This model requires linear
time for the connectivity update, but it lacks the possibility of connecting neurons
while omitting a third neuron between them. The Model of Structural Plasticity
(MSP) [7], on which this publication is based, overcomes this limitation by
calculating the connection probability dependent on the distance of neurons.

In the MSP, the likelihood of a synapse forming between two neurons with
positions p1, p2, is proportional to exp(−||p1 − p2||22/σ), with a scaling constant
σ > 0. This way, the greater the distance between two neurons is, the smaller the
likelihood of a connection between them is. Rinke et al. [27] used this insight to
approximate the influence of a whole area of neurons far away with the Barnes–
Hut algorithm [3]. They achieved this by inserting the neurons into an octree
and calculating the attraction to inner nodes whenever possible (thus skipping
the need to calculate the attraction to all neurons in the induced subtree). This
way, they reduced the complexity of calculating O(n2) interactions (n again the
number of neurons) to O(n · log2 n).

The fast multipole method (FMM) [17, 28] is another way of approximating
pairwise interactions. Instead of only combining the affecting elements (neurons,
particles, etc.) at the calculation’s source side, they also group the affected ele-
ments at the target side. This way, they can approximate the pairwise interactions
in linear time using Hermite and Taylor expansions [14, 15]. This is used quite
successfully in physics, including astrophysics [11] and particle simulation [1].
There exists many accelerated FMM implementations both with GPUs and MPI,
for example [18, 26, 32]. However, they focus on a fixed-level attraction, i.e., in
contrast to us, they don’t need to resolve the attractions down to a object–object
level.

3 Background

In this section, we repeat the arguments and definitions from previous publications
to be partially self-contained. This includes the initial publication for the Model
of Structural Plasticity [7], the one that introduced the fast multipole method
we use [17], and the publication that introduced the Barnes–Hut approximation
to the MSP [27].

3.1 The Model of Structural Plasticity
The Model of Structural Plasticity [7] describes how neurons change their plas-
ticity over time, i.e., how they form new and delete old synapses. It consists of
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three different phases:
The update of electrical activity, the update of synaptic elements, and the update
of synapses. An overview of the used model parameters can be seen in Table 1.

Update of Electrical Activity In the step to update the electrical activity, all
neurons calculate their current activity. This can be done by neuron models such
as the one proposed by Izhikevich [21], the FitzHugh–Nagumo model [22], or as
in our case, a Poisson spiking neuron model (the same as in [27]).

In our model, the activity, on the one hand, strives exponentially to a resting
potential (resting potential: 0.05, constant of decay: 5); on the other hand, it
is constantly increased by a small background activity (0.003) and the input of
all connected neurons (those neurons that form a synapse from their axon to
the dendrite of the neuron in question) that spiked in the last update step by a
fixed amount (5e-4). Then a uniformly distributed value from [0, 1] is drawn, and
if this value is smaller than the current activity, the neuron spikes. If a neuron
spikes, it does not spike again for a fixed number of steps (refractory period: 4).

Update of Synaptic Elements In the update step, each neuron updates its inter-
cellular calcium level. The calcium level decays exponentially (constant of decay:
1e-5), while if a neuron spiked in that simulation step, it is increased by a fixed
value (1e-3).

After the neuron has updated its calcium, it uses this to determine the amount
of change to its synaptic elements. We use the same Gaussian growth curve as
originally proposed in [7], setting the right intersection (the target value) to
0.7, the left intersection (the point at which the elements start to grow) to 0.4
for axons, and 0.1 for dendrites, and the scaling parameter to 1e-4 (maximum
attained value). The neuron updates the number of axons and dendrites by the
calculated amount.

Update of Synapses Every time a neuron updates its synapses (once every 100
updates of activity and synaptic elements), it checks its number of synaptic
elements. If it now has fewer elements than synapses (the elements are continuous,
the synapses discrete), it chooses synapses randomly, notifies the connected
neurons, and deletes them. It does so for both the dendrites with the incoming
synapses and the axons with the outgoing synapses.

After the deletion phase, if a neuron has at least one vacant axon, it searches
for another neuron with one vacant dendrite to connect to. For each vacant axon
(i), it calculates the probability of connecting to a vacant dendrite (j) by

K(i, j) = exp
(−||posi − posj ||22

σ

)
(1)

and chooses one such vacant dendrite (σ = 750 as in [7]). These requests are
gathered (this takes quadratic time) and sent to the neurons with vacant dendrites.
Those resolve potential conflicts, and a new synapse is formed whenever possible.
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Name Symbol Value
Resting potential x0 0.05
Membrane potential constant of decay τx 5
Background activity I 0.003
Increase in calcium per spike β 5e-4
Calcium constant of decay τCa 1e-5
Gaussian growth curve right intersection ε 0.7
Gaussian growth curve left intersection (axons) ηA 0.4
Gaussian growth curve left intersection (dendrites) ηD 0.1
Growth scaling parameter µ 1e-4
Probability kernel standard deviation σ 750

Table 1: Overview of the model parameters used in the executions and tests. A
more detailed description of the model and the parameters can be found in [7].

3.2 A Distributed Octree

In [27], Rinke et al. introduced a distributed octree to overcome the memory
limitations inherent to large simulations. The problem is that only a limited
number of octree nodes can be held in memory. In order to be able to simulate
more neurons and thus achieve the desired order of magnitude, many MPI ranks
are required. They recursively divide the simulation domain into eight cells until
a cell contains at most one neuron. Inner nodes of the octree store the sum of
vacant elements of all their children and the combined position (the centroid),
which is just the weighted average position of the children. The octree is updated
in a step-wise fashion: All ranks update their subtrees, then exchange the branch
nodes, and calculate the shared upper portion afterward. They insert all neurons
into a spatial octree, where every MPI rank is responsible for 1, 2, or 4 subtrees.
All ranks share the same upper portion of the octree (heights 0 to log(8, p) where
p is the number of ranks), and if a rank i requires information of a neuron on
rank j, it downloads them lazily.

3.3 Mathematical Formulation of the Fast Multipole Method

Assuming there is a set of points in space, we consider a split into M sources
s1, . . . , sM (in our case the neurons that have a vacant dendrite) and N targets
(the neurons that have a vacant axon) t1, . . . , tN . If a neuron has vacant axons
as well as vacant dendrites, it is included in both sets M and N . The general
form of an n-body problem is [4]:

u(t) =

M∑
i=1

ωi ·K(t, si) (2)

ωi ∈ R: The weight of the point si.
K : (R3 × R3) → R: A kernel that calculates the interaction between t and si.
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This formula gives the total attraction u(t) for a vacant axon. If a neuron
has more than one vacant axon, we multiply u(t) with that number. In order
to calculate u(·) for every target tj , this function must be calculated N times,
which results in a total complexity of O(N ·M). If every source is also a target,
i.e., N = M , this scales quadratically.

The general form of Equation 2 fits the attraction formula of the MSP (cf.
Equation 1), with ωi being the number of vacant dendrites of a neuron and u(t)
being the force of attraction to an axon of a neuron at position t.

Notation A multi-index α = (n1, n2, n3) is a tuple of three natural numbers
(including zero). For any multi-index and any vector t = (x, y, z) ∈ R3, we define
the following operations:

|α| = n1 + n2 + n3 (3)
α! = n1! · n2! · n3! (4)
tα = xn1 · yn2 · zn3 (5)

For our adapted fast multipole method we often use multi-indices in combination
with sums. For example,

∑
α≥p or

∑
0≤α≤p stands for three nested sums with

n1, n2, n3 ≥ p or 0 ≤ n1, n2, n3 ≤ p, respectively.

Approximations of Attraction Kernel In general the MSP sums over Gaussian
functions. We can approximate the attraction of multiple neurons in a box and
group the sources and targets together. For each such box (S for a box of sources,
T for a box of targets), we need to calculate the centroid with respect to its
sources sC and its targets tC . Using the function h(α, x) (the same as in [17]
Equation 8) and δ = σ2, Equation 2 with the Gaussian kernel of Equation 1 has
the following Taylor series (using a multi-index β):

u(t) =
∑
0≤β

Bβ ·

(
t− tC√

δ

)β

Bβ =
(−1)|β|

β!
·

M∑
j=1

ωj · h

(
β,

sj − tC√
δ

) (6)

We can truncate the outer series from Equation 6, i.e., sum only up to
some fixed β. The approximation error depends on the box side length, which is
determined by the box’s level in the octree. Furthermore, the number of calculated
terms and the number of sources that are approximated have an influence on
the approximation error. Overall, the calculation of one coefficient Bβ from
Equation 6 has complexity O(M), and crucially they are shared for all targets in
the box. In addition, Equation 6 must be calculated for N target points with
k coefficients. This results in a complexity of O(k ·M + k ·N) for a interaction
between one target box and one source box.
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Alternatively, we can also approximate Equation 1 with Hermite coefficients
Aα, where the same argument as before applies (with multi-index α). The
complexity to calculate this expansion is also O(k ·M + k ·N) for k coefficients:

u(t) =
∑
0≤α

Aα · h

(
α,

t− sC√
δ

)

Aα =
1

α!
·

M∑
j=1

ωj ·

(
sj − sC√

δ

)α (7)

4 Algorithm Description

To determine which neurons form synapses with each other, we must calculate
the forces of attraction between the target and source neurons (note here that a
“source” and “target” are used differently in the literature: The “source” neuron
is the one with the axon, however, it is the “target” of the attraction). Therefore,
we create an n-body problem on top of the kernel in Equation 1 in order to apply
the series expansions already presented:

u(t) =

M∑
j=1

ωj · exp
(
−||t− sj ||22

σ2

)
, (8)

where ωj is the number of vacant dendritic elements of the j-th neuron. Further-
more, we use the same distributed octree as in [27]. In our version—compared to
the Barnes–Hut inspired one—we also need to calculate the centroid of the inner
nodes with respect to the axons. For this, we increased the size of the octree
nodes from 200 Bytes to 264 Bytes (2x 32 Byte for the axon positions, which
consist of 24 Bytes vector and a flag).

Algorithm 1 shows the implementation for finding suitable neurons. For the
initialization of the stack (Line 2), we first collect all roots of the subtrees and
then find another subtree-root as the target for each of them, as described in
the paragraph below. We push the source–target pairs onto the stack and then
process the elements of the stack until it is empty. Whenever we want to form a
synapse, we save the source and target ids and send them to the MPI rank of
the target. Each rank collects these requests, chooses locally which to accept (to
avoid too many synapses, e.g., five axons want to connect to two dendrites), and
sends the answers back.

Initialization of the Stack Every MPI rank does the following: For each of its
subtree-roots, choose a target with choose_target (cf. Algorithm 2) with the
global root as initial target. Fix the subtree-root and only unpack the targets
until the target is at the same level as the subtree-root. Put these pairs on the
stack.
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1 find_synapses():
2 init(stack)
3
4 while (! stack.empty()):
5 source_node, target_node = stack.pop()
6
7 if (source_node.is_leaf && target_node.is_leaf):
8 form_synapse(source_node, target_node)
9

10 else if (source_node.is_leaf):
11 new_target = choose_target(source_node, target_node.children)
12 stack.push(source_node, new_target)
13
14 else if (target_node.is_leaf):
15 new_source = choose_source(source_node.children, target_node)
16 stack.push(new_source, target_node)
17
18 else: foreach (new_source in source_node.children)
19 new_target = choose_target
20 (new_source, target_node.children)
21 stack.push(new_source, new_target)

Algorithm 1: Pseudo code of the method find_synapses. choose_target
and choose_source are shown in Algorithm 2.

Choice of Target Node This method calculates the attractiveness of the target
neurons to the source neuron. It does so by first determining if it needs to evaluate
the formula directly or if it can use an approximation (Taylor or Hermite). It
then calculates the attractiveness of the children of the target and chooses one
randomly, proportional to their attractiveness. In addition, the method needs two
constants c1 and c2, which determine when a Taylor or a Hermite expansion is
used as it is easier to evaluate the attractions directly if the number of dendrites
and axons is small.

4.1 Complexity

For the complexity, it is enough to determine how often choose_target is called.
We assume a balanced octree and start with the serial version. Starting at
level 0, the root must determine a target for each of its children, so it calls
choose_target 8 times and thus spawns 8 new pairs to consider. For each of the
newly created pairs, the same applies, they spawn (up to) 8 new tasks, and in
general, processing level k of the octree spawns 8k tasks. As the tree is balanced
its height is log(8, n) for n neurons, so it spawns 8, 64, . . . , n/8, n tasks, i.e., linear
in the number of neurons.
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choose_target itself either performs a direct pair-wise calculation (with
quadratic complexity) or one of the FMM approximations (with linear complexity).
In our instance, however, choose_target has a constant complexity because the
number of sources and targets is at most 8.

For the parallel version, we have to initialize the stack first. This requires
choosing a target node for each subtree-root on the same level, which is log(p) for
p the number of MPI ranks. Once we have found the pairs, we can apply the serial
version to n/p neurons, so the overall complexity is O(n/p+ log p). Gathering
the branch nodes beforehand has complexity O(p), so the overall complexity of
the connectivity update is O(n/p+ p).

1 choose_target(source_node, target_node):
2 probabilities = [ ]
3
4 for (i = 0; i < target_node.number_children; i++):
5 child = target_node.children[ i ]
6
7 if (source.is_leaf || child.is_leaf):
8 probabilities[ i ] = direct_calculation()
9

10 else if (child.get_number_dendrites() > c1
11 && source_node.get_number_axons() > c2):
12 probabilities[ i ] = calculate_hermite_expanison()
13
14 else if (child.get_number_dendrites() > c1):
15 probabilities[ i ] = calculate_taylor_expanison()
16
17 else:
18 probabilities[ i ] = direct_calculation()
19
20 total_probability = sum(probabilities)
21 rand = uniform_random(0, total_probability)
22 index = upper_bound(probabilities, rand)
23
24 return target_node.children[index]

Algorithm 2: choose_target calculates the probability for source_node to
connect to each child of target_node. It chooses the method based on the num-
ber of vacant axons and dendrites. It then picks one target neuron randomly
with chances proportional to the calculated probabilities. choose_source
works analogously with swapped roles of source_node and target_node. In
our case, c1 = 70 and c2 = 70.
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5 Evaluation

Our proposed algorithm trades time against freedom of choice; the complexity of
finding the target neurons is lower than for the adapted Barnes–Hut algorithm,
however, we lose some freedom of choice for the synapses. Previously, with the
Barnes–Hut algorithm, each axon searched its own dendrite, so if a neuron had
two vacant axons, they could connect to dendrites with a large distance between
them as they could be in different nodes. In our algorithm, both axons are always
in the same box, so their choice will be the same throughout the whole process.
This also affects axons on neurons that are close to each other—if they are in the
same box on level l, their choice of boxes coincides on every level i = 0, . . . , l− 1.
This, in turn, means that every neural network that was calculated with the fast
multipole method can also be calculated with the Barnes–Hut algorithm, but
not vice versa.

All calculations for this research were conducted on the Lichtenberg 2 high-
performance computer of the TU Darmstadt. One compute node has 2 Intel
Xeon Platinum 9242 processors (with disabled hyper-threading), 384 GB main
memory, and the interconnection is a 100 GBit/s InfiniBand. We always tested
the algorithm with 500 000 simulation steps (5000 connectivity updates) and a
network with only excitatory neurons.

From a neuroscientific point of view, we investigated the following observ-
able metrics for both the Barnes–Hut and the fast multipole method inspired
algorithms:

1. The average calcium concentration of the neurons (together with the standard
deviation) to see how well both algorithms allow the neurons to reach a local
equilibrium.

2. The number of formed synapses to see how well the overall simulation reaches
a global equilibrium.

Figure 1 shows the average calcium of the neurons (together with its standard
deviation), and Figure 2 shows the total number of created synapses for one run
of p = 64 MPI ranks and n = 320 000 neurons. With our proposed algorithm,
the average calcium is nearly indistinguishable from the Barnes–Hut algorithm,
however, its standard deviation is slightly higher. Our algorithm trails the previous
version slightly when it comes to the total number of formed synapses. This is due
to more collisions, resulting in more rejections, so we need more simulation steps
to connect all vacant axons. Furthermore, the total number of synapses is less for
our algorithm. The reason is that a neuron generally grows more dendrites than
axons. If the synapses now cluster more (due to the restricted freedom of choice),
some neurons receive more synapses than they want—so they delete some again.
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Fig. 1: The average calcium (solid lines) and its standard deviation (light area)
for both algorithms (Barnes–Hut in solid purple, fast multipole method in dashed
orange). The target calcium is 0.7 (thinly dashed black line). p = 64 MPI ranks,
n = 320 000 neurons, and 500 000 simulation steps (5000 connectivity updates).
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Fig. 2: The total number of synapses for both algorithms. p = 64 MPI ranks,
n = 320 000 neurons, and 500 000 simulation steps (5000 connectivity updates).
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Fig. 3: The timings for the strong scaling experiments with p = 64 MPI ranks
and 500 000 simulation steps (5000 connectivity updates). We give the minimum,
average, and maximum time across the different ranks. All timings are in seconds.
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We evaluated the strong-scaling behavior of our algorithm with p = 64 MPI
ranks and n = 1250, 2 500, 5 000, 10 000, 20 000 excitatory neurons per MPI rank.
Figure 3 shows the minimum, average, and maximum time for a simulation across
all MPI ranks. We have conducted these simulations five times and found that the
generated timings are very stable concerning the repetitions. When calculating
the coefficient of variation (standard deviation divided by average) for these
repetitions, it is consistently below 1%. Doubling the number of neurons per
rank scales the time of the connectivity update by approximately 1.96, 1.81, 1.53,
and 2.22, and the time it takes to find the targets by 2.15, 1.82, 1.35, and 2.25.
Overall, these timings suggest to us a good strong-scaling behavior.

Furthermore, we tested the weak-scaling behavior of our algorithm with
n = 5000 neurons per MPI rank (as in the previous publication which introduced
the Barnes–Hut approximation [27]) and with p = 1, 2, 4, 8, 16, 32, 64 MPI ranks.
For the timings, we investigated the overall time for the connectivity update,
the time it takes to find the target neurons, and for the fast multipole method
also the time it takes to compute the expansions. Figure 4 shows the minimum,
average, and maximum time for a simulation across all MPI ranks. We have
repeated each measurement five times with no significant difference. This means
that the coefficient of variation remained below 1% in this experiment as well.
Between one tenth and one third of the time the fast multipole method spends
finding the synapses is spent in the Taylor expansion; the Hermite expansion
is rarely used. The difference between the MPI ranks is low in our algorithm
compared to the Barnes–Hut algorithm. Besides network communication noise,
this difference is caused by neurons choosing partners close to or far away from
others. Per connectivity update, we cache the already fetched octree nodes from
other MPI ranks. This way, our algorithm profits from the locality of target
choices compared to the Barnes–Hut algorithm. Overall, the new connectivity
update is significantly faster, and the scaling behavior fits the broad expectation
of O(n/p+ p).

Lastly, we evaluated the influence of the parameters β from Equation 6 and α
from Equation 7, i.e., the points at which we cut of the evaluation of the infinite
series. For this, we have conducted 12 188 representative calculations for each
expansion, as well as the direct evaluation. Figure 5 displays the results, showing
that our cut-off point with α = β = (3, 3, 3) is well chosen and more terms do
not enhance the accuracy significantly.
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Fig. 4: The timings of different methods of the simulation for p =
1, 2, 4, 8, 16, 32, 64 MPI ranks and 500 000 simulation steps (5000 connectivity
updates).. For each method we give the minimum, average, and maximum time
across the different MPI ranks. All timings are in seconds.
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Fig. 5: The deviation in percent between the directly evaluated attraction and
the corresponding Hermite and Taylor expansions, gathered from 12 188 repre-
sentative boxes. The red line is the median, the box indicates the 0.25 and 0.75
quartile, the interval indicates the minimum and maximum after removing all
outliers. A value is an outlier if it is larger then the 0.75 quartile + 1.5 times the
inter-quartile range. The number of outliers for the Taylor expansions were 1830,
1834, 1833, and 1833, and there were consistently 1753 outliers for the Hermite
expansions. The largest outliers were below 0.125 %.
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6 Conclusion

This work aimed to replace the Barnes–Hut algorithm in an existing neuron
simulation with multiple computing nodes with the fast multipole method of
lower complexity and to measure the influence on performance. We achieved a
theoretical complexity of O(n/p + p), when n is the number of input neurons
and p the number of MPI ranks, which is lower than the previous complexity
of O(n/p · log2 n). In addition, the algorithm presented here is faster in practice
on multiple computing nodes, exhibits a good strong-scaling behavior, and
additionally, the rank-to-rank variation shrank significantly. Also, the internal
calcium concentration and the formation of synapses behave very closely to the
original simulation. However, there are aspects in which the algorithm presented
here is inferior to the Barnes–Hut algorithm. The storage space consumption has
increased by 32 %, and the choices of neighboring neurons are now more similar
than before. In addition, our algorithm needs more simulation steps to connect
all vacant elements through synapses due to more collisions.

In the future, we seek to combine the variable precision of the Barnes–Hut
algorithm with our proposed one, which might let neurons form connections
more independently than their neighbors. Furthermore, we plan to analyze the
resulting networks with respect to the graph-topological metrics so we can assess
the functionality of the networks.
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