
ElastiSim: A Batch-System Simulator for Malleable Workloads
Taylan Özden

taylan.oezden@tu-darmstadt.de
Department of Computer Science
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Tim Beringer
tim.beringer@tu-darmstadt.de

Department of Computer Science
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Arya Mazaheri
arya.mazaheri@tu-darmstadt.de
Department of Computer Science
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Hamid Mohammadi Fard
hamid.fard@tu-darmstadt.de

Department of Computer Science
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Felix Wolf
felix.wolf@tu-darmstadt.de

Department of Computer Science
Technical University of Darmstadt

Darmstadt, Hesse, Germany

ABSTRACT
As high-performance computing infrastructures move towards ex-
ascale, the role of resource and job management systems is more
critical now than ever. Simulating batch systems to improve sched-
uling algorithms and resource management efficiency is an indis-
pensable option, as running large-scale experiments is expensive
and time-consuming. Batch-system simulators are responsible for
simulating the computing infrastructure and the types of jobs that
constitute the workload. In contrast to rigid jobs, malleable jobs can
dynamically reconfigure their resources during runtime. Although
studies indicate that malleability can improve system performance,
no simulator exists to investigate malleable scheduling policies.
In this work, we present ElastiSim, a batch-system simulator sup-
porting the combined scheduling of rigid and malleable jobs. To
facilitate the simulation, we propose a malleable workload model
and introduce a scheduling protocol that enables the evaluation
of topology-, I/O-, and progress-aware scheduling algorithms. We
validate the scaling behavior of our workload model by comparing
training runtimes of various deep-learning models against the re-
sults achieved by ElastiSim. We use real-world cluster trace files
to generate workloads and simulate various scheduling algorithms
(FCFS, SJF, DRF, SRTF) to analyze their implications on the sim-
ulated platform. The results demonstrate that real-world execu-
tions show the same scaling behavior as our proposed workload
model. We further show that ElastiSim can capture the complex
interplay between emerging workloads and modern platforms to
support algorithm designers by providing consistently meaningful
results. ElastiSim is publicly available as an open-source project on
https://github.com/elastisim.

CCS CONCEPTS
• Software and its engineering → Scheduling; • Computing
methodologies → Discrete-event simulation; • Computer sys-
tems organization → Distributed architectures.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9733-9/22/08.
https://doi.org/10.1145/3545008.3545046

KEYWORDS
batch systems, simulations, malleableworkloads, adaptive job sched-
uling, resource management

ACM Reference Format:
Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard,
and Felix Wolf. 2022. ElastiSim: A Batch-System Simulator for Malleable
Workloads. In 51st International Conference on Parallel Processing (ICPP ’22),
August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3545008.3545046

1 INTRODUCTION
Resource and job management systems (also referred to as batch
systems, job schedulers, or workload managers) are essential to the
efficient use of resources on large-scale and high-performance com-
puting (HPC) systems. Conventionally, batch systems are respon-
sible for scheduling jobs and providing resources in a highly con-
tentious multi-tenant environment to maximize system efficiency
and improve job completion times to satisfy user requirements.
Batch systems apply scheduling algorithms that, depending on the
objective, increase performance metrics such as system utilization,
throughput, or energy efficiency.

However, the efficient use of resources depends not only on the
applied scheduling algorithm but also on the types of jobs that
constitute the workload. Although rigid jobs, which require a pre-
defined and fixed number of resources, are still the most common
job type in HPC environments, we observe an increasing inter-
est in malleable jobs. In contrast to rigid jobs, malleable jobs can
dynamically adapt to resource reconfigurations during runtime,
providing schedulers with an additional instrument for optimiza-
tion.1 Given the rise of artificial intelligence and deep-learning
(DL) workloads in HPC environments, malleability is increasingly
becoming a subject of interest.

As large-scale experiments are expensive, time-consuming, and
resource-intensive, simulations are indispensable for studying and
improving job scheduling policies. Furthermore, continuous de-
velopment and improvement of scheduling algorithms require ex-
tensive testing and debugging, which simulations can accelerate
by multiple orders of magnitude. Thus, existing batch-system sim-
ulators such as Batsim [15] or Alea [32] allow users to integrate

1An alternative term is elastic job, which is predominant in the context of cloud
computing.

https://github.com/elastisim
https://doi.org/10.1145/3545008.3545046
https://doi.org/10.1145/3545008.3545046


ICPP ’22, August 29-September 1, 2022, Bordeaux, France Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, and Felix Wolf

custom scheduling algorithms to investigate their implications on
varying workloads and platform architectures. However, to the
best of our knowledge, no batch-system simulator supports the
simulation of malleable workloads. Furthermore, the increasing
interest in DL workloads, which are inherently malleable, require
highly-customized scheduling algorithms that consider the inter-
connection of graphics processing units (GPUs) or parameters such
as continuously updated progress of jobs, which existing simulators
do not support.

To expedite the development of new scheduling policies for
emerging workloads and address shortcomings of existing simu-
lation methods, we present ElastiSim, a batch-system simulator
supporting the combined scheduling of rigid and malleable jobs.
First, we propose a workload modeling approach that allows users
to describe malleable workloads efficiently using human-readable
performance models. Second, we contribute a batch-system simula-
tor, employing thoroughly validated network models provided by
SimGrid [6], to evaluate multi-objective scheduling algorithms for
malleable jobs based on our proposed workload model.

We demonstrate that our malleable workload model scales re-
alistically by comparing simulations of DL workloads with ex-
periments executed under various resource configurations on a
high-performance computing (HPC) cluster. We further establish
large-scale simulations and apply various scheduling algorithms
to demonstrate the applicability of ElastiSim under malleable and
rigid conditions.

Towards facilitating the simulation and evaluation of scheduling
algorithms for malleable workloads, our main contributions are:

• A batch-system simulator supporting the combined schedul-
ing of rigid and malleable jobs.

• A workload format to facilitate the description of malleable
workloads using performance models.

• A simulation approach for custom schedulers enabling the
evaluation of topology-, I/O-, and progress-aware scheduling
algorithms.

• A SimGrid extension to simulate large-scale malleable GPU
workloads.

• A detailed malleability study of DL training workloads.
The rest of this paper is structured as follows. In Section 2 we
give insight into job types relevant to HPC environments and the
attempts to support malleability in batch systems. Section 3 high-
lights notable work in the domain of batch-system simulations. In
Section 4, we introduce our proposed workload model and how
it facilitates describing malleable jobs and applications. Section 5
presents the architecture of ElastiSim, giving an overview of our
simulation approach and underlying models. In Section 6, we de-
scribe our experimental evaluation approach, validate our workload
model, and discuss the results achieved by ElastiSim in large-scale
simulations. Finally, we conclude our contributions and discuss
future work in Section 7.

2 BACKGROUND & MOTIVATION
To classify distinctive job characteristics, Feitelson and Rudolph [18]
proposed four job categories: (1) rigid jobs, (2) moldable jobs, (3)
evolving jobs, and (4) malleable jobs. According to this classifica-
tion, rigid jobs are the most common job type and require a fixed

number of resources throughout their execution. In the case of
moldable jobs, the job scheduler, unlike rigid jobs, can assign an
arbitrary number of resources before the job starts its execution.
The remaining two job types can flexibly expand or shrink their
resources during runtime. Evolving jobs initiate such resource re-
configurations on their own—provided that the system can conform
to the request. In the case of malleable jobs, the scheduling system
initiates resource reconfiguration, forcing the job to adapt to its
newly assigned resources. Malleable and evolving jobs are often
classified as adaptive jobs.

Malleable jobs can dynamically adapt to assigned resources and,
therefore, have great potential to improve system performance.
A well-known example of malleable workloads is the distributed
training of deep neural networks (DNN). DNNs are usually trained
using gradient descent algorithms that minimize a loss function
and select appropriate weights for the connections within neural
networks. Gradient descent algorithms are applied iteratively to
a given dataset (i.e., epoch) during training to learn and minimize
the error rate. Thus, the repetitive characteristic of DNN training
allows schedulers to reconfigure the number of allocated resources
at multiple points in time. Furthermore, the dataset is divided into
equally sized mini-batches distributed among the allocated workers,
increasing the workloads’ scalability potentials and reconfigura-
tion opportunities. Following the distribution of mini-batches, each
worker computes the local gradient and then participates in av-
eraging across all workers using all-reduce operations to obtain
the global gradient. However, as not all DNN models are equally
scalable and resource requirements often change during runtime, a
workload-aware scheduler supporting malleable jobs is crucial to
improve DNN training times.

Scheduling algorithms for adaptive jobs can enable batch sys-
tems to efficiently balance the overall system load and improve
utilization, throughput, and job completion times [12, 14, 24, 42].
To facilitate dynamic resource allocation in real environments, re-
searchers extended various workload managers to support mal-
leable (and evolving) jobs [7–10, 42]. Furthermore, as batch systems
require underlying runtime environments to support adaptation
requests, solutions such as FlexMPI [39] or Invasive MPI (iMPI) [9]
have extended the Message Passing Interface (MPI) [40] to support
malleable jobs.

As we move towards exascale environments, batch systems must
also consider a manifold of system resources in scheduling deci-
sions to efficiently exploit the dynamic characteristics of malleable
jobs. For instance, the increasing volume of I/O operations in HPC
applications can lead to bottlenecks on traditional parallel file sys-
tems (PFSs) [54] which modern HPC environments prevent using
high-performance storage systems such as burst buffers [38]. By
considering such technologies, batch systems can apply I/O-aware
scheduling algorithms to reduce PFS congestion and increase I/O
throughput [23, 33]. In addition to advanced storage resources, HPC
systems usually provide accelerators such as GPUs that, if required
by the job, batch systems also have to account for the scheduling
of those resources. Thus, evaluating novel scheduling algorithms
has become crucial to expedite and facilitate the development of
adaptive batch systems.



ElastiSim: A Batch-System Simulator for Malleable Workloads ICPP ’22, August 29-September 1, 2022, Bordeaux, France

3 RELATEDWORK
Numerous simulators to evaluate batch systems were developed in
previous work, and most of them fall into one of the three following
categories: (1) simulators built from scratch, (2) simulators based
on a platform simulation framework, and (3) simulators extending
an existing resource and job management system [32]. As the name
suggests, simulators built from scratch do not base their simulations
on existing frameworks. The second group of simulators employs
platform simulation frameworks such as SimGrid or GridSim [3]
and have the advantage of using validated simulation models. The
last group of simulators directly extend real-world batch systems
such as Slurm [55] and replace the actual job execution to advance
the simulation clock.

Although no current simulator provides the infrastructure and
the capability to simulate adaptive scheduling algorithms or mal-
leable workloads, we outline the main characteristics of available
batch-system simulators and highlight their differences in contrast
to our approach. Driven by numerous studies, researchers devel-
oped and published many simulators to reinforce their scheduling
approaches. Here, we focus on actively developed general-purpose
simulators comparable to our approach.

A representative simulator built from scratch is AccaSim [21], a
discrete-event simulator that divides job and resource management
into two modules (scheduler and allocator) and provides several
pre-defined resource managers. Users specify workloads in the
standard workload format (SWF) [19], a standard for rigid workload
models and real-world logs. In contrast to AccaSim, we focus on
malleable workloads that the user can specify using our proposed
application modeling approach. Similar to our approach, AccaSim
provides system metrics to the scheduler during the simulation.
While AccaSim focuses on power- and energy-aware and fault-
resistant algorithms, we focus on I/O- and progress-awareness
by periodically providing the I/O subsystem utilization and the
progress of jobs to be considered in scheduling algorithms.

Several simulators employ frameworks that simulate the underly-
ing computing infrastructure. The batch-system simulator Alea [32]
follows that approach and is built on GridSim. Alea interprets SWF
files and provides a pre-defined set of scheduling algorithms that
users must extend at the source-code level. Platforms in Alea are
specified using a custom format that comprises compute nodes,
their number of CPUs, and available memory. In contrast, we focus
on detailed platform descriptions extending SimGrid to model the
complex behavior of computations, network communications, and
advanced I/O concepts to allow the evaluation of topology-aware
scheduling algorithms.

The batch-system simulator Batsim [15] follows an approach
comparable to ElastiSim. It is based on SimGrid and allows de-
velopers to integrate algorithms in several languages based on
inter-process communication. However, Batsim does not support
malleable jobs and provides no possibility to specify performance
models describing varying workloads. ElastiSim allows users to
specify performancemodels that dynamically scale with the number
of assigned resources at runtime. Furthermore, we enable large-
scale malleable GPU simulations by providing a GPU model to
investigate scheduling algorithms for workloads that are particu-
larly predominant in fields such as deep learning.

Several approaches proposed and extended a Slurm-based simu-
lator [30, 45, 50] that reads system logs to reproduce the workload
and allows the evaluation of new algorithms with modifications to
the codebase. The simulation engine replaces system calls to bypass
actual job execution and accelerate the simulation. Although these
simulators allow a seamless integration into production environ-
ments, they require detailed knowledge about the extended batch
system. In contrast, our approach minimizes the effort to integrate
new algorithms and does not rely on real-world logs or traces to
simulate large-scale workloads.

4 WORKLOAD MODELING
The reliability of platform simulations depends highly on the work-
load executed in the simulated environment [17, 49]. To conduct
representative simulations, users can rely on real-world traces and
logs (often provided in standard formats such as SWF) or models
that generate workloads derived from such logs, both available on
public archives such as the parallel workloads archive [19]. Existing
simulators, therefore, are either compatible with standard formats
or propose a workload modeling approach for users to describe
customized workloads. Custom modeling approaches usually de-
scribe workloads as a sequence of jobs with profiles representing
the simulated application. These profiles can be as simple as ap-
plication runtimes or more sophisticated, such as the number of
floating-point operations or transferred bytes in network communi-
cations. As we tackle the simulation of malleable jobs, we face the
necessity of workload models that consider application scalability
and malleable characteristics, such as the overhead introduced by
runtime reconfigurations.

To cover a broad range of applications, we studied workload
characterizations on large-scale systems, indicating that applica-
tions often alternate between compute and I/O phases and that I/O
requests are usually bursty [5, 31]. In addition, the rapid surge of
interest in artificial intelligence and deep learning [29] over the last
decade has driven technologies to catch up with the ever-increasing
demand for GPU computations and communications. Considering
the demands of modern workloads, we propose a workload model-
ing approach comprising jobs and application models. While jobs
hold properties relevant to the scheduler, the application model
reproduces the behavior of real-world applications in simulated
environments. Our proposed application model comprises phases
to rebuild the lifecycles of applications and tasks to cover typi-
cal activities of HPC applications. To address the requirements of
malleable workloads, we employ performance models that scale
with the number of resources and introduce runtime penalties on
dynamic reconfigurations. Figure 1 portrays a high-level overview
of our workload modeling approach, which we describe in the rest
of this section.

4.1 Workload structure
We define a workload as a set of jobs arriving in the system, avail-
able for the scheduler to assign resources. ElastiSim supports rigid,
moldable, and malleable jobs holding several properties, such as
arrival time, the requested number of resources, or arguments used
in performance models (see Section 4.2.2). In addition to proper-
ties, each job holds an underlying application model representing



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, and Felix Wolf

time

E
xe

cu
tio

n

Task 1.1 Task 1.2 Task 2.1 Task 3.1Task 3.2

Phase 1 Phase 2 Phase 3

Scheduling 
point

Scheduling 
point

Task types Payload distribution patterns

CPU All-to-all

Master-worker

Ta
sk

s

I/O Delay

GPU Ring

Total

Uniform

W
or

kl
oa

d 
st

ru
ct

ur
e

Properties Application model

Init. phase Reconf. phase Exp. phase

Tasks

Jobs

Main phases

TasksTasksTasks

Perf. model Perf. model Perf. model Perf. model

Figure 1: Our proposedworkloadmodeling approach includ-
ing the workload structure, available tasks, payload distri-
bution patterns, and the execution flow. Filled arrow heads
in the workload structure represent mandatory, and hollow
arrow heads optional relationships.

the simulated application, which users can describe following a
hierarchical building-block approach. Each application contains
phases to model various stages within the application’s lifecycle,
and each phase is populated with tasks, representing simulated
activities such as computations, network communication, or I/O op-
erations. If specified, phases and tasks can further enable repetitions
to facilitate designing repetitive workloads.

Considering malleable jobs, we require the application model to
allow reconfiguration requests of the scheduler at specific points
during runtime. Thus, we introduce scheduling points that are placed
between all phases—and at the end of all phase repetitions—of
malleable jobs by default. Scheduling points are locations where
an application can expand or shrink its resources if the scheduler
requests a reconfiguration.

However, runtime reconfigurations can create additional over-
head as the application adapts to its new configuration. Possible
sources for introduced overhead can be newly assigned compute
nodes required to fetch application data from the PFS or data redis-
tribution [39]. We define that overhead as reconfiguration penalty
and allow users to define an optional reconfiguration and expansion
phase. The reconfiguration phase specifies tasks executed on all
resources after a reconfiguration occurs. On the other hand, the
expansion phase specifies tasks executed only on newly allocated
resources (i.e., expanded resources). We further provide a particular

initialization phase to specify tasks executed only on the initial
configuration of a job.

4.2 Tasks & payloads
Tasks in ElastiSim represent the activities that generate the actual
load on the simulated platform, targeting various resources. To
specify resource utilization, we introduce task payloads describing
the amount of work that has to be processed, such as floating-point
operations (FLOPs) or the number of bytes to communicate.2 We
distinguish three types of tasks, each carrying a different type of
payload: (1) compute, (2) I/O, and (3) generic delays. Compute tasks
are specified using the number of FLOPs to process and can target
either CPUs or GPUs. To simulate I/O operations, users specify
the number of bytes to read or write and choose a storage system
(PFS or burst buffer). Delay tasks are generic time-based activities
specified by the duration to occupy assigned resources. To increase
the flexibility of our application model, we further introduce se-
quence tasks, which are generic containers that can contain any
task—sequences included. Sequence tasks allow users to model ir-
regularities in simulated applications, such as checkpointing to the
PFS by combining various tasks in a repeated sequence before the
checkpoint takes place.

Although defining explicit communication tasks are optional,
compute tasks implicitly impose communication payloads. Such
a paradigm has two main advantages: (1) it allows users to over-
lap computation and communication, and (2) depending on the
resource (CPU or GPU), the communication takes place using differ-
ent network links. In the case of GPU tasks, the simulator considers
communication of GPU devices on the same host as intra-node
communication (e.g., NVLink) and with devices on other hosts as
inter-node communication (e.g., InfiniBand).

4.2.1 Payload distribution patterns. To define the distribution of
payloads among resources, we introduce payload distribution pat-
terns. We distinguish two types of patterns; regular and commu-
nication patterns. While regular patterns define payload distribu-
tion for compute, I/O, and delay tasks, communication patterns
define payload distribution in communication tasks. We support
two regular patterns that define whether each allocated resource
processes the specified payload (uniform) or whether the payload
is distributed evenly (total). On the other hand, communication
patterns construct communication matrices specifying the num-
ber and direction of exchanged bytes among resources. ElastiSim
currently supports all-to-all, ring, and master-worker patterns to
cover common communication scenarios in HPC applications.

In the case of rigid jobs, we support an additional method of
defining payloads. As the number of resources is known prior to
execution, users can manually define resource utilization using a
vector or a matrix to describe task payloads that are not generated
based on patterns.

4.2.2 Performance Models. To allow dynamic payload adjustments
for malleable workloads, we use performance models that scale
with the number of assigned resources. Performance models are

2Although payloads are commonly used in telecommunication to describe the content
of a message, we use the term payload as the load a task carries independent of its
type.



ElastiSim: A Batch-System Simulator for Malleable Workloads ICPP ’22, August 29-September 1, 2022, Bordeaux, France

human-readable mathematical models that characterize application
behavior under various resource configurations. These models de-
scribe metrics such as the number of FLOPs, the number of bytes
sent through the network, or simply the application runtime. Users
can describe performance models by inspecting applications, or
using tools such as Extra-P [4] to facilitate creating models by em-
pirically analyzing the application under multiple configurations.
Performance models in ElastiSim can depend on the number of as-
signed resources (compute nodes or GPUs) and arguments specified
in job properties. The simulation runtime evaluates performance
models to update the payloads at every task (re)configuration utiliz-
ing the mathematical expression library ExprTk [41]. In addition to
various mathematical functions and operations, ExprTk supports
control structures such as ternary conditions or string operations,
allowing users to describe varying workloads using the same ap-
plication and performance models dependent on the provided job
arguments.

5 ELASTISIM ARCHITECTURE
According to the classification introduced in Section 3, ElastiSim
is classified as a simulator based on a platform simulation frame-
work. Such frameworks facilitate the simulation of computing in-
frastructures and expose an API to integrate the framework into
higher-level software.

State-of-the-art platform simulation frameworks are discrete-
event simulators that model networks either using a packet-level or
flow-level approach. Packet-level simulators such as CODES [11]
model every network activity as a particular event in the simulation.
Given the excessively high number of packets routed through the
network in large-scale computing infrastructures, packet-level sim-
ulators can be extraordinarily resource-intensive and often require
distributed memory architectures. Flow-level simulators such as
SimGrid [6] define network communication as data flows consum-
ing the available bandwidth on network links. Each link has a pre-
defined capacity (i.e., bandwidth), and each flow has a specific rate
describing the bandwidth consumption. The sum of all flow rates
on a link must not exceed its predefined capacity. Although recent
packet-level approaches present promising results [1], flow-level
simulations remain significantly faster than consolidated packet-
level simulators, as they do not model every network packet as an
individual event [16, 20].

Even though packet-level simulators are closer to real packet-
switched networks, we focus on fast but reliable simulations of
entire platforms (including computational resources) rather than
a fine-grained analysis of the network and the effects of various
packet routing mechanisms. We, therefore, establish batch-system
and platform simulations using a flow-level backend to enable
fast and scalable simulations on widely available commodity hard-
ware such as laptops. SimGrid’s flow-level approach is highly scal-
able [2, 43], validated [53], and used in hundreds of publications [27]
making it the ideal candidate to provide platform simulations for
ElastiSim.

SimGrid supports various distributed computing systems (e.g.,
HPCs, clouds, and grids) primarily composed of hosts, network
links, and routes describing the underlying network infrastructure.
Computing systems in SimGrid are described by platform files that

SimGrid core

Host

Disk
CPU

PFS

GPU

Burst buffer

Compute node

Routing

Compute nodeJob submitter MonitoringBatch system

Network links

S
im

ul
at

io
n 

en
gi

ne
A

ct
or

s

E
la

st
iS

im

Scheduling 
algorithm

inter-
process

Platform, 
workload, 

configuration

Simulations 
results & 
outputs

Figure 2: The architecture of ElastiSim, including the sim-
ulation engine, system actors, the external scheduling algo-
rithm, and input and output files. Our extensions to the sim-
ulation engine are highlighted in bold text. Compute nodes
are part of the simulation engine and system actors as they
are considered resources but also continuously interact with
the batch system.

either specify predefined topologies (e.g., dragonfly, fat tree, or
torus) or describe individual hosts and their network interconnect.
SimGrid hosts represent computing units defined by their com-
putational power (i.e., floating-point operations per second) and
additional resources such as hard disks. To establish communica-
tion, hosts utilize network links that can be assigned to multiple
routes, simulating shared bandwidth on the underlying topology.

However, SimGrid is not a simulator but a versatile simulation
framework building the foundation for other simulators to inves-
tigate platform utilization in various scenarios. Thus, we extend
SimGrid to establish malleable batch system simulations and de-
scribe our proposed system architecture, models, and actors in the
rest of this section.

5.1 System overview
ElastiSim is a simulator written in C++ that employs and extends
SimGrid features to establish the simulation of an entire batch
system and all interacting actors. We introduce resource manage-
ment based on the allocation of compute nodes, extend SimGrid
to support GPUs, introduce PFS and burst buffer semantics, and
model every interaction relevant to workload management in large-
scale distributed computing infrastructures. We further establish
interfaces for users to integrate their scheduling algorithms using
inter-process communication and propose a scheduling protocol
that allows the evaluation of adaptive scheduling algorithms for
malleable workloads. As illustrated in Figure 2, we propose an ar-
chitecture that separates the concerns of platform simulations, the
management of events initiated by system actors, and the schedul-
ing algorithm provided by the user.

To run simulations, users have to provide multiple inputs. The
scheduling algorithm is the essential input that receives informa-
tion from the batch system and forwards scheduling decisions.



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, and Felix Wolf

Scheduling algorithms are separate processes running individually
outside ElastiSim, establishing the connection using the network-
ing library ZeroMQ [26]. This design allows users to integrate
interfaces and develop algorithms in any language supported by
ZeroMQ. We support and provide a Python interface in the cur-
rent version of ElastiSim. Using the proposed scheduling protocol
(see Section 5.5), users can forward schedule decisions to ElastiSim.
To describe the simulated platform, we rely on SimGrid platform
descriptions, which the user extends with ElastiSim-specific prop-
erties. We use these properties to introduce advanced semantics
for storage systems (see Section 5.2) or extended features such as
GPUs (Section 5.3). To simulate different scenarios, users provide
the workload model consisting of jobs and application models as
described in Section 4. Lastly, by providing a configuration file,
users can define simulation parameters such as the scheduling or
monitoring interval. ElastiSim provides detailed outputs and visu-
alizations, including job- and schedule-centric results and resource
utilization as comma-separated value (CSV) files.

5.2 Storage model
ElastiSim provides the semantics for two types of storage systems,
parallel file systems, and node-local burst buffers. Here, we describe
our simulation approach for both storage systems.

5.2.1 Parallel file system. We provide semantics for parallel file
systems (PFSs) by modeling them as dedicated nodes representing
a storage system with distributed access behind a single namespace
that users can indicate in the provided platform file. Our approach
allows the PFS to be accessed via numerous routes, effectively
increasing the bandwidth if accessed in parallel. To limit the band-
width of the underlying file system, users attach a network link at
the last level to specify the maximum available bandwidth. Using
asymmetric routes, the PFS can provide independent read and write
bandwidths. Such a simple yet effective model allows us to study
the effects of data transfer in networks and identify bottlenecks
during data-intensive workload phases.

5.2.2 Burst buffer. Modern HPC environments include an addi-
tional high-performance storage layer between compute nodes and
the PFS—the burst buffer (BB). Two representative architectures are
predominant in HPC environments: node-local and remote-shared
BBs. Node-local BB architectures provide high-bandwidth storage
on compute nodes, while remote-shared BBs are dedicated high-
performance storage systems located in the network accessible by
all compute nodes through a global namespace. ElastiSim supports
node-local BBs that users can specify in the platform description
to generate BBs on compute nodes. Each burst buffer task spec-
ified in the application model targets the local BBs of assigned
compute nodes. Although developers can accelerate applications
using node-local BBs, compute nodes can only access their local
BBs, narrowing the use cases such architectures can support. To
enable data sharing and collective access on node-local BBs, file
systems such as BeeOND [51] or GekkoFS [52] introduce wide
striping. Wide-striped file systems combine the storage space of
all node-local disks assigned to a particular job and provide access
behind a single namespace. ElastiSim supports both node-local BB

Platform

read

(2) receive state
(3) send schedule

Workload
file

submit job

(1) invoke 
(4) receive schedule

Utilization
files

observe

write

manage
NodeNode

NodeNode

Storage System

report state

Scheduling 
algorithm

Job 
submitter

Batch 
system

Monitoring

inter-
process

Figure 3: Actors and their responsibilities in ElastiSim. The
scheduling algorithm is not considered a separate actor and
runs outside ElastiSim as a stand-alone process represented
by dashed lines.

approaches, exclusive and wide-striped access. In the case of wide-
striped file systems, ElastiSim automatically introduces network
communication for each BB task, representing striped access to
local disks of distinct compute nodes.

5.3 GPU model
Our GPU model considers multiple GPUs per compute node, con-
nected using dedicated links. As SimGrid does not support GPUs, we
provide them as separate computational resources utilized during
task execution. Users specify the number of GPUs per node, their
computational performance, and the bandwidth of each connecting
GPU link. As compute nodes are the primary resources assigned to
jobs, we distribute GPU computations among the requested GPUs
located on the assigned compute node. Communications among
GPUs on a compute node utilize the specified GPU links (intra-
node communication). In contrast, communications among GPUs
on distinct nodes utilize the corresponding network links of the
compute node, creating traffic on the underlying platform topology
(inter-node communication).

5.4 System actors
ElastiSim is a discrete-event simulator modeling all components of
the simulated system as separated modules. To integrate individual
simulation logic and generate activities on the platform, we intro-
duce actors for all modules to simulate their corresponding roles,
such as the job submitter or the batch system. All actors run concur-
rently and exchange information when relevant events occur (e.g.,
job submission). As shown in Figure 3, ElastiSim is composed of
three interacting (job submitter, batch system, and compute nodes)
and one observing actor (monitoring).

The first actor initiating events in the simulation is the job sub-
mitter, reading the provided workload file and initiating events to
inform the batch system of incoming jobs at the specified submis-
sion times.



ElastiSim: A Batch-System Simulator for Malleable Workloads ICPP ’22, August 29-September 1, 2022, Bordeaux, France

The batch system is the central unit representing the bridging
element between the user and the platform, including compute
nodes. It queues jobs submitted by the user and is responsible
for periodically invoking the scheduling algorithm. Although the
scheduling algorithm lives outside the simulator, the batch system
considers the algorithm as an integral component of itself. The batch
system is further responsible for resource management, allocating
compute nodes for jobs specified in the schedule decision.

We define compute nodes as the primary resources managed by
the batch system. Compute nodes are considered resources but, at
the same time, actors as well. They are permanently in contact with
the batch system, forwarding the progress of executed jobs and
communicating scheduling points and job completions. Compute
nodes receive allocation requests from the batch system and are
the only components performing activities that create load on the
platform, which is observable by the monitoring module.

The monitoring module periodically gathers performance met-
rics to provide detailed simulation outputs. The observed metrics
include CPU and GPU utilization per node, the overall network
activity, and the load on the I/O subsystem.

5.5 Scheduling protocol
The scheduling protocol defines the communication, and the ex-
changed information between the simulated batch system, the
scheduling algorithm, and compute nodes. The batch system in-
vokes the algorithm periodically in a user-defined interval to allow
reconfigurations of malleable jobs during runtime. Users might also
specify flags to invoke the scheduling algorithm on job submission
and completion. We allow users to specify minimum scheduling
intervals to prevent multiple invocations during short periods (e.g.,
a high number of job submissions within a short period).

Each invocation contains the following information gathered
at the time of invocation: (1) the job queue, (2) the state of each
compute node, and (3) the utilization of the I/O subsystem. We
include running jobs in the job queue that report their progress to
facilitate the development of progress-aware scheduling algorithms.
The progress is defined by the number of completed and the total
number of phases (excluding initialization, reconfiguration, or ex-
pansion phases). The reported state of each compute node includes
assigned jobs and GPU allocations. Lastly, the invocation includes
the monitored utilization of the I/O subsystem to identify potential
bottlenecks and enable I/O-aware schedules.

The scheduling algorithm is responsible for assigning compute
nodes to jobs. Each node can be assigned to a job individually, en-
abling topology-aware schedules (e.g., assigning neighboring nodes
to the same job). ElastiSim also supports the oversubscription of
compute nodes, in which case the jobs running on one compute
node share its resources. After making the schedule decision, the al-
gorithm returns the list of node assignments for all configured and
reconfigured jobs. In the case of initial job configurations, the batch
system applies scheduling decisions immediately and allocates the
corresponding nodes. Reconfigurations are stored separately and
applied when the job reaches its next scheduling point. The batch
system updates the state of malleable jobs that have a pending
reconfiguration to allow the scheduling algorithm to (or not to)

consider them in upcoming iterations. In addition to job configura-
tions, the scheduling algorithm can flag jobs for termination. The
batch system applies job terminations immediately.

6 EXPERIMENTAL RESULTS
To evaluate our proposed simulator, we established two experiments
to (1) validate our workload and application model and (2) assess
the applicability of our simulator by comparing various scheduling
policies under malleable and rigid conditions. We built a foundation
for our experiments to represent popular HPC workloads by train-
ing various deep-learning (DL) models as a test case for malleable
applications using multiple configurations on a GPU cluster. To
validate the correctness of our workload and application model,
we rebuilt the utilized GPU cluster in ElastiSim, described the DL
models as malleable applications that scale with the number of
assigned GPUs, and compared the runtimes with the simulation
results. We further conducted large-scale workload simulations de-
rived from trace files from a state-of-the-art DL cluster and applied
multiple scheduling algorithms to gain insight into the achieved
performances by each algorithm.

6.1 Experimental setup
Testbed. To validate our workload and application model, we
trained various convolutional neural networks (CNNs) on a GPU
cluster with different configurations ranging from one to eight
compute nodes, with each node containing four NVIDIA Tesla
V100 16GB GPUs that were all allocated during the experiments.
We trained the CNNs using the distributed DL training framework
Horovod [47] 0.24.2 with PyTorch 1.11, and CUDA 11.5 with models
from torchvision 0.12. We measured the execution time of the for-
ward pass, backward pass, gradient update, and all-reduce operation
using NVIDIA Nsight 2022.1.1. Moreover, all ElastiSim simulations
were performed on an AMD Ryzen 7 PRO 4750U mobile CPU.

Workload setting.We randomly chose 400 jobs from traces of the
Microsoft DL cluster Philly [28] to simulate various DL workloads.
We used the submission times provided in the trace file. However,
the trace file does not include any information about the DL model
and dataset trained in each job. Therefore, we randomly assigned
DL models to each job that we have modeled as an application
model for the simulation. Furthermore, we set a random epoch
size for each job, ranging from 50 to 100. We applied the evaluated
scheduling algorithms to the same workload to guarantee a fair
comparison.

Simulated platform. For our simulations, we rebuilt the GPU
cluster on which we conducted our experiments in ElastiSim. The
GPU cluster is organized in a fat-tree topology and has a dedicated
GPU partition on which each node contains four GPUs. The GPUs
are fully connected using duplex links, each with a bandwidth of
25 GB/s (intra-node connection). Compute nodes are connected
using two network interface controllers (NICs), each providing a
bandwidth of 100 Gbit/s (inter-node connection). For our large-
scale simulations of various scheduling algorithms, we modeled a
dragonfly topology with 192 nodes, each equipped with four GPUs.
We increased the intra-node connection of GPUs to 50 GB/s per



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, and Felix Wolf

1 2 4 6 8
Nodes

0

5

10

15

Ep
oc

h 
tim

e 
(s

)

ResNet18

1 2 4 6 8
Nodes

0

10

20

30

MobileNetV2

1 2 4 6 8
Nodes

0

10

20

30

40

Ep
oc

h 
tim

e 
(s

)

ResNet50

1 2 4 6 8
Nodes

0
10
20
30
40
50

VGG16

1 2 4 6 8
Nodes

0

5

10

15

20

Ep
oc

h 
tim

e 
(s

)

SqueezeNet 1.0

1 2 4 6 8
Nodes

0

5

10

15
AlexNet

Real training Simulation

Figure 4: Training times per epoch of real and simulated
training.

link and further equipped each node with four NICs with a total
bandwidth of 800 Gbit/s (200 Gbit/s per link).

6.2 Deep-learning application model
As described in Section 2, DL is a popular workload providing
malleable characteristics through its inherently repetitive pattern.
We validate our workload and application model by replicating the
distributed training of convolutional neural networks (CNNs) using
the approach described in Section 4. Furthermore, as ElastiSim
supports job arguments, we simulate various CNNs and datasets
without modifying the underlying application model. Thus, we
pass the number of activations and parameters of the DL model in
addition to the size of the dataset as job arguments. Using these
properties has a significant advantage in that we are not required
to perform any real training or runtime measurements to describe
the scalability of DL applications.

Defined by our application model, each compute node initially
reads the training and validation dataset from the PFS. If the sched-
uler assigns additional nodes during runtime, each newly allocated
node must perform the same task as a reconfiguration penalty be-
fore taking part in the simulated DL training. We model each epoch
as a recurrent phase, implicitly creating scheduling points allowing
the scheduler to resize the resources after each epoch. We further
simulate a training step for each batch on a GPU as a sequence of
tasks, repeated for the number of batches divided by the number of
allocated GPUs.

Every DL training step consists of three sub-tasks. We choose
to model these tasks as they are compute- and communication-
intensive and contribute directly to the overall job runtime.

(1) Forward/backward pass: We simulate the forward and
backward pass of the DL model with one batch of data by
two sequential delay tasks. As the number of activations cor-
relates highly with the inference time [44], we estimate the
duration of these two tasks by a function (i.e., performance
model) that scales with the number of activations of the DL
model.

(2) Gradient synchronization: The synchronization of gra-
dient updates among GPUs are simulated using a ring all-
reduce communication pattern, which is commonly used for
this objective in frameworks such as Horovod. The payload
of this task is the number of the parameters in the DL model,
split into 2 × (N − 1) communication steps, where N is the
number of allocated GPUs.

(3) Gradient update: The synchronized gradient updates are
applied to the local DL models on each GPU. We estimate
the duration of this step with a function that scales with the
number of parameters in the DL model.

At the end of each epoch, a final computational task that scales
equally to the forward pass simulates the validation step of the DL
training. Additionally, the trained DL model may checkpoint to the
PFS after a specified number of epochs, provided as an argument
in the job specification.

Runtime analysis. We measured the epoch runtimes for Mo-
bileNetV2 [46], ResNet18-50 [22], VGG16 [48], Alexnet [35], and
SqueezeNet [25] with the training dataset from CIFAR-10 [34], con-
taining 50000 images upscaled to 224x224 pixels and the batch
size of 64. We then simulated the training of the same DL mod-
els and dataset using the described application model to compare
the measured runtimes with the simulated runtimes achieved by
ElastiSim.

Figure 4 presents the duration of an epoch for the real and sim-
ulated training for different numbers of nodes. Our results show
that our simulated application model has similar runtimes to Mo-
bileNetV2, ResNet18, ResNet50, and VGG16, with a relative error
of 5.3–17.2%. However, for AlexNet and SqueezeNet, we notice that
relative errors increase compared to real runtimes. We observed
that such a higher error rate is due to our performance model that
cannot fully capture the runtime of the gradient update within
the DL training. Furthermore, the relative error of the forward and
backward passes is higher if they are less computationally intensive.
We believe that using larger models and batch sizes would address
this issue. Nonetheless, we can observe that the simulated scaling
behavior is preserved for all node configurations, which is partic-
ularly evident in the case of AlexNet, which yields higher epoch
runtimes on two allocated nodes (i.e., eight GPUs) than on one
allocated node. Although the relative error in runtime for AlexNet
is higher than for the other simulated DL models, this particular
behavior is reproduced in the simulated results. Considering the
intra- and inter-node communication between GPUs and compute
nodes, our results indicate that our simulation approach can capture
the behavior of such complex workloads.



ElastiSim: A Batch-System Simulator for Malleable Workloads ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Wait time Turnaround time
0

500

1000

1500

2000

Ti
m

e 
(m

)

FCFS (rigid)
SJF (rigid)
FCFS (mal.)
DRF (mal.)
SJF (mal.)
SRTF (mal.)

Figure 5:Wait and turnaround times for the evaluated sched-
uling policies.

6.3 Scheduling algorithms
We simulated the training of various DL models on a cluster with
192 (i.e., 768 GPUs) compute nodes using two rigid and four mal-
leable scheduling policies. The simulated rigid scheduling algo-
rithms comprise first come first serve (FCFS) and shortest job first
(SJF). While we extend FCFS and SJF to support malleability, we
provide two additional scheduling algorithms for malleable jobs:
dominant resource first (DRF) and shortest remaining time first
(SRTF).

FCFS processes jobs in the order of their arrival time. To increase
system utilization, we extend the rigid FCFS algorithm to backfill
jobs without preventing delays of jobs that have arrived earlier. SJF
estimates the expected job duration by combining epoch size and
the iteration time, approximated using the performance model of
the backward pass. We use the backward pass because it correlates
with the iteration time, making it suitable to estimate the remaining
time compared to other jobs, depending on the trained model. The
malleable version of SJF uses the same estimation to expand jobs
during runtime. DRF prioritizes jobs for resource assignment based
on their dominant resource share (i.e., the number of GPUs). SRTF
is a progress-aware algorithm estimating the remaining time using
the job progress information provided by ElastiSim.

Figure 5 presents the wait times in the queue and the turnaround
times spanning from job submission to completion as box plots.
Rigid FCFS results in the highest wait and turnaround times as it
sequentially schedules incoming jobs, except for a small number
of backfilled jobs. Furthermore, we can observe that the malleable
counterparts of FCFS and SJF perform better than the rigid version.
Malleable SJF and SRTF deliver the best performance among all
scheduling algorithms, as they both consider the duration of jobs
or even the progress, as in the case of SRTF. However, the outliers
in wait and turnaround times of the SJF and SRTF algorithms in-
dicate that they favor shorter jobs, leading to some jobs that are
de-prioritized and remain in the queue for longer durations.

In Figure 6, we show the waiting and running times of the jobs
applying the evaluated scheduling algorithms. The batch system
sequentially assigns job IDs based on the submission time. We ob-
serve that malleability decreases scheduling makespans compared
to their rigid counterparts (21 % for FCFS, 18 % for SJF). Further-
more, we can immediately identify the characteristics of the FCFS
algorithm allocating resources to jobs consecutively based on their

order of arrival. As the DRF algorithm initially assigns the mini-
mum number of resources to jobs, we can identify a stepped pattern
indicating that multiple jobs start simultaneously. For SRTF, the
results show that shorter jobs are scheduled earlier, and longer jobs
remain longer in the queue, confirming the observation of outliers
in Figure 5.

The results demonstrate that ElastiSim provides a robust simula-
tion infrastructure for scheduling malleable and rigid workloads.
The evaluated outputs give valuable job- and schedule-centric in-
sights and allow algorithm designers and engineers to develop
novel scheduling approaches that consider the interplay of emerg-
ing workloads and the underlying platform architecture.

7 CONCLUSION & OUTLOOK
In this paper, we presented ElastiSim, a batch-system simulator
supporting the combined scheduling of rigid and malleable jobs.
We proposed a workload modeling approach based on performance
models and established batch-system simulations compatible with
platforms that introduce advanced storage system semantics and
enable large-scale GPU simulations. Our proposed scheduling ap-
proach facilitates the evaluation of novel schedulers that are re-
quired to consider a manifold of system resources and deal with
the intricacies of emerging workloads. Furthermore, we conducted
experiments to validate the correctness of our workload and appli-
cation model and performed simulations of large-scale workloads
derived from trace files of a large-scale DL cluster. Our results
demonstrate that our proposed workload model represents the be-
havior of real-world workloads, and ElastiSim provides meaningful
results under malleable and rigid conditions.

For future versions of ElastiSim, we plan several updates tar-
geting the underlying simulation architecture and scheduling se-
mantics. The first update will introduce remote-shared burst buffer
support to simulate and cover more data-intensive workload sce-
narios. Established solutions (e.g., Cray’s DataWarp [36] or DDN’s
Infinite Memory Engine [13]) introduce advanced semantics such as
transparent caching [37], automatically migrating data to the PFS,
which we plan to support by simulating the implied behavior and its
effects on the platform. Additionally, we plan to provide advanced
semantics for workflows to support dependencies among jobs in
ElastiSim. Lastly, as we already support scalable workloads, we
plan to extend our application model with reconfiguration requests
initiated by the application to support evolving jobs.

ACKNOWLEDGMENTS
We are thankful to Marc-André Vef for his insightful feedback on
storage systems in HPC environments. We acknowledge the sup-
port of the European Commission and the German Federal Ministry
of Education and Research (BMBF) under the EuroHPC Programme
ADMIRE (GA No. 956748, BMBF funding No. 16HPC006K). The Eu-
roHPC Joint Undertaking (JU) receives support from the European
Union’s Horizon 2020 research and innovation programme and
GER, FRA, ESP, ITA, POL & SWE. This research was also supported
by the EBRAINS research infrastructure, funded by the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific GA No. 945539 (Human Brain Project
SGA3), and is partly funded by the Federal Ministry of Education
and Research (BMBF) and the state of Hesse as part of the NHR and



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Taylan Özden, Tim Beringer, Arya Mazaheri, Hamid Mohammadi Fard, and Felix Wolf

0 500 1000 1500 2000

300

200

100

0

running
waiting

Time (m)

Jo
b 

ID

0 500 1000 1500 2000

300

200

100

0

running
waiting

Time (m)
0 500 1000 1500

300

200

100

0

running
waiting

Time (m)

0 500 1000 1500

300

200

100

0

running
waiting

Time (m)

Jo
b 

ID

0 500 1000 1500

300

200

100

0

running
waiting

Time (m)
0 500 1000 1500

300

200

100

0

running
waiting

Time (m)

Figure 6: Wait and running times of jobs for rigid FCFS (upper left), rigid SJF (upper center), malleable FCFS (upper right),
malleable DRF (lower left), malleable SJF (lower center), and malleable SRTF (lower right).

Software Campus programs. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time through the
John von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

REFERENCES
[1] Maciej Besta, Marcel Schneider, Salvatore Di Girolamo, Ankit Singla, and Torsten

Hoefler. 2021. Towards Million-Server Network Simulations on Just a Laptop.
arXiv:2105.12663

[2] Laurent Bobelin, Arnaud Legrand, Márquez Alejandro González David, Pierre
Navarro, Martin Quinson, Frédéric Suter, and Christophe Thiery. 2012. Scalable
Multi-Purpose Network Representation for Large Scale Distributed System Sim-
ulation. In Proc. of the 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid). 19.

[3] Rajkumar Buyya and Manzur Murshed. 2002. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for grid
computing. Concurrency and computation: practice and experience 14, 13-15
(2002), 1175–1220.

[4] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. 2013. Using
Automated Performance Modeling to Find Scalability Bugs in Complex Codes. In
Proc. of the ACM/IEEE Conference on Supercomputing (SC13). ACM, 1–12.

[5] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. 2011. Understanding and Improving Computational
Science Storage Access through Continuous Characterization. ACMTrans. Storage
7, 3, Article 8 (2011).

[6] Henri Casanova, Arnaud Legrand, and Martin Quinson. 2008. SimGrid: A Generic
Framework for Large-Scale Distributed Experiments. In Proc. 10th International
Conference on Computer Modeling and Simulation (uksim 2008) (ICCMS). 126–131.

[7] Marcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Maillard, and Philippe
Olivier Alexandre Navaux. 2009. SupportingMPIMalleable Applications upon the
OAR Resource Manager. In Colloque d’Informatique: Brésil / INRIA, Coopérations,
Avancées et Défis (COLIBRI).

[8] Mohak Chadha, Jophin John, and Michael Gerndt. 2020. Extending SLURM for
Dynamic Resource-Aware Adaptive Batch Scheduling. In Proc. of the IEEE 27th
International Conference on High Performance Computing, Data, and Analytics
(HiPC). 223–232.

[9] Isaías Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim Bun-
gartz. 2016. Infrastructure and API Extensions for Elastic Execution of MPI
Applications. In Proc. of the 23rd European MPI Users’ Group Meeting (EuroMPI).
ACM, 82–97.

[10] Isaías A. Comprés Ureña and Michael Gerndt. 2019. Towards Elastic Resource
Management. In Proc. of the 11th International Workshop on Parallel Tools for High
Performance Computing (PTHPC), Christoph Niethammer, Michael M. Resch,

Wolfgang E. Nagel, Holger Brunst, and Hartmut Mix (Eds.). Springer, 105–127.
[11] Jason Cope, Ning Liu, Sam Lang, Phil Carns, Chris Carothers, and Robert Ross.

2011. Codes: Enabling co-design of multilayer exascale storage architectures. In
Proc. of the Workshop on Emerging Supercomputing Technologies (WEST, Vol. 2011).
ACM.

[12] Marco D’Amico, Ana Jokanovic, and Julita Corbalan. 2019. Holistic Slowdown
Driven Scheduling and Resource Management for Malleable Jobs. In Proc. of the
48th International Conference on Parallel Processing (ICPP). ACM.

[13] DDN. 2022. IME®FLASH-NATIVE DATA CACHE | DDN. https://www.ddn.com/
products/ime-flash-native-data-cache/.

[14] Briag Dupont, Nesryne Mejri, and Georges Da Costa. 2020. Energy-aware sched-
uling of malleable HPC applications using a Particle Swarm optimised greedy
algorithm. Sustainable Computing: Informatics and Systems 28 (2020).

[15] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
2016. Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator. In Proc. 20th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP).

[16] Kolja Eger, Tobias Hoßfeld, Andreas Binzenhöfer, and Gerald Kunzmann. 2007.
Efficient Simulation of Large-Scale P2p Networks: Packet-Level vs. Flow-Level
Simulations. In Proc. of the 2nd Workshop on Use of P2P, GRID and Agents for the
Development of Content Networks (UPGRADE). ACM, 9–16.

[17] D.G. Feitelson. 2003. Metric and workload effects on computer systems evaluation.
Computer 36, 9 (2003), 18–25.

[18] Dror G. Feitelson and Larry Rudolph. 1996. Towards Convergence in Job Sched-
ulers for Parallel Supercomputers. In Proc. of the 2nd Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP). Springer, 1–26.

[19] Dror G. Feitelson, Dan Tsafrir, and David Krakov. 2014. Experience with using
the Parallel Workloads Archive. J. Parallel and Distrib. Comput. 74, 10 (2014),
2967–2982.

[20] Kayo Fujiwara and Henri Casanova. 2007. Speed and Accuracy of Network
Simulation in the SimGrid Framework. In Proc. of the 2nd International Conference
on Performance Evaluation Methodologies and Tools (Nantes, France) (ValueTools).
ICST, Article 12, 10 pages.

[21] Cristian Galleguillos, Zeynep Kiziltan, Alessio Netti, and Ricardo Soto. 2020.
AccaSim: A Customizable Workload Management Simulator for Job Dispatching
Research in HPC Systems. Cluster Computing 23, 1 (2020), 107–122.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385

[23] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W. Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters. In
Proc. of the 25th ACM International Symposium on High-Performance Parallel and
Distributed Computing (HPDC). ACM, 69–80.

[24] J. Hungershofer. 2004. On the combined scheduling of malleable and rigid jobs.
In Proc. of the 16th Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 206–213.

www.gauss-centre.eu
https://arxiv.org/abs/2105.12663
https://www.ddn.com/products/ime-flash-native-data-cache/
https://www.ddn.com/products/ime-flash-native-data-cache/
https://arxiv.org/abs/1512.03385


ElastiSim: A Batch-System Simulator for Malleable Workloads ICPP ’22, August 29-September 1, 2022, Bordeaux, France

[25] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size. arXiv:1602.07360

[26] iMatix. 2022. ZeroMQ—An open-source universal messaging library. https:
//zeromq.org/.

[27] INRIA, CNRS, ENS Rennes, and UH Mānoa. 2022. They use SimGrid. https:
//simgrid.org/usages.html.

[28] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian,
Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant
GPU Clusters for DNN Training Workloads. In 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19). USENIX Association, Renton, WA, 947–960.
https://www.usenix.org/conference/atc19/presentation/jeon

[29] Zihan Jiang, Wanling Gao, Fei Tang, Xingwang Xiong, Lei Wang, Chuanxin Lan,
Chunjie Luo, Hongxiao Li, and Jianfeng Zhan. 2021. HPC AI500: Representative,
Repeatable and Simple HPC AI Benchmarking. arXiv:2102.12848

[30] Ana Jokanovic, Marco D’Amico, and Julita Corbalan. 2018. Evaluating SLURM
Simulator with Real-Machine SLURM and Vice Versa. In Proc. of the 9th IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS). 72–82.

[31] Youngjae Kim, Raghul Gunasekaran, Galen M. Shipman, David A. Dillow, Zhe
Zhang, and Bradley W. Settlemyer. 2010. Workload characterization of a lead-
ership class storage cluster. In Proc. of the 5th Petascale Data Storage Workshop
(PDSW). 1–5.

[32] Dalibor Klusáček, Šimon Tóth, and Gabriela Podolníková. 2016. Complex Job
Scheduling Simulations with Alea 4. In Proc. of the 9th EAI International Conference
on Simulation Tools and Techniques (SIMUTOOLS). ICST, 124–129.

[33] Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lofstead. 2018.
Harmonia: An Interference-Aware Dynamic I/O Scheduler for Shared Non-
volatile Burst Buffers. In Proc. of the 20th IEEE International Conference on Cluster
Computing (CLUSTER). 290–301.

[34] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (2012).

[35] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv:1404.5997

[36] Benjamin R. Landsteiner, Dave Henseler, Douglas Petesch, and Nicholas J. Wright.
2016. Architecture and Design of Cray DataWarp. https://cug.org/proceedings/
cug2016_proceedings/includes/files/pap105s2-file1.pdf.

[37] Benjamin R. Landsteiner and David Paul. 2018. DataWarp Transparent Cache:
Implementation , Challenges , and Early Experience. https://cug.org/proceedings/
cug2018_proceedings/includes/files/pap119s2-file1.pdf.

[38] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary
Grider, Adam Crume, and Carlos Maltzahn. 2012. On the role of burst buffers in
leadership-class storage systems. In Proc. of the IEEE 28th Symposium on Mass
Storage Systems and Technologies (MSST). 1–11.

[39] Gonzalo Martín, Maria-Cristina Marinescu, David E. Singh, and Jesús Carretero.
2013. FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing
on Heterogeneous Non-dedicated Systems. In Proc. of the 19th International
Conference on Parallel and Distributed Computing, Euro-Par 2013, Felix Wolf,

Bernd Mohr, and Dieter an Mey (Eds.). Springer, 138–149.
[40] Message Passing Interface Forum. 2021.MPI: AMessage-Passing Interface Standard

Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
[41] Arash Partow. 2022. C++ Mathematical Expression Library. https://www.partow.

net/programming/exprtk/index.html.
[42] Suraj Prabhakaran, Marcel Neumann, Sebastian Rinke, Felix Wolf, Abhishek

Gupta, and Laxmikant V. Kale. 2015. A Batch System with Efficient Adaptive
Scheduling for Malleable and Evolving Applications. In Proc. of the 29th IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 429–438.

[43] Martin Quinson, Cristian Rosa, and Christophe Thiery. 2011. Parallel Simulation
of Peer-to-Peer Systems. In Proc. of the 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 668–675.

[44] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing Network Design Spaces. arXiv:2003.13678

[45] Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.
2018. ScSF: A Scheduling Simulation Framework. In Proc. of the 22nd Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP), Dalibor Klusáček,
Walfredo Cirne, and Narayan Desai (Eds.). Springer, 152–173.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
4510-4520. (2018). arXiv:1801.04381

[47] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv:1802.05799

[48] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556

[49] Alan Jay Smith. 2007. Workloads (Creation and Use). Commun. ACM 50, 11 (nov
2007), 45–50.

[50] Massimo Benini Stephen Trofinoff. 2015. Using and Modifying the BSC
Slurm Workload Simulator. https://slurm.schedmd.com/SLUG15/BSC_Slurm_
Workload_Simulator_Enhancements.pdf.

[51] ThinkParQ and Fraunhofer ITWM. 2022. BeeOND: BeeGFS On Demand. https:
//doc.beegfs.io/latest/advanced_topics/beeond.html

[52] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto
Miranda, Toni Cortes, and André Brinkmann. 2018. GekkoFS - A Temporary Dis-
tributed File System for HPC Applications. In Proc. of the 20th IEEE International
Conference on Cluster Computing (CLUSTER). 319–324.

[53] Pedro Velho, Lucas Schnorr, Henri Casanova, and Arnaud Legrand. 2013. On
the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations.
ACM Transactions on Modeling and Computer Simulation 23, 4 (2013).

[54] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and
Norbert Podhorszki. 2012. Characterizing output bottlenecks in a supercom-
puter. In Proc. of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC12). 1–11.

[55] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Proc. of the 9th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), Dror Feitelson, Larry Rudolph, and Uwe
Schwiegelshohn (Eds.). Springer, 44–60.

https://arxiv.org/abs/1602.07360
https://zeromq.org/
https://zeromq.org/
https://simgrid.org/usages.html
https://simgrid.org/usages.html
https://www.usenix.org/conference/atc19/presentation/jeon
https://arxiv.org/abs/2102.12848
https://arxiv.org/abs/1404.5997
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap119s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap119s2-file1.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.partow.net/programming/exprtk/index.html
https://www.partow.net/programming/exprtk/index.html
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1409.1556
https://slurm.schedmd.com/SLUG15/BSC_Slurm_Workload_Simulator_Enhancements.pdf
https://slurm.schedmd.com/SLUG15/BSC_Slurm_Workload_Simulator_Enhancements.pdf
https://doc.beegfs.io/latest/advanced_topics/beeond.html
https://doc.beegfs.io/latest/advanced_topics/beeond.html

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Related Work
	4 Workload Modeling
	4.1 Workload structure
	4.2 Tasks & payloads

	5 ElastiSim architecture
	5.1 System overview
	5.2 Storage model
	5.3 GPU model
	5.4 System actors
	5.5 Scheduling protocol

	6 Experimental results
	6.1 Experimental setup
	6.2 Deep-learning application model
	6.3 Scheduling algorithms

	7 Conclusion & Outlook
	Acknowledgments
	References

