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Abstract
Convolution operations are essential constituents of convo-
lutional neural networks. Their efficient and performance-
portable implementation demands tremendous program-
ming effort and fine-tuning. Winograd’s minimal filtering
algorithm is a well-known method to reduce the computa-
tional complexity of convolution operations. Unfortunately,
existing implementations of this algorithm are either vendor-
specific or hard-coded to support a small subset of convolu-
tions, thus limiting their versatility and performance porta-
bility. In this paper, we propose a novel method to optimize
Winograd convolutions based on symbolic computation. Tak-
ing advantage meta-programming and auto-tuning, we fur-
ther introduce a system to automate the generation of effi-
cient and portable Winograd convolution code for various
GPUs. We show that our optimization technique can effec-
tively exploit repetitive patterns, enabling us to reduce the
number of arithmetic operations by up to 62% without com-
promising numerical stability. Moreover, we demonstrate
in experiments that we can generate efficient kernels with
runtimes close to deep-learning libraries, requiring only a
minimum of programming effort, which confirms the per-
formance portability of our approach.

Keywords Deep learning, Winograd convolution, meta-
programming, symbolic computation
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1 Introduction
Convolutional neural networks (ConvNets) have emerged as
the mainstreammachine-learning method for a broad variety
of computer-vision tasks, including object detection [9], im-
age segmentation [19] and video classification [14]. Convolu-
tional layers, particularly small ones with 3×3 filter sizes, are
the main constituents of modern ConvNets, as they achieve
higher accuracy with fewer parameters than shallow net-
works with larger filters [12, 29]. Such layers are used abun-
dantly across the whole network and often dominate the
computation and parameter amount. Therefore, speeding
them up would have a great impact on alleviating the infer-
ence time and promoting the usage of ConvNets.

Direct convolution is a basic implementation with its com-
putational requirements often exceeding available resources.
Therefore, to further speed up the convolutional layers, new
algorithmic improvements had to be introduced. Winograd’s
minimal filtering algorithms attempt to minimize the num-
ber of arithmetic operations for performing small convolu-
tions [16]. The key idea is similar to the FFT-based convo-
lution, where multiplication in the frequency domain corre-
sponds to convolution in the time domain. FFT convolution
transforms the input into the frequency domain using Dis-
crete Fourier Transformation (DFT), multiplies by the fre-
quency response of the filter, and then transforms it back into
the time domain using the inverse DFT [22]. The Winograd
convolution follows the same principle. Inputs and filters are
first transformed into another space before the element-wise
multiplication. After the multiplication step, the output will
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be transformed back to the original pixel space to obtain the
final result. Unlike the FFT-based convolution, which uses
complex numbers, all arithmetic operations of the Winograd
convolution use real numbers, thus requiring fewer opera-
tions [16]. Lavin and Gray [16] showed that these algorithms
could be around 2× faster than the direct convolution. How-
ever, due to the additional floating-point rounding errors,
the results are not as accurate as the direct method.
Despite such a rewarding optimization, benefiting from

Winograd’s algorithm demands higher programming effort
than the direct convolution to achieve ultimate performance.
Inefficient data access patterns or unnecessarymemory trans-
fers may cost even more than the time saved by performing
fewer computations. Consequently, performance engineers
often developmultiple versions of theWinograd convolution,
each supporting a different filter and output tile size. Such a
rigid design prevents runtime frameworks from using Wino-
grad convolutions more effectively for layers with different
specifications, as the flexibility in choosing the output tile
size is essential for achieving higher speedups. Within our
experiments, we observed that inference frameworks and en-
gines (e.g., cuDNN) often pick Winograd convolutions for a
limited number of convolutional layers. Moreover, attaining
the highest achievable performance across various platforms
requires endless rounds of manual tuning to specialize the
code to new hardware specifications.
In this paper, we introduce a new system in an at-

tempt to address the issues mentioned above and gener-
ate a performance-portable Winograd convolution. From
our point of view, we define performance portability as “to
achieve a performance close to best-known vendor runtime
on each platform with a single source code”. To this end,
we leverage symbolic computation to analyze Winograd
transformations and identify repetitive terms ready for fac-
torization. Along with additional optimization methods, we
can generate minimal and efficient Winograd transforma-
tion code. This method dramatically reduces the arithmetic
operations of Winograd transformation steps by up to 62%.
Additionally, we usemeta-programming and code generation
to specialize the Winograd convolution code for each partic-
ular configuration and hardware platform. As a result, we
do not need to manually tune or select optimizations accord-
ing to each new target platform. We integrated our method
in Boda [24], a ConvNet inference acceleration framework,
and obtained competitive performance compared to other
inference frameworks, such as cuDNN and MIOpen. Our
experiments show that our method can even surpass the
performance of these vendor-libraries across a subset of
convolutions. In essence, this paper makes the following
contributions:

• A novel method based on symbolic computation to
generate efficient recipes for Winograd transforma-
tions

• A solution for selecting an appropriate output tile size
to balance the numerical stability and efficiency of
Winograd convolutions

• Generation of efficient Winograd algorithm code
for any convolution operation using template meta-
programming

• Performance portability via auto-tuning for Winograd
convolutions on various GPUs, including mobile GPUs

In the remainder of the paper, we first explain the con-
cept behind ConvNets and Winograd convolutions. Then,
in Section 3 we discuss our approach, followed by evalua-
tion results in Section 4. A concise review of related work
is presented in Section 5. Finally, we conclude the paper in
Section 6.

2 Background and Motivation
The essential idea behind ConvNets is their ability to learn a
broad set of filters (a.k.a. kernels), organized into a hierarchy
of layers, to extract meaningful information from a given
image. Convolutional layers are the main constituents of
ConvNets, which can be defined as the function 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑐𝑜𝑛𝑣 (𝑖𝑛𝑝𝑢𝑡, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠), where 𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑖𝑛𝑝𝑢𝑡 and 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 are all
multi-dimensional arrays (i.e. tensors). The main task is to
cross-correlate a set of learned filters uniformly on various
scopes of a given image using the sliding window approach.
The output is a tensor called feature map, which contains ab-
stract information, such as curves and edges. As we proceed
from the first to the last layers of the network, we can ob-
serve the abstraction level of the features to rise. Therefore,
deeper ConvNets are likely to perform better than shallow
networks in various computer vision tasks.
The deeper a network becomes, the more parameters it

usually includes. Hence, more data-dependent arithmetic op-
erations will be involved, prolonging training and inference
time. Furthermore, most of the computations take place in
convolutional layers and accelerating their execution bene-
fits the total inference time immensely. It is often possible to
reshape the convolution operation as a matrix-multiplication
operation. Thus, we can use highly efficient linear algebra
libraries (BLAS), such as single-precision general matrix mul-
tiply (SGEMM). Such libraries are often highly parallelized
and use GPUs for obtaining the highest speedups. Higher
bandwidth, latency hiding via thread parallelism, and easily
programmable registers make GPUs a lot faster than CPUs.

As the overall size of ConvNets grew, which is influenced
by their depth, input size, and kernel size, the efficient ex-
ecution of such networks gained more importance, lead-
ing to the introduction of inference frameworks such as
TVM [4], TensorFlow’s XLA [1], and Glow [28]. Such frame-
works usually perform convolution operations as a series of
dot-products, often with the assistance of a highly-efficient
BLAS library implementation to maximize parallelism and
runtime efficiency. They also perform various graph-level
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Figure 1. Visual representation of the computational steps within a sample 𝐹 (22, 32) Winograd convolution.

and code-level optimizations to minimize the memory foot-
print and accelerate the network inference time. Among
the existing open-source frameworks, Boda [24] is mainly
designed to accelerate ConvNet inference using template
meta-programming to generate specialized code for various
GPU platforms. Boda provides a flexible platform to write
meta-code, from which low-level code optimized for given
hardware can be generated. For instance, we can unroll the
loops, generate a long sequence of memory instructions, and
handle different input regimes.

2.1 Winograd convolution
A. Toom [30] and S. Cook [7] originally proposed optimal
filtering algorithms using polynomial residuals. Afterward,
Shmuel Winograd generalized these algorithms and pro-
posed a method for the efficient computation of finite im-
pulse response (FIR) filters [33]. Within this algorithm, com-
puting𝑚 outputs with an 𝑟 -tap FIR filter, which is denoted
by 𝐹 (𝑚, 𝑟 ) for a 1D convolution, requires 𝑚 + 𝑟 − 1 mul-
tiplications. Such a reduction is quite significant in com-
parison with the direct method, which requires𝑚 × 𝑟 mul-
tiplications [16]. To explain how such a reduction can be
achieved, we use 𝐹 (2, 3) as an example. For instance, for an
input vector 𝑑 = (𝑑0, 𝑑1, 𝑑2, 𝑑3) and 𝑔 = (𝑔0, 𝑔1, 𝑔2), the Wino-
grad algorithm transforms the input data and the filter to
𝑣 = (𝑣0, 𝑣1, 𝑣2, 𝑣3) and 𝑢 = (𝑢0, 𝑢1, 𝑢2, 𝑢3), respectively, using
the following equations:

𝑣0 = 𝑑0 − 𝑑2, 𝑢0 = 𝑔0 (1)

𝑣1 = 𝑑1 + 𝑑2, 𝑢1 =
𝑔0 + 𝑔1 + 𝑔2

2
(2)

𝑣2 = 𝑑2 − 𝑑1, 𝑢2 =
𝑔0 − 𝑔1 + 𝑔2

2
(3)

𝑣3 = 𝑑1 − 𝑑3, 𝑢3 = 𝑔2 (4)

Then, we multiply 𝑢 and 𝑣 element-wise and store the result
in 𝑐 = 𝑢 ⊙ 𝑣 , such that each element within 𝑐 is denoted as
𝑐𝑖 = 𝑢𝑖 × 𝑣𝑖 . Lastly, the final result 𝑦 = (𝑦0, 𝑦1) is computed

using the following equation:

𝑦0 = 𝑐0 + 𝑐1 + 𝑐2, 𝑦1 = 𝑐1 − 𝑐2 − 𝑐3 (5)

The Winograd algorithm generalizes the transformations
mentioned above and summarizes all these steps into a sin-
gle equation, such that 𝑦 = A[(G𝑔) ⊙ (B𝑑)], where the
transformation matrices for 𝐹 (𝑚, 𝑟 ) are:

A =

[
0 1 1 0
0 1 −1 −1

]
,

G =


1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 ,B =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1


(6)

Thus, the Winograd algorithm consists of three main
stages, of which the first and the last stages perform do-
main transformations. All transformations are done by ma-
trix multiplications using pre-computed matrices (A, G, and
B) for each transformation. These matrices are fixed and
are usually generated using the Toom-Cook method with a
set of heuristically chosen polynomial points [2]. In a given
𝐹 (𝑚2, 𝑟 2) 2D Winograd convolution, filter size 𝑟 and the out-
put tile size𝑚 define the internal tile size (i.e., 𝛼 =𝑚 + 𝑟 − 1),
which in turn determines the shapes and values of the trans-
formation matrices. Thus, each Winograd algorithm with
distinct 𝛼 demands a particular set of transformation ma-
trices. Although the convolution operation determines the
filter size 𝑟 of the Winograd algorithm, the output tile size
𝑚 can be freely chosen. Theoretically, by choosing a larger
𝑚, we can save more operations in the element-wise matrix
multiplication step. However, it causes Winograd transfor-
mations to involve more elements, allowing floating-point
rounding errors to jeopardize their numerical stability.
Figure 1 depicts all three stages of the computation for a

sample Winograd convolution 𝐹 (22, 32). Before we explain
each step, we define the following symbols, which are used
by a Winograd convolution 𝐹 (𝑚, 𝑟 ):
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• 𝑔𝑘,𝑐 : 𝑘-th filter with channel 𝑐
• 𝑑𝑐,𝑏 : 𝑏-th input tile of 𝑐-th channel
• 𝑌𝑘,𝑏 : 𝑏-th output tile for the 𝑘-th filter
• 𝑚: Winograd’s output tile size
• 𝑟 : kernel or filter size
• 𝑃 := 𝑁 ⌈𝐻/𝑚⌉ ⌈𝑊 /𝑚⌉: number of internal image tiles
• 𝛼 :=𝑚 + 𝑟 − 1: Winograd’s internal working tile size
• G, B, and A: transformation matrices for input, filter
and output, respectively

2.1.1 Input and filter transformation
First, the input is decomposed into 𝛼 × 𝛼 tiles with the ver-
tical and horizontal stride of 𝛼 − 𝑟 + 1. This stride causes
neighboring tiles to overlap by 𝑟 − 1 elements. Each input
tile and filter is then transformed by two transformation
matrices 𝑉 = B𝑇𝑑𝑐,𝑏B and𝑈 = G𝑔𝑘,𝑐G𝑇 .

2.1.2 Matrix multiplication
The main computation happens in this stage, where element-
wise matrix multiplication is used for multiplying the trans-
formed filter 𝑈 with the transformed input of the same
channel 𝑉 . Then, all channels of the same image should
be summed up (𝑀 =

∑𝐶
𝑐=1𝑈𝑘,𝑐𝑉𝑐,𝑏 ).

2.1.3 Output transformation
Finally, similar to the first stage, the output tiles are trans-
formed back into the original space as 𝑌 = A𝑇𝑀A. The
𝛼 × 𝛼 tiles are transformed into𝑚 ×𝑚 tiles first, and then
placed into the output image at their corresponding position.

2.2 Winograd convolution optimization
To fully benefit from the Winograd convolution, we need to
pick a suitable output tile size𝑚, which meets the expected
accuracy level andmemory limitations. Furthermore, various
code optimizations (i.e., data layout and fast matrix multipli-
cation) are usually needed to improve the overall runtime
performance [13, 21]. However, such optimizations depend
onWinograd specifications and the target hardware platform.
Such a challenging task can be addressed effectively using
an inference engine, capable of generating specialized code.
Our proposed method follows this idea and is integrated into
an inference framework.

3 Approach
A generic yet portable implementation invariably involves
both low-level programming and a significant degree of meta-
programming [5, 15]. Thus, we embrace both of them in
an attempt to create a system for generating efficient and
portable Winograd convolution code with any specification.
We use the Boda framework as the basis for implementing
our method. The input is a ConvNet model, which Boda
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parses it as a computational graph suitable for graph op-
timization and variant selection. Figure 2 depicts a high-
level overview of our approach. Once the framework picks
a Winograd convolution according to the hardware and the
convolution parameters, we start with the specification of
the selected convolution, denoted by 𝐹 (𝑚, 𝑟 ). First, we gener-
ate corresponding transformation matrices, after which we
use Winograd templates to generate efficient code. Depend-
ing on the desired GPU platform, we can generate CUDA,
OpenCL, or GLSL code. The resulting GPU kernels are com-
piled alongside their host code into a binary file, which can
be executed in a standalone fashion on the target device.
Below, we explain the main components of our method in
more detail.

3.1 Winograd transformation optimization
Small convolutions are the primary beneficiaries of theWino-
grad algorithm. Moving toward larger filters or output tiles
makes the Winograd algorithm prone to low precision and
low performance. The accuracy degrades after a multitude of
data-scaling and floating-point operations with finite preci-
sion [2, 32]. The performance also deteriorates because larger
Winograd convolutions demand larger transformation matri-
ces. Existing Winograd implementations attempt to perform
a multitude of matrix multiplications in order to transform
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input tiles, filters, and outputs into the desired domain. The
growing number of arithmetic operations involved in the
transformation steps gradually becomes a burden. In this
section, we provide a solution to optimize these steps and al-
leviate the adverse effects of the Winograd transformations.

3.1.1 Selecting polynomial points
A critical factor in improving the numerical accuracy of
Winograd convolutions is to find a good set of polynomial
points as the basis for generating transformation matrices.
Inspired by B. Barabasz et al. [2], our method heuristically
finds the polynomial points and uses the modified Toom-
Cook method to generate transformation matrices—based
on the idea of evaluating polynomials at given points using
the Lagrange interpolation theorem [2].

For a Winograd convolution 𝐹 (𝑚2, 𝑟 2), we need𝑚 + 𝑟 − 2
points. We begin with the ordered set (0,−1, 1), which has
been proven to provide ideal points for reducing arithmetic
operations and maintaining high accuracy because multi-
plication by 1 or -1 can simply be skipped, and multipli-
cation by zero enables us to skip both the scaling and ad-
dition [2]. When more than three points are required, we
perform an exhaustive search for the remaining points. Em-
pirical evaluations show that small and simple integers and
fractions are good candidates for reducing the required num-
ber of scalings and additions [2]. We follow the same ap-
proach and select the points 𝑃 as rational numbers, where
𝑃 = { 𝑎

𝑏
|𝑎, 𝑏 ∈ Z,−9 ⩽ 𝑎 ⩽ 9, 1 ⩽ 𝑏 ⩽ 9}. To find the most

accurate set of points, we iteratively examine the precision
of Winograd convolution results. In each iteration, we create
random input and filter tensors with a uniform distribution
in the range of (-1, 1) because, in practice, the weights of deep
neural networks are primarily concentrated in this range. To
obtain the highest precision, we compare the results (FP32)
with direct convolution (FP64) and compute the error rate
using the L1 norm. We perform this analysis 10,000 times,
a relatively high iteration count to make the results stable.
We select the median value as the representative error rate
of the chosen points.

3.1.2 Transformation recipe generation
Transformation matrices for a given Winograd convolution
are always the same and often follow a regular pattern. Thus,
we avoid running an ordinary matrix-multiplication kernel
and, instead, we use symbolic computation to intensively
simplify the transformation steps into a sequence of instruc-
tions for constructing the transformed matrices. First, we use
the modified Toom-Cook method to generate the transforma-
tion matrices A, B, and G based on the selected polynomial
points. One crucial feature is that we use rational numbers
instead of real floating-point numbers to avoid rounding
errors. Then, we create a symbol matrix with its size equal

to the input size, similar to:

G =


−1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 , 𝑔 =


𝑔0,0 𝑔0,1 𝑔0,2
𝑔1,0 𝑔1,1 𝑔1,2
𝑔2,0 𝑔2,1 𝑔2,2

 (7)

We multiply the transformation matrix with the symbol
matrix and obtain the result. Next, we apply the following
sequence of steps to optimize the transformed matrices:

1. Elimination of unnecessary arithmetic opera-
tions: We observe many multiplications by one or
zero, and additions with zero (i.e. 1×𝑔𝑖, 𝑗 + 0 or 0×𝑔𝑖, 𝑗 ),
which we eliminate and simplify down to 𝑔𝑖, 𝑗 or 0.

2. Column-/row-wise index-based representation:
We transform the resulting matrix into a vector with
the variable subscripts replaced by an induction vari-
able symbol. A 2D Winograd transformation consists
of two consecutive matrix multiplications. We realized
that we can always apply a column-wise and row-wise
representation generalization to these multiplications,
respectively. The ultimate goal is to generate the trans-
formed matrix using only a single loop construct. Ad-
ditionally, we can unroll the loops if necessary.

3. Factorization: Each row within the resultant vector
contains termswith rational coefficients. In the casewe
find common coefficients across the terms, we apply
factorization to save redundant multiplications.

4. Common sub-expression (CSE) elimination: We
use the CSE algorithm to find the common terms
among the vector rows. Thus, we can compute them
once and reuse them multiple times. This method re-
duces both the number of additions and multiplica-
tions.

Figure 3 illustrates the above steps applied to the sample
filter defined in Equation 7. These optimizations need to be
performed only once before the actual Winograd convolu-
tion execution to obtain the transformation recipes. Since
these recipes remain the same for every specific 𝐹 (𝑚, 𝑟 ), we
store them in a database to facilitate their reuse and avoid
generating them again.

3.2 Code generation
We use CUDA and the rather new Vulkan API to target the
GPU platforms within our study. We decided to use Vulkan
instead of OpenCL on non-Nvidia GPUs, as it supports a
broader range of GPUs, including mobile platforms. Further-
more, evidence shows that the Vulkan compiler can produce
more optimized GPU codes compared with OpenCL com-
pilers [23]. However, CUDA and Vulkan programming in-
terfaces are considerably different. Thus, generating a GPU
kernel out of a single code template might seem implausi-
ble at first sight. Nevertheless, in our previous work, we
extended the Boda framework by adding a high-level GPU
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for(j=0, j<4, j++){

Gg[0][j] = ‐g[0][j];
Gg[1][j] = 0.5*(tmp + g[1][j]);
Gg[2][j] = 0.5*(tmp ‐ g[1][j]);
Gg[3][j] = g[2][j]; }

tmp = g[0][j] + g[2][j];

for(i=0, i<4, i++){

Gg[i][0] = ‐Gg[i][0];
Gg[i][1] = 0.5*(tmp + Gg[i][1]);
Gg[i][2] = 0.5*(tmp ‐ Gg[i][1]);
Gg[i][3] = Gg[i][2]; }

tmp = Gg[i][0] + Gg[i][2];

Remove 0,1s
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index repr.

1

Factorization

2

3
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index repr.

1
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3

CSE4
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Figure 3. Illustration of a Winograd filter transformation being optimized prior to code generation.

interface capable of bridging syntactic incompatibilities [23].
This interface allows a specialized GPU kernel to be gen-
erated without modifying the main source code for every
platform and Winograd specification.
At a high level, we choose to take a general and flex-

ible approach to meta-programming. Rather than using
language-level meta-programming, we write code gener-
ators directly in C++. We use Boda’s native support for
tensors at the meta-code layer to allow code generation
to exploit fixed, exact sizes for all inputs and outputs. We
observed that platform-specific compilers often do not suc-
cessfully unroll loops and remove unneeded conditionals.
In such cases, we directly emit a sequence of instructions
for iterating through tensor elements, loading and storing
data from/to global memory, shared memory, and regis-
ters. To do this, we move the loop to the meta-code level
and replace it entirely with a template placeholder, such
as %(filts_buf_loads), %(winograd_filt_transform),
and %(store_results). Then, at the meta-code level, we
write code to generate the required sequence of instructions.

In general, we aim to make the code as simple as possi-
ble by reducing the usage of loops and conditions. Such an
optimization increases the chance that the platform-specific
compiler generates efficient binary code. Furthermore, the
code generator has the privilege to employ the highly-tuned
BLAS libraries that exist on the target platform, such as
cuBLAS and CLBLast [25]. In this study, we used CLBlast to
perform the matrix multiplications.

3.2.1 Winograd transformation meta-code
In a 2D Winograd convolution, each transformation step
should perform two consecutive matrix multiplications to
transform a given tensor into the desired domain. Such
multiplications are costly, and depending on the matrix
dimensions, they might impose significant runtime over-
head. We aim to replace the six matrix multiplications (i.e.
G.𝑔.G𝑇 , B𝑇 .𝑑 .B, and A𝑇 .𝑀.A) with their corresponding
intensively simplified single-level loops. We replace each
matrix multiplication code with a template placeholder,
such as %(winograd_filt_transform), and later use meta-
programming to fill in the placeholder with the transforma-
tion recipes that we introduced in Section 3.1. An example

of the resulting code is illustrated in Figure 3. We further
reduce the complexity and improve the performance of the
transformation code using two optimization techniques:

• Adaptive loop-unrolling: We unroll the Winograd
transformation loops to eliminate control instructions
and achieve higher speedups. The unrolling factor is
a tunable parameter, which we can tune according
to available instruction cache size. For those loops
in which the iteration count is not dividable by the
unrolling factor, we find the closest divisor, or if we
cannot find one, we fully unroll the loop.

• Fused multiply-add (FMA) operations: Often, the
terms involved in computing the elements of trans-
formed matrices contain a multiplication and an addi-
tion. Therefore, we can convert those operations into
an FMA instruction and perform them all in one step,
with a single rounding. We can benefit from FMA oper-
ations, provided that the target GPU and the program-
ming interface support such operations. Otherwise,
we avoid calling these instructions and simply rely on
basic arithmetic instructions, instead.

3.2.2 Winograd code templates
We can implement Winograd convolutions in two different
ways: (1) non-fused and (2) fused. A fused implementation is
often preferable as it reduces the GPU memory transfer by
merging all theWinograd steps into a single kernel. However,
for large kernels, its memory requirement might exceed the
available GPU shared memory space. In such cases, we use
the non-fused implementation as a fallback. As a rule of
thumb, fused implementations are often better suited for
small convolutions such as 3 × 3 convolutions with small
output tile sizes. We implemented code templates for both
versions to demonstrate the applicability of each version
under different circumstances.

Non-fused implementation
This version implies that we have a separate kernel for each
step of the Winograd algorithm, and each kernel has to write
the results back to the global memory. Although it increases
the data transfer overhead, the non-fused version is still a
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viable option for larger Winograd convolutions, where the
available shared memory is limited, particularly on mobile
GPUs. In general, each kernel assigns a tile of data to each
thread, which first loads the data from the global memory to
its registers. Then, the actual computation takes place, and
ultimately, the output will be written back into the global
memory.
Despite the additional arithmetic operations caused by

Winograd transformations, a significant portion of the com-
putation takes place in Winograd’s matrix multiplication
step. Therefore, obtaining higher efficiency also relies on
using optimized BLAS routines. The element-wise multi-
plication of the transformed input with transformed filters
can be seen as a dot product of two vectors 𝑈 and 𝑉 , as
we need to sum up the results across the channels. There-
fore, we follow Lavin and Gray’s [16] approach to pose this
problem as a typical matrix multiplication and benefit from
highly-efficient SGEMM routines.

To reframe the problem as an SGEMM operation, we ver-
tically stack each element of a transformed filter tile. Then,
we group them by their index within the tile and sort them
by their filter 𝐾 in ascending order, such that each group de-
notes the 𝐾-th elements of each filter tile. Consequently, all
channels will be horizontally stacked and placed in their cor-
responding row, such that the first row contains all channels
of the first element within the first filter tile. The resulting
(𝛼2𝐾,𝐶) matrix is 𝑈 ′

𝑖 𝑗 = 𝑈
𝑖/𝐾
𝑖%𝐾,𝑗 . The transformed image is

reframed in the opposite way, where elements with the same
index are horizontally stacked and grouped by the same im-
age tile. Then, the channels are stacked in a column-wise
fashion.
Since both matrices𝑈 ′ and 𝑉 ′ are grouped by the index

within their tile, there will be 𝛼2 groups per matrix. Only the
groups in𝑈 ′ and 𝑉 ′ sharing the same tile index have to be
multiplied, and only 𝛼2 matrix multiplications are needed.
Since we need to multiply several small matrices, we avoid
invoking different matrix multiplication kernels and, instead,
use a batched-SGEMM operation to perform all the multi-
plications. We use a vendor BLAS library if it exists on the
target platform. Otherwise, we use a self-developed SGEMM
kernel in the Boda framework.

Fused implementation
Merging all the Winograd steps into a single kernel has
the potential advantage of improving the usage of shared
memory and registers. Data resides in the shared memory
as long as it is needed for computation. Previously, Lavin
and Gray [16] proposed this optimization solely for small
Winograd configurations, such as 𝐹 (3, 2) and 𝐹 (3, 4), since
the shared memory space is very limited [16]. We further
extended this optimization and used meta-programming to
support larger configurations, as long as enough sharedmem-
ory is available. We split the threads within a thread block

Table 1. Tuning parameters for Winograd convolutions.

Tuning Parameter Purpose Values

WV Winograd variant (fused / non-fused) [0, 1]
LU Loop unrolling factor [1, 2, 4, 6,∞]
MNt SGEMM Register blocking size Exponential of two
MNb SGEMM Thread blocking size Exponential of two
m Winograd output tile size 2 ≤ 𝑚 ≤ 10

in half, such that the first half computes filter transforma-
tions, and the other half computes input transformations.
The matrix multiplication step is divided into equal parts
and distributed among the threads. Therefore, we cannot
invoke a real matrix-multiplication kernel and, instead, im-
plemented the multiplications within the kernel. Finally, all
threads perform the output transformation together.

3.3 Variant selection and auto-tuning
It is generally hard, evenwithmeta-programming, to develop
comprehensive yet efficient Winograd convolution kernels
that can run across various inputs and hardware platforms.
We have two different variants of Winograd convolutions
(i.e., fused and non-fused), which might perform differently
on each target platform. Thus, based on the convolution
and available resources, we expect to run the best perform-
ing variant on a given platform. Furthermore, each variant
needs to be optimized prior to execution using several tuning
parameters, as described in Table 1. By performing a brute-
force, guided, or sampled exploration of the space of variants
and tuning parameters, we can find the best parameters for
a given Winograd convolution operation and provide per-
formance portability among different hardware platforms.
Considering the manageable size of the search space, we
used the brute-force method. Nevertheless, the tuning pro-
cess could be further accelerated using more sophisticated
search methods.

4 Experimental Results
In this section, we assess different aspects of the proposed
method by answering the following specific questions:

• Howprecise are theWinograd convolution results, and
how does the accuracy change for different Winograd
configurations?

• To what extent can we optimize the Winograd-
transformation code?

• What is the runtime performance of the proposed
method, and how does it perform compared with other
deep-learning libraries?

• How portable are the generated Winograd convolu-
tions across different GPU platforms?

• Is there any way to pick the most suitable configura-
tion for a given Winograd convolution?

7
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Table 2. Experimental setup.

Nvidia GTX 1080Ti AMD RX 580 ARM Mali G71
OS Ubuntu 16.04 64-bit Android 7.0
CPU Intel Xeon Gold 6126, 12Core @ 2.6GHz Cortex A73,A53
Host Memory 64 GB 3GB
GPU Memory 11GB GDDR5X 8GB GDDR5 -
Driver Linux Display 410.66 AMDGPU-PRO 17.40 Native driver

Libraries CUDA 10, cuDNN 7.3 MIOpen 2.1
ARM Compute
Library v20.02.1

Experimental setup
To evaluate the proposed method, we chose NVIDIA GTX
1080 Ti and AMDRadeon RX 580, two popular desktop GPUs.
We also used a mobile platform based on the Hikey 960
development kit, which contains an ARM Mali-G71 MP8
GPU. Table 2 summarizes the configuration details of the
target platforms.

4.1 Accuracy analysis
As mentioned earlier in Section 3, moving toward a larger
internal tile size 𝛼 , which itself depends on the output tile
size𝑚 and the filter size 𝑟 , leads to a higher accuracy loss.
However, it is not apparent how much error is tolerable
during the inference phase. Thus, we measured the accuracy
of Winograd convolutions with various internal tile sizes to
find out how significant their error rates are and which one
is probably more suitable for a convolutional layer.
Table 3 reports the selected polynomial points for differ-

ent Winograd internal tile sizes, within the range of [4, 16]
alongside their relative error. We compute the relative error
using the L1 norm | |𝑋 | |1:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐸𝑟𝑟𝑜𝑟 =
| |𝑋 − 𝑋 | |1
| |𝑋 | |1

| |𝑋 | |1 =𝑚𝑎𝑥 𝑗
∑
𝑖

|𝑎𝑖, 𝑗 |

, where 𝑋 and 𝑋 are the Winograd (32-bits) and direct con-
volution (64-bits) results, respectively. Conventionally, the
previous points can be reused for adding a new point to the
sequence [2]. However, we noticed that by recomputing the
whole sequence of points, more accurate results could be
obtained.
We investigated the numerical stability of the generated

Winograd convolutions by measuring their error range and
error growth rate. Figure 4 depicts a box plot of L1-norm er-
rors forWinograd convolutions with different𝛼 . We ran each
case 10,000 times with randomly generated input and filters
between (−1, 1). We observed that the error rates proliferate
with the addition of each new polynomial point. However,
it does not precisely follow an exponential trajectory, as op-
posed to the observation made by Barabasz et al. [2]. Instead,

Table 3. Polynomial points selected by ourmethod alongside
their relative error.

𝛼 Points Relative Error
4 𝐵𝑃 = (0, 1,−1) 6.11 × 10−8
5 𝐵𝑃 ∪ (2) 2.65 × 10−7
6 𝐵𝑃 ∪ (1/2,−2) 5.59 × 10−7
7 𝐵𝑃 ∪ (1/2,−2, 2) 1.14 × 10−6
8 𝐵𝑃 ∪ (2, − 1/2, 1/2,−2) 1.76 × 10−6
9 𝐵𝑃 ∪ (2,−1/2, 1/2,−2, 4) 9.93 × 10−6
10 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4) 1.42 × 10−5
11 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4,−4) 8.38 × 10−5
12 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 3/4, − 4/3, 9/2, − 2/9) 1.83 × 10−4
13 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 1/4,−4, 4) 5.36 × 10−4
14 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 9/7, − 7/9, 1/4,−4, 7/9, − 7/9) 9.10 × 10−4
15 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 1/4,−4, 7/9, − 9/7, 4) 3.45 × 10−3
16 𝐵𝑃 ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 2/7, − 7/2, 4/5, − 5/4, 4, − 1/4) 4.66 × 10−3
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Figure 4. L1-norm error analysis for various Winograd in-
ternal tile sizes.

we noticed that Winograd convolutions with even 𝛼 bene-
fit from a lower error-growth rate. We observed the lowest
error growth when 𝛼 = 8.

In comparisonwith the inference phase, accuracy is amore
crucial factor for the training phase, as it affects learning
stability. Nonetheless, according to previous studies [8, 10],
error rates lower than 1e−02 do not harm the stability, im-
plying that the inference phase is immune to such error rates.
Such an observation suggests that our generated Winograd
convolutions can be used during inference without experi-
encing any instability.

4.2 Winograd transformation optimization results
In Section 3.1, we proposed a method for reducing the com-
putational complexity of Winograd transformation steps us-
ing symbolic computation. To demonstrate the effectiveness
of our method, we numerically analyze the computations
involved inWinograd transformation steps by directly count-
ing the number of additions and multiplications. We selected
Winograd convolutions with 𝑚 ∈ {𝑚 ∈ N|2 ≤ 𝑚 ≤ 10}
and 𝑟 ∈ {3, 5, 7}. The results are given in Figures 5a– 5c.
For each step, we separated the results into three columns,
each representing a particular filter size. The baseline is the
straightforward implementation of Winograd transforma-
tions using typical matrix multiplications. The optimized
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version represents the actual number of arithmetic opera-
tions involved in the generated code. We also demonstrate
the amount of FMA operations, which we were able to iden-
tify.

We observed that our method was able to reduce the num-
ber of arithmetic operations in transformation steps by up to
62%. We annotated the highest amount of reductions in each
diagram. We often obtain the highest amount of reduction
when 𝛼 = 8, except for a few cases, where other internal tile
sizes yield higher reductions. However, when looking at all
the transformation steps, as depicted in Figure 5d, we can
conclude that transformations are better suited for optimiza-
tion when 𝛼 = 8. Such a value for 𝛼 enables our method to
factorize more common terms and improve data reuse. Since
transformation steps might be considered as a small portion
of the total computations involved in Winograd convolution,
we also show the total amount of arithmetic reduction in
Figure 5d. As the blue line indicates, the total reduction of
arithmetic operations can reach up to 40%. Overall, our analy-
sis of both accuracy and the number of arithmetic operations
in Winograd transformations after optimization confirms
that when 𝛼 = 8, Winograd convolutions can be optimized
to a greater extent.
To further validate the effectiveness of our method, we

generated CUDA kernels for sample convolutions with
𝑟 ∈ {3, 5, 7} and the same set of Winograd output tile sizes
𝑚 ∈ {𝑚 ∈ N|2 ≤ 𝑚 ≤ 10}. Figure 6 depicts all the runtimes
for the convolutions that we ran on our Nvidia GPU. Our
results suggest that Winograd convolutions with a filter size
larger than five are probably not suitable for deployment,
as other types of convolutions perform much faster. We fur-
ther noticed that larger values of𝑚 do not necessarily save
more operations during the matrix-multiplication step, as
they cause additional computation overhead. Evidence [13]
suggests that this happens mainly for two reasons: (1) The
dimension of output images has to be divisible by𝑚. Other-
wise, the image is zero-padded, leading to a higher amount
of operations during both transformation and matrix mul-
tiplication. (2) The amount of operations for the image and
filter transformations grows quadratically with𝑚.
For 3 × 3 convolutions with small batch sizes, smaller

Winograd output tile sizes𝑚 offer better runtime. However,
when we increase the batch size, larger values of𝑚 between
(5,7) leads to a better result. In contrast, we observe a different
behavior with 5×5 convolutions. For almost every batch size,
an output tile size of𝑚 = 4 offers lower runtime, provided
that we enable our optimization. We notice that our method
can speed up convolutions by up to 1.65×, particularly when
𝛼 = 8.

4.3 Efficiency and performance portability
To evaluate the runtime performance and performance porta-
bility of our approach, we selected a range of convolution
operations and generated the corresponding GPU kernels

Table 4. KSZ, S, P, OC, and B are the kernel size, stride,
padding, number of output channels, and batch size of each
convolution operation. 𝑖𝑛 and 𝑜𝑢𝑡 are the sizes of input and
output, specified as 𝑦 × 𝑥 × 𝑐ℎ𝑎𝑛; FLOPs is the per-operation
FLOP count.

FLOPs KSZ S P OC B in
1e+08 5 1 2 32 5 28 × 28 × 16
1e+08 5 1 2 64 5 14 × 14 × 32

1.16e+08 3 1 1 256 1 14 × 14 × 128
1.2e+08 5 1 2 96 1 28 × 28 × 32
1.46e+08 3 1 1 288 1 14 × 14 × 144
1.73e+08 3 1 1 128 1 28 × 28 × 96
1.81e+08 3 1 1 320 1 14 × 14 × 160
2.01e+08 5 1 2 128 5 14 × 14 × 32
2.26e+08 3 1 1 320 5 7 × 7 × 160
2.55e+08 3 1 1 1024 1 6 × 6 × 384
2.99e+08 3 1 1 256 1 13 × 13 × 384
2.99e+08 3 1 1 384 1 13 × 13 × 256
3.25e+08 3 1 1 384 5 7 × 7 × 192
3.47e+08 3 1 1 192 1 28 × 28 × 128
3.52e+08 3 1 1 208 5 14 × 14 × 96
4.43e+08 3 1 1 224 5 14 × 14 × 112
4.49e+08 3 1 1 384 1 13 × 13 × 384
5.78e+08 3 1 1 256 5 14 × 14 × 128
6.02e+08 5 1 2 96 5 28 × 28 × 32
6.94e+08 3 1 1 192 1 56 × 56 × 64
7.32e+08 3 1 1 288 5 14 × 14 × 144
8.67e+08 3 1 1 128 5 28 × 28 × 96
8.96e+08 5 1 2 256 1 27 × 27 × 96
9.03e+08 3 1 1 320 5 14 × 14 × 160
1.27e+09 3 1 1 1024 5 6 × 6 × 384
1.5e+09 3 1 1 384 5 13 × 13 × 256
1.5e+09 3 1 1 256 5 13 × 13 × 384
1.73e+09 3 1 1 192 5 28 × 28 × 128
2.24e+09 3 1 1 384 5 13 × 13 × 384
3.47e+09 3 1 1 192 5 56 × 56 × 64
4.48e+09 5 1 2 256 5 27 × 27 × 96

for various platforms. To get the best performance, we used
CUDA for Nvidia GPUs and Vulkan for AMD and Mali-G71
mobile GPUs.

Instead of showing end-to-end runtime results for whole
deep neural networks, we follow a more fine-grained ap-
proach and report per-convolution runtimes because it bet-
ter highlights the impact of our optimizations. Successfully
speeding up even a single convolutional layer implies shorter
inference runtime for the whole network. Thus, we extracted
31 unique convolutions from AlexNet, Network-in-Network,
and the InceptionV1 networks, which have (1) batch sizes
of one and five, and (2) more than 1𝑒8 FLOPS. The rationale
behind this selection is that we wanted these convolutions
to model both a single inference and a streaming deploy-
ment scenario with a high computational load but some
latency tolerance. The exact specifications for each of these
31 convolutions can be found in Table 4. For the sake of pre-
cision, we measured the execution times using GPU timers.
Furthermore, to counter run-to-run variation, we executed
each kernel ten times and reported the average of the run-
times we obtained. All the average speedups reported across
the convolutions are computed using the geometric mean.
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(a) Filter transformation
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(b) Input transformation

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

F(1
0,

3)

0

1000

2000

3000

#
o

f
A

ri
th

m
et

ic
o

p
er

a
ti

o
n

s

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

F(1
0,

5)

0

2000

4000

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

F(1
0,

7)

0

2000

4000

6000

0.0

0.2

0.4

0.6α = 8

0.3

0.4

0.5

α = 8

0.25

0.30

0.35

0.40

0.45

A
ri

th
m

et
ic

re
d

u
ct

io
n

ra
ti

oα = 9

(c) Output transformation
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Figure 5. Comparing the number of arithmetic operations of each Winograd transformation, before and after optimization,
where 𝑟 ∈ {3, 5, 7},𝑚 ∈ [2, 10]. Our analysis indicates that the highest arithmetic reduction can be achieved when 𝛼 = 8.
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Figure 6. Comparing the runtimes of optimized and non-optimized Winograd convolutions 𝐹 (𝑚2, 𝑟 2), where 𝑟 ∈ {3, 5, 7},𝑚 ∈
[2, 9], and the batch size 𝐵 ∈ {1, 5, 20}.

We now present per-convolution-operation runtime results
across three different hardware platforms to illustrate the
efficiency and performance portability of our method. We
sorted the operations by FLOP count, a reasonable proxy for
their difficulty.

A runtime comparison of our methodwith cuDNN is given
in Figure 7. It demonstrates the performance of our approach
relative to the highly-tuned vendor library. We also included
Boda’s runtime in the absence of the Winograd convolution
to display its impact on the performance of an inference
engine. We observed that cuDNN’s fused Winograd imple-
mentation only supports 3 × 3 convolutions. Our method,
on the other hand, is more versatile and can generate effi-
cient fused Winograd kernels for larger convolutions as well.
The striped horizontal line in Figure 7 indicates the average
speedup over cuDNN’s Winograd convolutions. The results
reveal that not only our method can often yield runtimes
close to cuDNN’s performance, but also can perform better
than cuDNN, by up to 8.1× in some cases. However, cuDNN
can achieve better runtimes for larger convolutions. We be-
lieve that this can be mainly attributed to more efficient
matrix-multiplication routines.

Figure 8 compares the runtimes of our benchmark on the
AMD GPU. We also included MIOpen runtimes as the base-
line to show the performance of our method relative to the
optimized AMD ConvNet library. The magenta striped line
indicates the average speedup. Presumably benefiting from
the highly-optimized MIOpenGEMM library, MIOpen per-
forms better than our method for larger convolutions. How-
ever, in specific cases, we were able to outperform MIOpen
Winograd implementation by up to a factor of 1.9. Together,
Figures 7 and 8 illustrate that our method significantly im-
proves the performance of the Boda inference framework.
Additionally, we can achieve competitive performance com-
pared with the vendor libraries on two different platforms.
This observation confirms that our method is performance
portable.

Furthermore, to validate the effect of auto-tuning on per-
formance portability, we executed the code generated by
our method with and without auto-tuning on our Mali G71
mobile GPU. This platform is entirely different from the pre-
vious two GPUs and usually requires an enormous amount
of effort to achieve reasonable performance. Figure 9 illus-
trates the results of using the auto-tuner to select the right
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Figure 7. The runtime comparison of kernels generated using our method with cuDNN on Nvidia GTX 1080 Ti.
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Figure 8. The runtime comparison of kernels generated using our method with MIOpen on AMD Radeon RX 580.

Winograd implementation and tuning parameters. We al-
ways used a non-fused implementation with𝑚 = 2, when
auto-tuning is disabled. When auto-tuning is enabled, we
can achieve a considerable speedup—on average, by a fac-
tor of 1.74. The red line shows the achieved speedup using
auto-tuning for each convolution operation.
To compare the performance of our method with a well-

known deep-learning library, we also added the Winograd
convolution runtimes of the ARM compute library. The re-
sults in Figure 9 verify the importance of auto-tuning to
achieve competitive results compared with other frame-
works. Auto-tuning enabled us to find more efficient imple-
mentations and even surpass the performance of the ARM
compute library for several convolution operations. We also
noticed that the ARM compute library uses half-precision
floating-point operations in matrix multiplications, which
explains the reason for higher performance in other convo-
lutions.

5 Related Work
Several studies have been conducted to reduce the arithmetic
complexity of convolution operations [20]. Cong et al. [6]
reduced the convolution runtime by up to 47% using the
Strassen algorithm. Vasilache et al. [31] further reduced the

computational complexity of convolutions using an FFT-
based method. However, such a method is only practical in
cases where the compute-to-memory ratio is high, and the
cache size is limited. Thus, FFT convolutions are mostly used
for convolutions with large image/filter sizes, and when the
number of input/output channels is relatively small [35].
Soon after the seminal paper on Winograd convolu-

tion [16] appeared, the algorithm was integrated in pop-
ular deep-learning libraries such as Nvidia cuDNN, AMD
MIOpen, and Intel MKL. Subsequently, several researchers
attempted to make Winograd convolutions more accurate
for larger kernel and input sizes [2, 32]. Our experiments
show that the polynomial points selected by our method
can produce slightly more accurate results. Further studies
on the Winograd algorithm are mostly aimed at improv-
ing its performance on various hardware platforms, such
as GPUs, CPUs, edge devices, and artificial-intelligence ac-
celerators [3, 13, 34], reducing its computational complex-
ity by leveraging sparse computations and parameter prun-
ing [17, 18, 26].
To the best of our knowledge, existing methods for im-

plementing efficient Winograd convolutions are geared to-
ward a limited set of configurations (e.g., 𝐹 (2, 3) and 𝐹 (4, 3))
and computing devices. Each study recommends a new set
of optimizations, which are often bound to a specific hard-
ware platform. For example, Xygkis et al. [34] attempted to
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Figure 9.Winograd convolution performance with and without auto-tuning on Mali G71.

optimize the Winograd convolution on an Intel Movidius
Myriad2 device. Such edge devices have limited power and
memory capacity, and due to the high memory consumption
of Winograd kernels, efficient memory management is essen-
tial. Therefore, the authors introduced optimization methods
like data transfer management and data-representation op-
timization, which seems to be highly rewarding on Intel
Myriad 2. However, they only evaluated their method for a
single Winograd convolution.
In contrast to GPU devices, CPUs have access to a larger

amount of memory. Such a feature enables inference frame-
works to execute Winograd convolutions with higher dimen-
sions and larger filters and output tile sizes. Three meth-
ods have been introduced to implement efficient Winograd
kernels on CPUs [3, 13, 21]. Each of them suggests a differ-
ent mixture of optimizations based on the target CPU. For
instance, Jia et al. [13] demonstrated that their Winograd
implementation can support n-dimensional convolutions.
They employed various optimization techniques, including
data layout optimization, an efficient SGEMM implementa-
tion, and transformation codelets for the efficient execution
of Winograd operation on CPUs. Despite their successful
attempt in accelerating Winograd, their method has been
tested only on CPUs. Moreover, Jia et al. [13] claim that when
theWinograd-internal tile size (i.e., 𝛼) is even, only input and
filter transformations have a specific pattern that allows for
further reduction in computational complexity. In contrast,
we demonstrated that all three Winograd transformation
matrices often contain a regular pattern, even when 𝛼 is odd.
Furthermore, none of the above-mentioned studies proposed
a solution for making Winograd convolutions performance
portable. Such a feature is crucial for inference frameworks,
which aim to operate on various platforms.

To address performance portability, inference engines
such as TVM [4], PlaidML [11], TensorFlow’s XLA [1], and
Glow [28] provide a platform to facilitate code generation
and performance optimization. Among them, TVM frame-
work [4] is the most comprehensive solution to run deep
neural networks on a wide variety of hardware backends.
TVM adopts the decoupled compute/schedule paradigm

introduced in the Halide framework [27] and provides a
domain-specific language for defining tensor operations and
their optimization routines. Winograd convolution is also
available in the TVM codebase. However, it is a non-fused
implementation and uses predefined and hard-coded trans-
formation matrices. We believe that integrating our symbolic
analysis approach into the TVM’s Winograd implementa-
tion can improve its versatility and runtime performance to
a great extent.

6 Conclusion and Outlook
Winograd convolution is a promising method for reducing
the computational complexity of convolution operations.
However, if not appropriately implemented, the performance
may be lower than expected. The overhead of the Winograd
transformation steps can make it even inferior to the di-
rect convolution. In this paper, we proposed a method based
on symbolic computation to create minimal yet efficient
recipes that replace the straightforward matrix multiplica-
tion method within Winograd transformations. Our empir-
ical evaluation illuminated that choosing the right output
tile size 𝑚, depending on the filter size, can significantly
reduce the number of arithmetic operations while offering
acceptable accuracy (e.g., 𝐹 (𝑚 = 6, 𝑟 = 3), 𝐹 (𝑚 = 4, 𝑟 = 5)).
To the best of our knowledge, this critical observation went
unnoticed so far. Furthermore, we were able to generate
performance-portable Winograd convolutions with the help
of template meta-programming. Our runtime analysis shows
that we can not only use the same Winograd meta-code to
run on a multitude of GPU platforms, including a mobile
GPU, but also compete with vendor ConvNet libraries, such
as cuDNN, MIOpen, and the ARM compute library.

Finally, we believe that the proposed method can be used
to target other platforms, such as CPUs, deep-learning ac-
celerators, and dedicated inference engines (e.g., TVM [4]).
To achieve higher speedups and better compatibility on new
hardware, we plan to implement tunable BLAS routines tai-
lored to Winograd multiplication steps.
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