

Scalasca 1.4 | User Guide
Scalable Automatic Performance Analysis

March 2013
The Scalasca Development Team
scalasca@fz-juelich.de

Copyright © 1998–2013 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2013 German Research School for Simulation Sciences GmbH,
Germany

Copyright © 2003–2008 University of Tennessee, Knoxville, USA

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH, the German Research
School for Simulation Sciences GmbH, or the University of Tennessee, Knoxville,
nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

ii

Contents

Contents

1. Introduction 1
1.1. How to read this document . 1
1.2. Performance optimization cycle . 2
1.3. Scalasca overview . 3

2. Getting started 7
2.1. Instrumentation . 8
2.2. Runtime measurement collection & analysis 8
2.3. Analysis report examination . 10
2.4. A full workflow example . 12

3. Application instrumentation 19
3.1. Automatic compiler instrumentation 22
3.2. Manual region instrumentation . 23
3.3. Measurement control instrumentation 25
3.4. Semi-automatic instrumentation . 25
3.5. Automatic source-code instrumentation using PDT 27
3.6. Selective instrumentation . 29

4. Measurement collection & analysis 31
4.1. Nexus configuration . 31
4.2. Measurement configuration . 33
4.3. Measurement and analysis of hardware counter metrics 36
4.4. Automatic parallel event trace analysis 37
4.5. Automatic sequential event trace analysis 40

5. Analysis report examination 43
5.1. Examination options . 43

6. Additional utilities 47
6.1. Additional EPILOG event trace utilities 47
6.2. Trace converters . 47
6.3. Recording user-specified virtual topologies 48

A. MPI wrapper affiliation 51
A.1. Enabling and disabling wrappers at compile-time 51

iii

Contents

A.2. Subgrouping or cross-group enabling 51
A.3. Function to group . 52
A.4. Group to function . 61

B. Environment variables 71

Bibliography 75

iv

Chapter 1. Introduction

1. Introduction

Supercomputing is a key technology of modern science and engineering, indispensable
to solve critical problems of high complexity. As a prerequisite for the productive use of
today’s large-scale computing systems, the HPC community needs powerful and robust
performance analysis tools that make the optimization of parallel applications both more
effective and more efficient.

Jointly developed at the Jülich Supercomputing Centre and the German Research School
for Simulation Sciences (Aachen), Scalasca is a performance analysis toolset that has
been specifically designed for use on large-scale systems including IBM Blue Gene
and Cray XT, but also suitable for smaller HPC platforms using MPI and/or OpenMP.
Scalasca supports an incremental performance analysis process that integrates runtime
summaries with in-depth studies of concurrent behavior via event tracing, adopting a
strategy of successively refined measurement configurations[6]. A distinctive feature of
Scalasca is the ability to identify wait states that occur, for example, as a result of un-
evenly distributed workloads. Especially when trying to scale communication intensive
applications to large processor counts, such wait states can present severe challenges to
achieving good performance. Compared to its predecessor KOJAK[19], Scalasca can de-
tect such wait states even in very large configurations of processes using a novel parallel
trace-analysis scheme[5].

1.1. How to read this document

This user guide is structured into three parts:

• This introductory chapter gives a short introduction into performance analysis in
general and the components of the Scalasca toolset in particular. If you are already
familiar with performance analysis of parallel scientific applications you might
skip the following section and continue reading directly with Section 1.3.

• The next part in Chapter 2 introduces the basic steps and commands required for
initial performance analyses of parallel applications. It also includes a full example
describing the Scalasca performance analysis workflow.

• The remainder of this user guide in Chapters 3 to 6 provide a more in-depth discus-
sion of the individual steps in evaluating the performance of a parallel application.

1

Chapter 1. Introduction

1.2. Performance optimization cycle

Regardless of whether an application should be optimized for single-core performance
or for scalability, the basic approach is very similar. First, the behavior of the application
needs to be monitored, and afterwards the recorded behavior can be evaluated to draw
conclusions for further improvement. This is an iterative process that can be described by
a cycle, the so-called performance optimization cycle. When broken down into phases,
it is comprised of:

• Instrumentation

• Measurement

• Analysis

• Presentation

• Evaluation

• Optimization of the code

unoptimized
application

optimized
application

Analysis

Measurement

Instrumentation

Optimization

Evaluation

Presentation

Figure 1.1.: Performance optimization cycle

As shown in Figure 1.1, the user starts with the original (i.e., unoptimized) applica-
tion, which enters the optimization cycle in the instrumentation phase. Instrumentation
describes the process of modifying the application code to enable measurement of per-
formance relevant data during the application run. In the context of Scalasca, this can
be achieved by different mechanisms, such as source-code instrumentation, automatic
compiler-based instrumentation or linking with pre-instrumented libraries. Instrumenta-
tion on the source-code level can be done by introducing additional instructions into the
source code prior to compilation. On most systems, this process can be automated by
using special features of the compiler. However, this approach typically does not allow
a fine-grained control of the instrumention. The third method is to use pre-instrumented
libraries, which contain instrumented versions of the relevant library functions. The

2

1.3. Scalasca overview

Message-Passing Interface standard MPI[13] provides a special interface for this kind of
instrumentation, the so-called PMPI interface. As this interface is defined in the MPI
standard, its API is portable and creates an opportunity for tool developers to provide
a single portable measurement library for multiple different MPI implementations. In
comparison, the OpenMP standard[15] specifies no such standard interface for tools.

When the instrumented code is executed during the measurement phase, performance
data is collected. This can be stored as a profile or an event trace, depending on the
desired level of information needed. The additional instructions inserted during instru-
mentation and associated measurement storage require resources (memory as well as
CPU time). Therefore the application execution is affected to a certain degree. Pertur-
bation by the additional measurement instructions may be small enough to get a fairly
accurate view of the application behavior. However, certain application properties like
frequently executed regions with extremely small temporal extent, will always lead to a
high perturbation. Thus the measurement of those regions must be avoided.

The measurement data can then be analyzed after application execution. If a detailed
event trace has been collected, more sophisticated dependencies between events occur-
ing on different processes can be investigated, resulting in a more detailed analysis re-
port. Especially inter-process event correlations can usually only be analyzed by a post-
mortem analysis. The information which is needed to analyze these correlations are
usually distributed over the processes. Transferring the data during normal application
runtime would lead to a significant perturbation during measurement, as it would require
application resources on the network for this.

After analyzing the collected data, the result needs to be presented in an analysis report.
This leads to the next phase in the performance optimization cycle, namely the presen-
tation phase. At this stage, it is important to reduce the complexity of the collected
performance data to ease evaluation by the user. If the presented data is too abstract, per-
formance critical event patterns might not be recognized by the user. If it is too detailed,
the user might drown in too much data. User guidance is therefore the key to productive
application optimization.

In the evaluation phase, conclusions are drawn from the presented information, leading to
optimization hypotheses. The user proposes optimization strategies for the application,
which are then implemented in the following optimization phase. Afterwards, the effec-
tiveness of the optimization has to be verified by another pass through the performance
optimization cycle. When the user is satisfied with the application performance during
evaluation, and no further optimization is needed, the instrumentation can be disabled,
and the performance of the uninstrumented application execution can be assessed.

1.3. Scalasca overview

Scalasca supports measurement and analysis of the MPI, OpenMP and hybrid
MPI+OpenMP programming constructs most widely used in highly scalable HPC ap-

3

Chapter 1. Introduction

plications written in C, C++ and Fortran on a wide range of current HPC platforms.
Usage is primarily via the scalasca command with appropriate action flags. Figure
1.2 shows the basic analysis workflow supported by Scalasca. Before any performance
data can be collected, the target application needs to be instrumented. Instrumentation
means, that the code must be modified to record performance-relevant events whenever
they occur. On most systems, this can be done completely automatically using compiler
support. On other systems, a mix of manual and automatic instrumentation mechanisms
is offered. When executing the instrumented code on a parallel machine, the user can
generate a summary report (also known as profile) with aggregate performance metrics
for individual function call paths. Furthermore, event traces can be generated by record-
ing individual runtime events from which a profile or a time-line visualization can later
be produced. The runtime summarization capability is useful to obtain an overview of
the performance behavior and also to optimize the instrumentation for later trace gen-
eration. Since traces tend to become very large, and inappropriate instrumentation and
measurement configuration will compromise the resulting analysis, this step is highly
recommended.

Instr.
target
application

Measurement
library

Local event
traces

Merge

Global
event trace

Parallel
pattern search

Pattern
report

Summary
report

Sequential
pattern search

Pattern
report

Pattern
trace

Conversion
Exported

trace

Third-party
trace

browser

Report
browser

Optimized measurement configuration

Figure 1.2.: Scalasca’s performance analysis workflow

When tracing is enabled, each process generates a trace file containing records for all
its process-local events. After program termination, Scalasca reloads the trace files back
into main memory and analyzes them in parallel using as many CPUs as have been used
for the target application itself. During the analysis, Scalasca searches for characteris-
tic patterns indicating wait states and related performance properties, classifies detected
instances by category and quantifies their significance. The result is a pattern-analysis
report similar in structure to the summary report but enriched with higher-level com-

4

1.3. Scalasca overview

munication and synchronization inefficiency metrics. Both summary and pattern reports
contain performance metrics for every function call path and system resource which can
be interactively explored in a graphical report explorer (see Figure 2.1 for an example).
The CUBE GUI is provided with Scalasca, or it can be installed separately, and third-
party profile visualization tools such as ParaProf[16] can also present Scalasca analysis
reports. As an alternative to the automatic analysis, the event traces can be visualized and
investigated with third-party trace browsers, taking advantage of their powerful time-line
visualizations and rich statistical functionality. Newer versions of Vampir can handle
Scalasca traces directly, or traces can be converted for JumpShot, Paraver[12, 3] or older
versions of Vampir[14, 7],

5

Chapter 1. Introduction

6

Chapter 2. Getting started

2. Getting started

This chapter provides a hands-on introduction to the use of the Scalasca toolset on the
basis of the analysis of an example application. The most prominent features are ad-
dressed, and at times a reference to later chapters with more in-depth information on the
corresponding topic is given.

Use of Scalasca involves three phases: program instrumentation, execution measurement
collection and analysis, and analysis report examination. The scalasca command pro-
vides action options that invoke the corresponding commands skin, scan and square.

These actions are:

1. scalasca -instrument

is used to insert calls to the Scalasca measurement system into the application’s
code, either automatically, semi-automatically or by linking with pre-instrumented
libraries.

2. scalasca -analyze

is used to control the measurement environment during the application execution,
and to automatically perform trace analysis after measurement completion if trac-
ing was requested.

The Scalasca measurement system supports runtime summarization and/or event
trace collection and analyses, optionally including hardware-counter information.

3. scalasca -examine

is used to postprocess the analysis report generated by the measurement runtime
summarization and/or post-mortem trace analysis, and to start Scalasca’s analysis
report examination browser CUBE3.

To get a brief usage summary, call the scalasca command with no arguments, or use
scalasca -h to open the Scalasca Quick Reference (with a suitable PDF viewer).

The following three sections provide a quick overview of each of these actions and how
to use them during the corresponding step of the performance analysis, before a full
workflow example is presented in Section 2.4.

7

Chapter 2. Getting started

2.1. Instrumentation

To make measurements with Scalasca, user application programs need to be instru-
mented, i.e., at specific important points (events) during the application run, special
measurement calls have to be inserted. In addition to an almost automatic approach using
compiler-inserted instrumentation (Section 3.1), semi-automatic "POMP" (Section 3.4)
and manual instrumentation (Section 3.2) approaches are also supported. In addition,
automatic source-code instrumentation by the PDToolkit instrumenter (Section 3.5) can
be used if Scalasca is configured accordingly.

For pure OpenMP or hybrid MPI+OpenMP applications, or when using the semi-
automatic "POMP" directive-based approach, the OPARI2 source-code instrumenter is
used internally. Read the OPARI2 section in the OPEN_ISSUES document[9] provided
as part of the Scalasca documentation to be aware of some limitations and known prob-
lems.

All the necessary instrumentation of user, OpenMP and MPI functions is handled by
the Scalasca instrumenter, which is accessed through the scalasca -instrument com-
mand. Therefore, the compile and link commands to build the application that is to be
analyzed should be prefixed with scalasca -instrument (e.g., in a Makefile).
For example, to instrument the application executable myprog generated from the two
source files myprog1.f90 and myprog2.f90, replace the combined compile and link
command

mpif90 myprog1.f90 myprog2.f90 -o myprog

by the following command using the Scalasca instrumenter:

scalasca -instrument [options] mpif90 myprog1.f90 myprog2.f90 -o myprog

Note:

The instrumenter must be used with the link command. However, not all object
files need to be instrumented, and it is often sufficient to only instrument source
modules containing OpenMP and/or MPI references.

Although generally most convenient, automatic function instrumentation may result in
too many and/or too disruptive measurements, which can be addressed with selective
instrumentation and measurement filtering (see Sections 3.5 and 3.6).

2.2. Runtime measurement collection & analysis

The Scalasca runtime measurement collection & analysis nexus accessed through the
scalasca -analyze action integrates the following steps:

• measurement configuration

8

2.2. Runtime measurement collection & analysis

• application execution

• collection of measured data

• automatic post-mortem trace analysis (if configured)
To make a performance measurement using an instrumented executable, the target appli-
cation execution command is prefixed with the scalasca -analyze command:

scalasca -analyze [options] \
$MPIEXEC $MPI_FLAGS <target> [target args]

For non-MPI (i.e., serial and pure OpenMP) applications, the MPI launch command and
associated flags should be omitted.

A unique directory is used for each measurement experiment, which must not already
exist when measurement starts: measurement is aborted if the specified directory exists.
A default name for each measurement archive directory is created from the name of the
target application executable, the run configuration (e.g., number of MPI processes and
OMP_NUM_THREADS specified), and the measurement configuration. This archive name
has an ‘epik_’ prefix (deriving from the EPIK measurement library used by Scalasca)
and its location can be explicitly specified to Scalasca with the -e <path> option or
changed via configuration variables.

When the measurement has completed, the measurement archive directory contains vari-
ous log files and one or more analysis reports. By default, runtime summarization is used
to provide a summary report of the number of visits and time spent on each callpath by
each process. For MPI measurements, MPI time and message and file I/O statistics are
included. For OpenMP measurements, OpenMP-specific metrics are calculated. Hybrid
OpenMP/MPI measurements contain both sets of metrics. If hardware counter metrics
were requested, these are also included in the summary report.

Event trace data can also be collected as a part of the measurement, producing a trace
file for each process. To collect event trace data as part of the measurement, use the
scalasca -analyze -t command (or alternatively set the configuration variable EPK_-
TRACE=1). In this case, experiment trace analysis is automatically initiated after measure-
ment is complete to quantify wait states that can’t be determined with runtime summa-
rization. You may also visualize traces with a third-party graphical trace browser.

The scalasca -analyze -n preview mode can be used to show (but not actually ex-
ecute) the measurement and analysis launch commands, along with various checks to
determine the possible success. Additional informational commentary (via -v) may also
be revealing, especially if measurement or analysis was unsuccessful.

In case of problems which are not obvious from reported errors or warnings, set the
configuration variable EPK_VERBOSE=1 before executing the instrumented application to
see control messages of the Scalasca measurement system. This might help to track down
the problem or allow a detailed problem report to be given to the Scalasca developers.
(Since the amount of messages may be overwhelming, use an execution configuration
that is as small and short as possible.)

9

Chapter 2. Getting started

When using environment variables in a cluster environment, make sure that they have
the same value for all application processes on all nodes of the cluster. Some cluster
environments do not automatically transfer the environment when executing parts of the
job on remote nodes of the cluster, and may need to be explicitly set and exported in
batch job submission scripts.

2.3. Analysis report examination

The results of the automatic analysis are stored in one or more reports in the experiment
archive. These reports can be processed and examined using the scalasca -examine
command on the experiment archive:

scalasca -examine epik_<title>

Post-processing is done the first time that an archive is examined, before launching the
CUBE3 report viewer. If the scalasca -examine command is executed on an already
processed experiment archive, or with a CUBE file specified as argument, the viewer is
launched immediately.
A textual score report can also be obtained without launching the viewer:

scalasca -examine -s epik_<title>

This score report comes from the cube3_score utility and provides a breakdown of the
different types of region included in the measurement and their estimated associated trace
buffer capacity requirements, aggregate trace size (total_tbc) and largest process trace
size (max_tbc), which can be used to specify an appropriate ELG_BUFFER_SIZE for a
subsequent trace measurement.
The CUBE3 viewer can also be used on an experiment archive or CUBE file as shown
below:

cube3 epik_<title>
cube3 <file>.cube

However, keep in mind that no post-processing is performed in this case, so that only a
subset of Scalasca analyses and metrics may be shown.

2.3.1. Using CUBE3

The following paragraphs provide a very brief introduction of the CUBE3 usage. To
effectively use the GUI, you should also consult the CUBE3 manual[8] provided with
the Scalasca distribution.

CUBE3 is a generic user interface for presenting and browsing performance and debug-
ging information from parallel applications. The underlying data model is independent

10

2.3. Analysis report examination

from particular performance properties to be displayed. The CUBE3 main window con-
sists of three panels containing tree displays or alternate graphical views of analysis
reports. The left panel shows performance properties of the execution, the middle pane
shows the call-tree or a flat profile of the application, and the right tree either shows the
system hierarchy consisting of machines, compute nodes, processes, and threads or a
topological view of the application’s processes and threads. All tree nodes are labeled
with a metric value and a colored box which can help identify hotspots. The metric value
color is determined from the proportion of the total (root) value or some other specified
reference value.

A click on a performance property or a call path selects the corresponding node. This
has the effect that the metric value held by this node (such as execution time) will be
further broken down into its constituents. That is, after selecting a performance property,
the middle panel shows its distribution across the call tree. After selecting a call path
(i.e., a node in the call tree), the system tree shows the distribution of the performance
property in that call path across the system locations. A click on the icon left to a node
in each tree expands or collapses that node. By expanding or collapsing nodes in each of
the three trees, the analysis results can be viewed on different levels of granularity.

To obtain the exact definition of a performance property, select "Online Description" in
the context menu associated with each performance property, which is accessible using
the right mouse button. A brief description can be obtained from the menu option "Info".
Further information is also available at the Scalasca website

http://www.scalasca.org/

CUBE3 also provides a number of algebra utilities which are command-line tools that
operate on analysis reports. (The utililties currently only work on the CUBE files within
experiment archive directories, not on the archives themselves.) Multiple analysis re-
ports can be averaged with cube3_mean or merged with cube3_merge. The difference
between two analysis reports can be calculated using cube3_diff. Finally, a new analy-
sis report can be generated after pruning specified call trees and/or specifying a call-tree
node as a new root with cube3_cut. The latter can be particularly useful for eliminating
uninteresting phases (e.g., initialization) and focussing the analysis on a selected part of
the execution. Each of these utilities generates a new CUBE-formated report as output.

The cube3_score utility can be used to estimate trace buffer requirements from sum-
mary or trace analysis reports. If sufficient memory is physically available, this can be
specified in the ELG_BUFFER_SIZE configuration variable for a subsequent trace collec-
tion. Detailed region output (cube3_score -r) can also be examined to identify fre-
quently executed regions that may adversely impact measurement and not be considered
valuable as part of the analysis. Such regions without OpenMP and MPI operations may
be appropriate for exclusion from subsequent experiments via selective instrumentation
and measurement (see Sections 3.5 and 3.6). Trace buffer capacity can be saved by elim-
inating certain functions from the measurement. This could be done by providing a filter
file, which lists the function names of the functions to be excluded. A potential filter file

11

http://www.scalasca.org/

Chapter 2. Getting started

can be evaluated with the option -f <filter_file>.

2.4. A full workflow example

The previous sections introduced the general usage of Scalasca. This section will guide
through an example analysis of a simple solver kernel called SOR, solving the Poisson
equation using a red-black successive over-relaxation method. Details of application
instrumentation, measurement collection and analysis, and analysis report examination
options will follow in the subsequent chapters.

The environment used in the following examples is for IBM Blue Gene/P, and the com-
mands and outputs presented in this section might differ from the commands and outputs
of your system.
By default, Scalasca uses the automatic compiler-based instrumentation feature. This
is usually the best first approach, when you don’t have detailed knowledge about the
application and need to identify the hotspots in your code. SOR consists of only a single
source file, which can be compiled and linked using the following two commands:

scalasca -instrument mpixlc -c sor.c
scalasca -instrument mpixlc sor.o -o sor.x

Now the instrumented binary sor.x must be executed. On supercomputing systems,
users usually have to submit their jobs to a batch system and are not allowed to start
parallel jobs directly. Therefore, the call to the scalasca command has to be provided
within a batch script, which will be scheduled for execution when the required resources
are available.
The syntax of the batch script differs between the different scheduling systems. However,
common to every batch script format is a passage where all shell commands can be placed
that will be executed. Here, the call to the Scalasca analyzer has to be placed in front of
the application execution command:

scalasca -analyze mpirun -mode vn -np 128 ./sor.x

Ensure that the scalasca command is accessible when the batch script is executed, e.g.,
by loading an appropriate module or updating the PATH if necessary. The flags -mode
and -np are options of the mpirun command on Blue Gene/P systems and other launchers
may have different flags and syntax.

The Scalasca analyzer will take care of certain control variables, which assist in con-
figuring the measurement of your application. The default behaviour of the Scalasca
analyzer is to create a summary analysis report, rather than create a detailed event trace,
as indicated by the initial messages from the EPIK measurement system.

S=C=A=N: Scalasca 1.4 runtime summarization
S=C=A=N: ./epik_sor_vn128_sum experiment archive

12

2.4. A full workflow example

S=C=A=N: Collect start
mpirun -mode vn -np 128 ./sor.x
[00000]EPIK: Created new measurement archive ./epik_sor_vn128_sum
[00000]EPIK: Activated ./epik_sor_vn128_sum [NO TRACE]

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_sor_vn128_sum
...
[00000]EPIK: Closed experiment ./epik_sor_vn128_sum
S=C=A=N: Collect done
S=C=A=N: ./epik_sor_vn128_sum complete.

After successful execution of the job, a summary analysis report file is created within a
new measurement directory. In this example, the automatically generated name of the
measurement directory is epik_sor_vn128_sum, indicating that the job was executed in
Blue Gene/P’s virtual node mode (-mode vn) with 128 MPI processes (-np 128). The
suffix _sum refers to a runtime summarization experiment. The summary analysis report
can then be post-processed and examined with the Scalasca report browser:

scalasca -examine epik_sor_vn128_sum
INFO: Post-processing runtime summarization report ...
INFO: Displaying ./epik_sor_vn128_sum/summary.cube ...

Figure 2.1 shows a screenshot of the Scalasca report browser CUBE3 with the summary
analysis report of SOR opened. Examination of the application performance summary
may indicate several influences of the measurement on your application execution be-
haviour. For example, frequently executed, short-running functions may lead to signif-
icant pertubation and would be prohibitive to trace: these need to be eliminated before
further investigations using trace analysis are taken into account.

During trace collection, information about the application’s execution is recorded in so-
called event streams. The number of events in the streams determines the size of the
buffer required to hold the stream in memory. To minimize the amount of memory
required, and to reduce the time to flush the event buffers to disk, only the most relevant
function calls should be instrumented.

When the complete event stream would be larger than the memory buffer, it has to be
flushed to disk during application runtime. This flush significantly impacts application
performance, as flushing is not coordinated between processes, and runtime imbalances
are induced into the measurement. The Scalasca measurement system uses a default
value of 10 MB per process or thread for the event trace: when this would not be ade-
quate ELG_BUFFER_SIZE can be adjusted to minimize or eliminate flushing of the internal
buffers. However, if too large a value is specified for the buffers, the application may be
left with insufficient memory to run, or run adversely with paging to disk. Larger traces
also require more disk space, are correspondingly slower to write to and read back from
disk, and will require more memory for subsequent analyses. Often it is more appropriate
to reduce the size of the trace (e.g., by specifying a shorter execution, or more selective
instrumentation and measurement), than to increase the buffer size.

13

Chapter 2. Getting started

Figure 2.1.: Examining a runtime summary analysis report in CUBE3

To estimate the buffer requirements for a trace measurement, scalasca -examine -s
will skip opening the GUI and instead generate a brief overview of the estimated maximal
number of bytes required with a detailed score report written into the experiment archive
directory.

scalasca -examine -s epik_sor_vn128_sum

[cube3_score epik_sor_vn128_sum/summary.cube]
Reading ./epik_sor_vn128_sum/summary.cube... done.
Estimated aggregate size of event trace (total_tbc): 25698304 bytes
Estimated size of largest process trace (max_tbc): 215168 bytes
(When tracing set ELG_BUFFER_SIZE > max_tbc to avoid intermediate flushes
or reduce requirements using a file listing USR regions to be filtered.)

INFO: Score report written to ./epik_sor_vn128_sum/epik.score

max_tbc refers to the maximum of the trace buffer capacity requirements determined for
each MPI process in bytes (or for each thread in OpenMP measurements). If max_tbc
exceeds the buffer size available for the event stream in memory, intermediate flushes
during measurement will occur, often with undesirable measurement perturbation. To
prevent flushing, either increase the trace buffer size or use a filter to exclude a given list
of routines from measurement.

14

2.4. A full workflow example

To aid in setting up an appropriate filter file, this "scoring" functionality also provides
a breakdown by different categories, determined for each region according to its type
of call path. Type MPI refers to function calls to the MPI library and type OMP either
to OpenMP regions or calls to the OpenMP API. User-program routines on paths that
directly or indirectly call MPI or OpenMP provide valuable context for understanding
the communication and synchronization behaviour of the parallel execution, and are dis-
tinguished with the COM type from other routines that are involved with purely local
computation marked USR. Entries marked ANY/ALL provide aggregate information for
all measured routines and those marked EPK are associated with the EPIK measurement
system itself. For further information see the online description of Scalasca instrumen-
tation/measurement regions[11].

Routines with type USR are typically good candidates for filtering, which will effectively
make them invisible to measurement and analysis (as if they were "inlined"). Routines
marked COM can also be filtered, however, this is generally undesirable since it elimi-
nates valuable context information. Since MPI and OMP regions are required by Scalasca
analyses, these cannot be filtered.

By comparing the trace buffer requirements with the time spent in the routines of a partic-
ular group, the initial scoring report will already indicate what benefits can be expected
from filtering. However, to actually set up the filter, a more detailed examination is
required. This can be achieved by examining the score report epik.score:

flt type max_tbc time % region
ANY 215168 11849.04 100.00 (summary) ALL
MPI 195728 147.47 1.24 (summary) MPI
COM 9696 465.93 3.93 (summary) COM
USR 9744 11235.64 94.82 (summary) USR

MPI 80000 2.14 0.02 MPI_Irsend
MPI 73600 1.07 0.01 MPI_Irecv
MPI 16040 20.77 0.18 MPI_Allreduce
MPI 16000 14.32 0.12 MPI_Barrier
MPI 9600 87.25 0.74 MPI_Waitall
COM 9600 304.28 2.57 get_halo
USR 4800 5432.60 45.85 update_red
USR 4800 5432.87 45.85 update_black
MPI 240 0.54 0.00 MPI_Gather
MPI 200 3.63 0.03 MPI_Bcast
EPK 48 368.66 3.11 TRACING
USR 48 0.50 0.00 looplimits
MPI 24 0.52 0.00 MPI_Finalize
USR 24 0.54 0.00 init_boundary
USR 24 0.48 0.00 init_red_black
COM 24 2.88 0.02 sor_iter
COM 24 156.25 1.32 init_field
COM 24 0.82 0.01 setup_grid
MPI 24 17.23 0.15 MPI_Init
COM 24 1.70 0.01 main

15

Chapter 2. Getting started

As the maximum trace buffer required on a single process for the SOR example is ap-
proximately 215 kB, there is no need for filtering in this case.

Note:

A potential filter file can be tested and evaluated by adding -f filter_file to the
scalasca -examine -s command, resulting in an updated score report detailing
the routines that it filters and the effect on max_tbc. The flt column of the report
indicates with a ‘+’ marker routines which matched the filter and would not appear
in a filtered measurement.
Once the configuration of buffer sizes and/or filters have been determined, make sure
they are specified for subsequent (tracing) measurements, via environment variables
or an EPIK.CONF measurement configuration file in the working directory, or with
scalasca -analyze -f filter_file.
Before initiating a trace measurement experiment, ensure that the filesystem where
the experiment will be created is appropriate for parallel I/O (typically /scratch or
/work rather than /home) and that there will be sufficient capacity (and/or quota) for
the expected trace of size total_tbc.
Filtering will not prevent the function from being instrumented. Hence, measure-
ment overhead can not be completely eliminated on filtered functions when auto-
matic compiler-based instrumentation is used.

When all options of the Scalasca measurement system are set in a way that measure-
ment overhead and space requirements are minimized, a new run of the instrumented
application can be performed, passing the -t option to scalasca -analyze. This will
enable the tracing mode of the Scalasca measurement system. Additionally, the paral-
lel post-mortem trace analyzer searching for patterns of inefficient communication and
synchronization is automatically started after application completion.

scalasca -analyze -t mpirun -mode vn -np 128 ./sor.x

S=C=A=N: Scalasca 1.4 trace collection and analysis
S=C=A=N: ./epik_sor_vn128_trace experiment archive
S=C=A=N: Collect start
mpirun -mode vn -np 128 ./sor.x
[00000]EPIK: Created new measurement archive ./epik_sor_vn128_trace
[00000]EPIK: Activated ./epik_sor_vn128_trace [10000000 bytes]

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_sor_vn128_trace
[00000]EPIK: Flushed file ./epik_sor_vn128_trace/ELG/00000
...
[00000]EPIK: Closed experiment ./epik_sor_vn128_trace
S=C=A=N: Collect done
S=C=A=N: Analysis start
mpirun -mode vn -np 128 scout.mpi ./epik_sor_vn128_trace

[... SCOUT trace analyzer output ...]
S=C=A=N: Analysis done

16

2.4. A full workflow example

S=C=A=N: ./epik_sor_vn128_trace complete.

This creates an experiment archive directory epik_sor_vn128_trace, distinguishing it
from the previous summary experiment through the suffix _trace. A separate trace file
per MPI rank is written directly into a subdirectory when measurement is closed, and the
Scalasca parallel trace analyzer SCOUT is automatically launched to analyze these trace
files and produce an analysis report. SCOUT output includes a report of the maximum
amount of memory used by any of the analysis processes, which is typically two or more
times larger than the largest trace buffer content (max_tbc). This analysis report can then
be examined using the same commands and tools as the summary experiment.

scalasca -examine epik_sor_vn128_trace
INFO: Post-processing trace analysis report ...
INFO: Displaying ./epik_sor_vn128_trace/trace.cube ...

The screenshot in Figure 2.2 shows that the trace analysis result at first glance provides
the same information as the summary result. However, the trace analysis report is en-
riched with additional performance metrics which show up as sub-metrics of the sum-
mary properties, such as the fraction of Point-to-point Communication Time potentially
wasted due to Late Sender situations where early receives had to wait for sends to be ini-
tiated. That is, the trace analysis can isolate and quantify inefficient communication and
synchronization behaviour. All of the metrics determined by Scalasca are documented
in the online description of performance properties[10].

The filesystem requirements for an EPILOG event trace and its analysis are much higher
than for a runtime summary analysis. The runtime of a batch job will also increase due to
additional file I/O at the end of measurement writing traces and and for their subsequent
analysis. After a successful tracing experiment, the Scalasca measurement collection
and analysis nexus has created a directory containing the event trace and its analysis
files. In tracing mode, a runtime summary report (stored in summary.cube) is also pro-
duced by default in addition to a trace analysis report (stored in trace.cube). When
the summary analysis report includes hardware counter metrics that are not available in
the trace analysis report, the two reports are merged into a combined report (stored in
trace+HWC.cube).

After successful trace analysis, and before moving or storing the experiment archive, the
trace files can be removed by deleting the ELG subdirectory in the experiment archive.

17

Chapter 2. Getting started

Figure 2.2.: Determine a Late Sender in CUBE3.

18

Chapter 3. Application instrumentation

3. Application instrumentation

Scalasca provides several possibilities to instrument user application code. Besides the
automatic compiler-based instrumentation (Section 3.1), it provides manual instrumen-
tation using the EPIK API (Section 3.2), semi-automatic instrumentation using POMP
directives (Section 3.4) and, if configured, automatic source-code instrumentation using
the PDToolkit-based instrumentor (Section 3.5). Additionally, Scalasca provides a filter-
ing capability for excluding instrumented user routines from measurement (Section 3.6)
if automatic compiler-based instrumentation is used.

As well as user routines and specified source regions, Scalasca currently supports the
following kinds of events:

• MPI library calls:

Instrumentation is accomplished using the standard MPI profiling interface PMPI.
To enable it, the application program has to be linked against the EPIK MPI (or
hybrid MPI+OpenMP) measurement library plus MPI-specific libraries. Note that
the EPIK libraries must be linked before the MPI library to ensure interposition
will be effective.

• OpenMP directives & API calls:

The Scalasca instrumenter automatically uses the OPARI2 tool to instrument
OpenMP constructs. See the OPARI2 documentation for information about how
it instruments OpenMP source code and manually inserted POMP directives, and
refer to the OPEN_ISSUES document[9] for its limitations (e.g., with respect to
preprocessors). In addition, the application must be linked with the EPIK OpenMP
(or hybrid MPI+OpenMP) measurement library.

The Scalasca instrumenter command scalasca -instrument automatically takes care
of compilation and linking to produce an instrumented executable, and should be prefixed
to compile and link commands. Often this only requires prefixing definitions for $(CC)
or $(MPICC) (and equivalents) in Makefiles. It is not necessary to prefix commands
using the compiler for preprocessing, as no instrumentation is done in that case.
When using Makefiles, it is often convenient to define a "preparation preposition" place-
holder (e.g., PREP) which can be prefixed to (selected) compile and link commands:

MPICC = $(PREP) mpicc
MPICXX = $(PREP) mpicxx
MPIF90 = $(PREP) mpif90

These can make it easier to prepare an instrumented version of the program with

19

Chapter 3. Application instrumentation

make PREP="scalasca -instrument"

while default builds (without specifying PREP on the command line) remain fully opti-
mized and without instrumentation.
When compiling without the Scalasca instrumenter, the kconfig command can be used
to simplify determining the appropriate linker flags and libraries:

kconfig [--mpi|--omp|--hybrid] [--for] [--user] [--32|--64] --libs

The --mpi , --omp , or --hybrid switch selects whether MPI, OpenMP or hybrid
MPI+OpenMP measurement support is desired. kconfig assumes a C or C++ program
is being linked by default, and Fortran applications have to be explicitly flagged with
the --for switch. With --user , the EPIK manual user instrumentation API can be en-
abled. The --32 or --64 switch selects the 32-bit or 64-bit version of the measurement
libraries, if necessary.

Note:

A particular installation of Scalasca may not offer all measurement configurations!

The kconfig command can also be used to determine the right compiler flags for spec-
ifying the include directory of the epik_user.h or epik_user.inc header files when
compiling without using the Scalasca instrumenter:

kconfig [--for] --cflags

or, when the user instrumentation macros should be enabled:

kconfig [--for] --user --cflags

Scalasca supports a variety of instrumentation types for user-level source routines and
arbitrary regions, in addition to fully-automatic MPI and OpenMP instrumentation, as
summarized in Table 3.1.

When the instrumenter determines that MPI or OpenMP are being used, it automati-
cally enables MPI library instrumentation and OPARI2-based OpenMP instrumentation,
respectively. The default set of instrumented MPI library functions is specified when
Scalasca is installed. All OpenMP parallel constructs and API calls are instrumented by
default, but instrumentation of classes of OpenMP synchronization calls can be selec-
tively disabled as described in 3.6.

By default, automatic instrumentation of user-level source routines by the compiler is
enabled (equivalent to specifying -comp=all). This can be disabled with -comp=none
when desired, such as when using PDToolkit, or POMP or EPIK user API manual source
annotations, enabled with -pdt, -pomp and -user, respectively. Compiler, PDToolkit,
POMP and EPIK user API instrumentation can all be used simultaneously, or in arbi-
trary combinations, however, it is generally desirable to avoid instrumentation duplica-
tion (which would result if all are used to instrument the same routines).

20

Type Switch Default Standard
instrum’d
routines

Other
instrum’d
regions

Runtime
meas’ment
control

MPI — (auto) configured
by install

— (Sec. 4.2.2)

OpenMP — (auto) (Sec. 3.6) all parallel
constructs

—

Compiler
(Sec. 3.1)

-comp all all or
none

not
supported

(Sec. 4.2.1)

PDToolkit
(Sec. 3.5)

-pdt — all, or
selective

not
supported

—

POMP
(Sec. 3.4)

-pomp — manually
annotated

manually
annotated

—

EPIK API
(Sec. 3.2)

-user — manually
annotated

manually
annotated

—

Table 3.1.: Scalasca instrumenter option overview

Note:

A minimal measurement containing only information about MPI usage can be ob-
tained by simply using the Scalasca instrumenter when linking already compiled
(uninstrumented) object files and libraries. In this case, it is recommended to explic-
itly disable compiler-based instrumentation and specify the MPI measurement mode
even when OpenMP is used, i.e., -comp=none -mode=MPI .

To have verbose output from the Scalasca instrumenter showing its various processing,
compiling and linking steps add the -v switch (before the compiler/linker) or set envi-
ronment variable SKIN_VERBOSE=1. This information is particularly helpful to Scalasca
developers when reporting instrumentation issues.

Sometimes it is desirable to explicitly direct the Scalasca instrumenter to do nothing ex-
cept execute the associated compile/link command and in such cases -mode=none can
be specified. Although no instrumentation is performed, this can help verify that the
Scalasca instrumenter correctly handles the compile/link commands. Alternatively, the
environment variable SKIN_MODE=none can be set for the same purpose, and without
needing to modify the arguments given to the Scalasca instrumenter. This is often neces-
sary when an application’s configure or build procedure doesn’t provide a compile/link
preposition that can be selectively used for the Scalasca instrumenter, and actions during
configuration/build are unable to handle instrumented executables. Temporarily setting
SKIN_MODE=none should allow the use of the Scalasca instrumenter to be transparently
incorporated in the configure/build process until instrumented executables are desired.

21

Chapter 3. Application instrumentation

3.1. Automatic compiler instrumentation

Most current compilers support automatic insertion of instrumentation calls at routine
entry and exit(s), and Scalasca can use this capability to determine which routines are
included in an instrumented measurement.

Compiler instrumentation of all routines in the specified source file(s) is enabled by de-
fault by Scalasca, or can be explicitly requested with -comp=all. Compiler instrumen-
tation is disabled with -comp=none.

Note:

Depending on the compiler, and how it performs instrumentation, insertion of in-
strumentation may disable inlining and other significant optimizations, or inlined
routines may not be instrumented at all (and therefore "invisible").

Automatic compiler-based instrumentation has been tested with a number of different
compilers:

• GCC (UNIX-like operating systems, not tested with Windows)

• IBM xlc, xlC (version 7 or later, IBM Blue Gene and AIX)

• IBM xlf (version 9.1 or later, IBM Blue Gene and AIX)

• PGI (Cray XT and Linux)

• Intel compilers (version 10 or later, Cray XT and Linux, not tested with Windows)

• SUN Studio compilers (Linux and Solaris, Fortran only)

• PathScale compilers (Cray XT and SiCortex)

• CCE/Cray compiler (Cray XT)

• NEC compiler (NEC SX)

• Clang compiler (version 3.1 or later, Linux; earlier versions have not been tested
but might also work)

• Open64 compilers (Linux)

In all cases, Scalasca supports automatic instrumentation of C, C++ and Fortran codes,
except for the SUN Studio compilers which only provide appropriate support in their
Fortran compiler, and Clang which only provides C and C++ compilers.

Note:

The automatic compiler instrumentation might create a significant relative measure-
ment overhead on short function calls. This can impact the overall application per-
formance during measurement. C++ applications are especially prone to suffer from
this, depending on application design and whether C++ STL functions are also in-
strumented by the compiler. Currently, it is not possible to prevent the instrumenta-
tion of specific functions on all platforms when using automatic compiler instrumen-

22

3.2. Manual region instrumentation

tation. See Section 3.6 on how to manually instrument applications if you encounter
significant overheads.

Names provided for instrumented routines depend on the compiler, which may add un-
derscores and other decorations to Fortran and C++ routine names, and whether name
"demangling" has been enabled when Scalasca was installed and could be applied suc-
cessfully.

3.2. Manual region instrumentation

If the automatic compiler-based instrumentation (see Section 2.1) or semi-automatic in-
strumentation (see Section 3.4) procedure fails, instrumentation can be done manually.
Manual instrumentation can also be used to augment automatic instrumentation with
region or phase annotations, which can improve the structure of analysis reports. Gen-
erally, the main program routine should be instrumented, so that the entire execution is
measured and included in the analyses.

Instrumentation can be performed in the following ways, depending on the programming
language used.

Fortran:

#include "epik_user.inc"

subroutine foo(...)
! declarations
EPIK_FUNC_REG("foo")
EPIK_USER_REG(r_name,"iteration loop")
EPIK_FUNC_START()
...
EPIK_USER_START(r_name)
do i= 1, 100

...
end do
EPIK_USER_END(r_name)
...
EPIK_FUNC_END()

end subroutine foo

C/C++:

#include "epik_user.h"

void foo(...)

23

Chapter 3. Application instrumentation

{
/* declarations */
EPIK_USER_REG(r_name,"iteration loop");
EPIK_FUNC_START();
...
EPIK_USER_START(r_name);
for (i = 0; i < 100; ++i)
{

...
}
EPIK_USER_END(r_name);
...
EPIK_FUNC_END();

}

C++ only:

#include "epik_user.h"

void foo(...)
{

EPIK_TRACER("foo");
...

}

Region identifiers (r_name) should be registered in each annotated function/subroutine
prologue before use within the associated body, and should not already be declared in
the same program scope. For C and C++, function names are automatically provided by
the EPIK_FUNC_START and EPIK_FUNC_END macros (so don’t need registering), whereas
annotated Fortran functions and subroutines should call EPIK_FUNC_REG with an appro-
priate name.

Note:

The source files instrumented in this way have to be compiled with -DEPIK otherwise
EPIK_∗ calls expand to nothing and are ignored. If the Scalasca instrumenter -user
flag is used, the EPIK symbol will be defined automatically. Also note, that Fortran
source files instrumented this way have to be preprocessed with the C preprocessor
(CPP).

Manual routine instrumentation in combination with automatic source-code instrumenta-
tion by the compiler or PDT leads to double instrumentation of user routines, i.e., usually
only user region instrumentation is desired in this case.

For examples of how to use the EPIK user API, see the ∗test-epik.∗ files in the exam-
ple directory of the Scalasca installation.

24

3.3. Measurement control instrumentation

3.3. Measurement control instrumentation

The EPIK user API also provides several macros for measurement control that can be
incorporated in source files and activated during instrumentation. EPIK_PAUSE_START()
can be used to (temporarily) pause measurement until a subsequent EPIK_PAUSE_END(),
defining a synthetic region named PAUSING. Just like the already covered user-defined
annotated regions, START and corresponding END must be correctly nested.

Events are not recorded when measurement is PAUSING (though associated definitions
are), resulting in smaller measurement overhead. In particular, traces can be much
smaller and can target specific application phases (e.g., excluding initialization and/or
finalization) or specific iterations. Since PAUSING is process-local, and effects all threads
on the process, it can only be initiated outside of OpenMP parallel regions. PAUSING is
done independently on each MPI process without synchronization.

Note:

The behaviour of the parallel trace analyzer is undefined when PAUSING skips
recording MPI events on subsets of processes, such as some of the ranks in collective
communication or synchronization operations or a send (receive) on one rank with-
out the corresponding receive (send) on the matching rank. Generally, the analyzer
will deadlock.

The EPIK_FLUSH_TRACE() macro can be used to explicitly request that current trace
buffer contents be immediately flushed to disk and the buffer emptied ready to continue
event record collection. This can be employed to avoid disruptive uncoordinated auto-
matic flushing of trace buffers during important measurement phases. It applies only to
the calling thread and is not synchronized with other threads or processes. Flush events
are marked as TRACING regions. In summary experiments, EPIK_FLUSH_TRACE() is ig-
nored.

3.4. Semi-automatic instrumentation

If you manually instrument the desired user functions and regions of your application
source files using the POMP INST directives described below, the Scalasca instrumenter
-pomp flag will generate instrumentation for them. POMP instrumentation directives are
supported for Fortran and C/C++. The main advantages are that

• being directives, the instrumentation is ignored during "normal" compilation and

• this semi-automatic instrumentation procedure can be used when fully automatic
compiler instrumentation is not supported.

The INST BEGIN/END directives can be used to mark any user-defined sequence of state-
ments. If this block has several exit points (as is often the case for functions), all but the
last have to be instrumented by INST ALTEND.

25

Chapter 3. Application instrumentation

Fortran:

subroutine foo(...)
! declarations
!POMP$ INST BEGIN(foo)
...
if (<condition>) then

!POMP$ INST ALTEND(foo)
return

end if
...
!POMP$ INST END(foo)

end subroutine foo

C/C++:

void foo(...)
{

/* declarations */
#pragma pomp inst begin(foo)
...
if (<condition>)
{

#pragma pomp inst altend(foo)
return;

}
...
#pragma pomp inst end(foo)

}

At least the main program function has to be instrumented in this way, and additionally,
one of the following should be inserted as the first executable statement of the main
program:

Fortran:

program main
! declarations
!POMP$ INST INIT
...

end program main

C/C++:

26

3.5. Automatic source-code instrumentation using PDT

int main(int argc, char** argv)
{

/* declarations */
#pragma pomp inst init
...

}

For examples of how to use the POMP directives, see the ∗test-pomp.∗ files in the
example directory of the Scalasca installation.

3.5. Automatic source-code instrumentation using PDT

If Scalasca has been configured with PDToolkit support, automatic source-code instru-
mentation can be used as an alternative instrumentation method. In this case, the source
code of the target application is pre-processed before compilation, and appropriate EPIK
user API calls will be inserted automatically. However, please note that this feature is
still somewhat experimental and has a number of limitations (see 3.5.2).
To enable PDT-based source-code instrumentation, call scalasca -instrument with
the -pdt option, e.g.,

scalasca -instrument -pdt mpicc -c foo.c

This will by default instrument all routines found in foo.c. (To avoid double instrumen-
tation, automatic compiler instrumentation can be disabled with -comp=none .)

3.5.1. PDT selective instrumentation

The PDT source-code instrumentor can also be configured to selectively instrument files
and routines. For this, you need to supply the additional option

-optTauSelectFile=<filename>

after the -pdt option. The provided selective instrumentation file needs to be a plain text
file of the following syntax:

• Empty lines are ignored; comments are introduced using a hash (#) character and
reach until the end of the line.

• Files to be excluded from instrumentation can be listed in a file exclusion section.
You can either list individual filenames or use the star (∗) and question mark (?)
characters as wildcards for multiple or single characters as in a shell. Example:

BEGIN_FILE_EXCLUDE_LIST
bar.c # Excludes file bar.c
foo*.c # Excludes all C files with prefix ’foo’

27

Chapter 3. Application instrumentation

END_FILE_EXCLUDE_LIST

• To exclude certain routines from instrumentation, their names can be listed in a
routine exclusion section. You can either list individual names or use the hash (#)
character as a wildcard. Note that for Fortran, subroutine names must be given in
all uppercase letters; for C/C++, the full function prototype including return and
parameter types must be given. C functions also need to be marked with an extra
capital C at the end (e.g., "int main(int, char∗∗) C"). Example:

BEGIN_EXCLUDE_LIST
Exclude C function matmult
void matmult(Matrix*, Matrix*, Matrix*) C

Exclude C++ functions with prefix ’sort_’ and a
single int pointer argument
void sort_#(int *)

Exclude all void functions in namespace ’foo’
void foo::#

END_EXCLUDE_LIST

Unfortunately, the hash (#) character is also used for comments, so to specify a
leading wildcard, place the entry in double quotes (").

For more information on how to selectively instrument code using the PDToolkit source-
code instrumentor, please refer to the TAU documentation [17, 18].

3.5.2. Limitations

Since support for the PDT-based source-code instrumenter is a recently added feature,
and some parts are still work in progress, a number of limitations currently exist:

• When instrumenting Fortran 77 applications, the inserted instrumentation code
snippets do not yet adhere to the Fortran 77 line length limit. Typically, it is
possible to work around this issue by supplying extra command line flags (e.g.,
-ffixed-line-length-132 or -qfixed=132) to the compiler.

• If a Fortran routine that should be instrumented uses len as the name of an argu-
ment, compilation of the instrumented code will fail. (The instrumentation code
uses the intrinsic function len which will be shadowed by the argument definition).
This issue can only be resolved by renaming the routine argument.

• Instrumentation of Fortran PURE and ELEMENTAL routines is not supported and
should be avoided via selective instrumentation.

• Included code will currently not be instrumented. This applies to C/C++ header
files and other explicit includes by the C preprocessor, as well as via the Fortran
include keyword.

• Support for C++ templates and classes is currently only partially implemented.

28

3.6. Selective instrumentation

• Advanced TAU instrumentation features such as static/dynamic timers, loop, I/O
and memory instrumentation are not yet supported. Respective entries in the se-
lective instrumentation file will be ignored.

3.6. Selective instrumentation

Scalasca experiments contain by default only summarized metrics for each callpath and
process/thread. More detailed analyses, providing additional metrics regarding wait
states and other inter-process inefficiencies, require that event traces are collected in
buffers on each process that must be adequately sized to store events from the entire
execution (to avoid flushes to disk during measurement that are highly disruptive).

Instrumented routines which are executed frequently, while only performing a small
amount of work each time they are called, have an undesirable impact on measurement.
The measurement overhead for such routines is large in comparison to the execution time
of the uninstrumented routine, resulting in measurement dilation. Recording these events
requires significant space and analysis takes longer with relatively little improvement in
quality. Filtering can be employed during measurement (described in section 4.2.1) to
ignore events from compiler-instrumented routines.

Ideally, such routines (or regions) should not be instrumented, to entirely remove their
impact on measurement. Uninstrumented routines are still executed, but become "invisi-
ble" in measurement and subsequent analyses (as if inlined). Excess manual annotations
(see Section 3.2) or POMP directives (see Section 3.4) should be removed or disabled
when instrumenting.

Automatic routine instrumentation, working at the level of source modules, can be by-
passed by selectively compiling such sources normally, i.e., without preprocessing with
the Scalasca instrumenter.

Note:

The instrumenter is, however, still required when linking.

If only some routines within a source module should be instrumented and others left
uninstrumented, the module can be split into separate files, or compiled twice with con-
ditional preprocessor directives selecting the separate parts and producing separate object
files.

Alternatively, when Scalasca has been configured with the PDToolkit, a selective instru-
mentation specification file can be used, as described in Section 3.5.
For OpenMP (or hybrid MPI+OpenMP) applications, where there are very large num-
bers of synchronization operations, their instrumentation may also result in excessive
measurement overhead. The OPARI2 tool can be instructed not to instrument any of the
OpenMP synchronization constructs using --disable=sync or a comma-separated list
of specific constructs from atomic, critical, flush, locks, master, and single, e.g.,

29

Chapter 3. Application instrumentation

scalasca -instrument --disable=atomic,locks -- gcc -fopenmp ...

Note:

OPARI2 options must be concluded with “ -- ” preceding the compiler/linker.

Of course, when these constructs are not instrumented, and subsequently don’t show up
in measurements and analysis, the application might well still have performance prob-
lems due to too many OpenMP synchronization calls!

30

Chapter 4. Measurement collection & analysis

4. Measurement collection & analysis

The Scalasca measurement collection and analysis nexus manages the configuration and
processing of performance experiments with an instrumented executable. Many different
experiments can typically be performed with a single instrumented executable without
needing to re-instrument, by using different measurement and analysis configurations.
The default runtime summarization mode directly produces an analysis report for exam-
ination, whereas event trace collection and analysis are automatically done in two steps
to produce a profile augmented with additional metrics.

The distinctive feature of Scalasca is the automatic analysis of event traces in order to
find performance bottlenecks. Internally, performance problems are specified in terms
of execution patterns that represent standard situations of inefficient behavior. These
patterns are used during the analysis process to recognize and quantify the inefficient
behavior in the application.

The analysis of traces from OpenMP, MPI or hybrid MPI+OpenMP programs can be
performed in parallel (with as many processes and threads as the original application
execution), see Section 4.4. In addition, sequential analysis of traces using the KOJAK
trace analyzer is still possible (see Section 4.5), although only recommended under rare
circumstances.

Scalasca not only supports the analysis of function calls and user-defined source-code
regions (cf. Chapter 3), but also the analysis of hardware performance counter metrics,
see section 4.3.

4.1. Nexus configuration

scalasca -analyze <application-launch-command>
scan {options} [launchcmd [launchargs]] target [targetargs]

% scalasca -analyze mpiexec -np 4 foo args
-> epik_foo_4_sum
% OMP_NUM_THREADS=3 scan -t bar
-> epik_bar_Ox3_trace
% OMP_NUM_THREADS=3 scan -s mpiexec -np 4 foobar
-> epik_foobar_4x3_sum

The Scalasca measurement collection and analysis nexus (SCAN) scalasca -analyze
should be prefixed to the commandline used to launch and run the application executable.

31

Chapter 4. Measurement collection & analysis

Arguments can be given to specify whether tracing should be enabled (-t), a filter that
should be applied (-f filter_file), and hardware counters that should be included in
the measurement (-m metric_list).

Note:

Instrumented applications can still be run without using the nexus to generate
Scalasca measurements, however, measurement configuration is then exclusively
via environment variables (which must be explicitly exported to MPI processes) and
trace analysis is not automatically started after trace collection).

The target executable is examined by the nexus to determine whether MPI and/or
OpenMP instrumentation is present, and the number of MPI processes and OpenMP
threads are determined from the launch environment and command-line specification.
These are used to generate a default name for the experiment archive, unless a title has
been explicitly specified with -e expt_title (or setting the EPK_TITLE environment
variable). (Where the number of processes and/or threads are omitted, or were otherwise
not determined, the number is replaced with the letter ’O’ is used to indicate this.)

Note:

Configuration specified on the nexus command-line takes precedence over that spec-
ified as environment variables or in a configuration file.

Environment variables with the SCAN_ prefix may be used to configure the nexus it-
self (which is a serial workflow manager process), as distinct from the instrumented
application process or processes which will be measured, which are also configured via
environment variables discussed in the following Section 4.2.

Serial and OpenMP programs are typically executed directly, whereas MPI (and hybrid
MPI+OpenMP) programs usually require a special launcher (such as mpiexec) which
might also specify the number of processes to be created. Many MPI launchers are
automatically recognized, but if not, the MPI launcher name can be specified with the
environment variable SCAN_MPI_LAUNCHER. When the MPI launch command is being
parsed, unrecognized flags might be reported as ignored, and unrecognized options with
required arguments might need to be quoted.

Note:

Launcher-specific configuration files which augment the launch command are cur-
rently not handled by Scalasca.

If the (total) number of MPI processes is not correctly determined by the nexus, the
appropriate number can be specified as SCAN_MPI_RANKS. The specified number will
also be used in the automatically generated experiment title. While an experiment title
with an incorrect number of processes is harmless (though generally confusing), the
correct number is required for automatic parallel trace analysis.

If the target executable isn’t specified as one of the launcher arguments, it is expected
to be the immediately following part of the command line. It may be necessary to use

32

4.2. Measurement configuration

a double-dash specification (“ -- ”) to explicitly separate the target from the preceding
launcher specification.

If there is an imposter executable or script, e.g., used to specify placement, that precedes
the instrumented target, it may be necessary to explicitly identify the target with the
environment variable SCAN_TARGET.

If environment variables aren’t automatically forwarded to MPI processes by the
launcher, it may be necessary to specify the syntax that the launcher requires for this
as SCAN_SETENV. For example, if an environment variable VAR with value VAL must
be explicitly exported with "--export VAR VAL" use SCAN_SETENV=--export , or use
SCAN_SETENV=-setenv= for "-setenv VAR=VAL" syntax.

Automatic trace analysis is done with different analyzers according to availability and
the type of experiment. An alternate trace analyzer (with path if necessary) can be speci-
fied with SCAN_TRACE_ANALYZER. Specifying SCAN_TRACE_ANALYZER=none will result
in automatic trace analysis being skipped (though some validation checks are still done),
which can be used when trace analysis is intended to be done interactively or on a dif-
ferent platform. Options to be given to the trace analyzer (such as “-s” for timestamp
correction) can be specified with SCAN_ANALYZE_OPTS. Trace data can be automatically
removed after successful trace analysis by setting SCAN_CLEAN.

Where the EPIK experiment archive directory is created on a filesystem which is not
synchronized between launch node and compute nodes, the nexus check for a newly
created directory will fail and subsequent trace analysis is therefore skipped. In this
case, SCAN_WAIT can be set to the maximum number of retries (in seconds) that the
nexus should consider prior to aborting.

4.2. Measurement configuration

A number of configuration variables can be used to control the EPIK measurement run-
time configuration: for an annotated list of configuration variables, and their current
settings, run the epik_conf command. Configuration variables can be specified via en-
vironment variables or in a configuration file called EPIK.CONF: by default the current
directory is searched for this file, or an alternative location can be specified with the
EPK_CONF environment variable.

The values for configuration variables can contain (sub)strings of the form $XYZ or
${XYZ} where XYZ is the name of another configuration variable. Evaluation of the
configuration variable is done at runtime when measurement is initiated.

When tracing (large-scale) MPI applications it is recommended to set the EPK_LDIR and
EPK_GDIR variables to the same location, as in such cases intermediate file writing is
avoided and can greatly improve performance. Therefore, this is the default setting.

33

Chapter 4. Measurement collection & analysis

4.2.1. Compiler-instrumented routine filtering

When automatic compiler instrumentation has been used to instrument user-level source-
program routines (classified as USR regions), there are cases where measurement and
associated analysis are degraded, e.g., by small, frequently-executed and/or generally
uninteresting functions, methods and subroutines.

A measurement filtering capability is therefore supported for most (but not all) com-
pilers. A file containing the names of functions (one per line) to be excluded from
measurement can be specified using the EPIK configuration variable EPK_FILTER or
alternatively via the -f <filter_file> option of the scalasca -analyze command
(and will be archived in epik_<title>/epik.filt as part of the experiment). Filter
function names can include wildcards (‘∗’ for multiple characters and ‘?’ for single char-
acters) and, if name demangling is not supported, then linker names must be used. On
the other hand, if C++ name demangling is supported, ‘∗’ characters indicating pointer
variables have to be escaped using a backslash.

Note:

Generally it is most convenient to replace instances of space characters, and other
special characters ‘∗’, ‘[’ and ‘]’ with the ‘?’ character.

Whenever a function marked for filtering is executed, the measurement library skips
making a measurement event, thereby substantially reducing the overhead and impact
of such functions. In some cases, even this minimal instrumentation processing may be
undesirable, and the function should be excluded from instrumentation as described in
Section 3.6.

4.2.2. Selective MPI event generation

The Message Passing Interface (MPI) adapter of EPIK supports the tracing of most of
MPI’s 300+ function calls. MPI defines a so-called ‘profiling interface’ that supports the
provision of wrapper libraries that can easily interposed between the user application and
the MPI library calls.

EPIK supports selective event generation. Currently, this means that at start time of the
application, the user can decide whether event generation is turned on or off for a group
of functions. These groups are the listed sub modules of this adapter. Each module has
a short string token that identifies this group. To activate event generation for a specific
group, the user can specify a colon-seperated list of tokens in the configuration variable
EPK_MPI_ENABLED. Additionally, special tokens exist to ease the handling by the user.
A complete list of available tokens that can be specified in the runtime configuration is
listed in the following table.

Note:

Event generation in this context only relates to flow and transfer events. Tracking of

34

4.2. Measurement configuration

Token Module
ALL Activate all available modules
DEFAULT Activate the configured default modules

of CG:COLL:ENV:IO:P2P:RMA:TOPO.
This can be used to easily activate
additional modules.

CG Communicators and groups
COLL Collective communication
ENV Environmental management
ERR Error handlers
EXT External interfaces
IO I/O
MISC Miscellaneous
P2P Point-to-point communication
RMA One-sided communication
SPAWN Process management interface (aka

Spawn)
TOPO Topology communicators
TYPE MPI datatypes
XNONBLOCK Extended non-blocking communication

events
XREQTEST Test events for tests of uncompleted

requests

communicators, groups, and other internal data is unaffected and always turned on.

Example:

EPK_MPI_ENABLED=ENV:P2P

This will enable event generation for environmental managment, including MPI_Init
and MPI_Finalize, as well as point-to-point communication, but will disable it for all
other functions groups.

A shorthand to get event generation for all supported function calls is

EPK_MPI_ENABLED=ALL

A shorthand to add a single group, e.g. TYPE, to the configured default is

EPK_MPI_ENABLED=DEFAULT:TYPE

A detailed overview of the MPI functions associated with each group can be found in
Appendix A.

35

Chapter 4. Measurement collection & analysis

A somehow special role play the XNONBLOCK and XREQTEST flags. If XNONBLOCK is set,
extra attributes will be recorded for non-blocking send completions and receive requests.
If in addition to XNONBLOCK, XREQTEST is set, additional events are recorded for unsuc-
cessful tests for request completion in MPI_Waitany/-some and the family of MPI_Test
functions. In any case, P2P must be enabled. Otherwise EPIK records no events for
point-to-point communication functions.

4.3. Measurement and analysis of hardware counter
metrics

If the Scalasca measurement library EPIK has been built with hardware counter support
enabled (see INSTALL file), it is capable of processing hardware counter information as
part of event handling. (This can be checked by running epik_conf and seeing whether
EPK_METRICS_SPEC is set.)

Counters are processed into counter metrics during runtime summarization, and recorded
as part of event records in collected traces. Note that the number of counters recorded
determines measurement and analysis overheads, as well as the sizes of measurement
storage datastructures, event traces and analysis reports. Counter metrics recorded in
event traces are currently ignored by the Scalasca parallel trace analyzer, and it is gener-
ally recommended that they should only be specified for summarization measurements.

To request the measurement of certain counters, set the variable EPK_METRICS to a colon-
separated list of counter names, or a predefined platform-specific group. Alternatively
specify the desired metrics with -m <metriclist> argument to the Scalasca measure-
ment collection and analysis system (scalasca -analyze). Hardware counter mea-
surement is disabled by default.

Metric names can be chosen from the list contained in file doc/METRICS.SPEC or may
be PAPI preset names or platform-specific "native" counter names. METRICS.SPEC also
contains specifications of groups of (related) counters which may conveniently be mea-
sured simultaneously on various platforms. The installed doc/METRICS.SPEC specifi-
cation can be overridden when desired by a file named METRICS.SPEC in the current
working directory, or specified by the EPIK configuration variable EPK_METRICS_SPEC.

If any of the requested counters are not recognized or the full list of counters cannot be
recorded due to hardware-resource limits, measurement of the program execution will be
aborted with an error message.

Counter metrics appear in the Performance Metrics pane of the CUBE3 browser. Rela-
tionships between counter metrics which define hierarchies are also specified in the file
METRICS.SPEC — those without specified relationships are listed separately.

Experiments with subsets of the counter metrics required for a full hierarchy could previ-
ously be combined into composite experiments using the cube_merge utility. Note that

36

4.4. Automatic parallel event trace analysis

a replacement for this utility is still under development and not yet available. Generally
several measurement experiments are required, and the groupings of counters provided
in METRICS.SPEC can act as a guide for these.

The default doc/METRICS.SPEC provides generic metric specifications which can be
used for analysis on any platform. Additional platform-specific example metric speci-
fications are provided in the examples directory. If desired, an example METRICS.SPEC
appropriate for the platform where the measurements will be (or have been) recorded
can be used instead of the default doc/METRICS.SPEC via setting the EPK_METRICS_-
SPEC configuration variable or replacing the installed file.

EXPERT analysis (see Section 4.5) can further be customized using additional environ-
ment variables: EPT_INCOMPLETE_COMPUTATION can be set to accept metric computa-
tions which are missing one or more component measurement (while not generally useful
on its own, it can allow more detailed metric hierarchies to be created when experiments
are combined); EPT_MEASURED_METRICS modifies the handling of unparented measured
metrics, such that they can be ignored (value 0), listed separately (value 1, the default)
or listed together with parented metrics (value 2).

4.4. Automatic parallel event trace analysis

SCOUT is Scalasca’s automatic analyzer for EPIK event traces. It is used internally by
the Scalasca measurement collection and analysis nexus (scalasca -analyze) when
event tracing is configured, or can be explicitly executed on event traces in EPIK mea-
surement archives. Depending on the build configuration and the capabilities of the target
platform, SCOUT may be available in four forms:

scout.ser is always built. It is used to analyze event traces generated by serial applica-
tions. It can also be used to analyze event traces from pure OpenMP applications,
however, it will then only provide information about the master thread.

scout.omp is built whenever Scalasca is configured with OpenMP support. It is used to
analyze event traces generated by pure OpenMP applications. It can also be used
to analyze event traces from serial applications.

scout.mpi is built whenever Scalasca is configured with MPI support. It is used to
analyze event traces generated by pure MPI applications. It can also be used on
traces from hybrid MPI+OpenMP applications, however, it will then only provide
information about the master thread of each process and its MPI activities.

scout.hyb is built if Scalasca is configured with hybrid MPI+OpenMP support. It is
used to analyze event traces generated by hybrid MPI+OpenMP applications, pro-
viding information about all OpenMP threads of each MPI process.

The appropriate SCOUT variant can be explicitly executed on event traces in EPIK mea-
surement archives using

37

Chapter 4. Measurement collection & analysis

$MPIEXEC $MPIEXEC_FLAGS <scout.type> [-s] epik_<title>

which produces an (intermediate) analysis report epik_<title>/scout.cube.

Event traces collected on clusters without a synchronized clock may contain logical clock
condition violations[2] (such as a receive completing before the corresponding send is
initiated). When SCOUT detects this, it reports a warning that the analysis may be
inconsistent and recommends (re-)running trace analysis with its integrated timestamp
synchronization algorithm (based on the controlled logical clock [1]) activated: this aux-
illiary trace processing is specified with the optional “-s” flag to SCOUT.
Alternatively, event trace analysis can be (re-)initiated using the scalasca -analyze
command, e.g.,

scalasca -analyze -a -e epik_<title> $MPIEXEC $MPIEXEC_FLAGS

where MPIEXEC is the command used to configure and launch MPI applications, and is
typically identical to that used to launch the user MPI application. In the second case,
the scalasca -analyze command will automatically figure out which SCOUT variant
should be used and/or is available. To activate the integrated timestamp synchroniza-
tion algorithm when using the scalasca -analyze command, the environment variable
SCAN_ANALYZE_OPTS needs to include “-s”.

Note:

The number of MPI processes for SCOUT must be identical to the number of
MPI processes for the original application! Furthermore, if SCOUT is executed on
OpenMP or hybrid MPI+OpenMP traces, it is recommended to set the environment
variable OMP_NUM_THREADS to the value used for the original application, although
SCOUT will automatically try to create the appropriate number of OpenMP threads.

Warning:

The scout.omp and scout.hyb analyzer require pure OpenMP and hybrid
MPI+OpenMP applications to use the same number of threads during all parallel
regions. OpenMP parallel regions that are not executed by all threads (due to ex-
plicit conditional clauses or compiler optimizations) or with dynamically changing
number of threads are not supported, and typically will result in deadlock! However,
different numbers of threads on each process are supported.

Note:

SCOUT is typically unable to analyze hybrid MPI+OpenMP traces from applica-
tions employing MPI_THREAD_SERIALIZED. In such cases, it may be necessary to
enforce MPI_THREAD_FUNNELED when collecting trace experiments that should be
automatically analyzed using SCOUT.

When running the SCOUT analyzer on (back-end) compute nodes with a different ar-
chitecture to their system front-end, remember to specify the path to the appropriate
(back-end) version (e.g., $SCALASCA_RTS/<scout.type>).

38

4.4. Automatic parallel event trace analysis

If your MPI library doesn’t automatically support passing command-line arguments to all
MPI processes, the name of the experiment to analyze may need to be passed in a special
form (e.g., -args "epik_<title>") or can be specified via the EPK_TITLE configura-
tion variable (in a EPIK.CONF file or set in the environment for each MPI process, e.g.,
-env "EPK_TITLE=<title>").

Note:

SCOUT processes may require more than twice the memory of the largest MPI-
rank trace (as reported as max_tbc by scalasca -examine -s or cube3_score)
to complete analysis without paging to disk.
Hardware counters recorded in event traces are currently ignored by SCOUT, how-
ever, hardware counter metrics can be found in the runtime summarization analysis
report (summary.cube) which is also produced by default when tracing is enabled.
For such measurements, post-processing by scalasca -examine merges the trace
analysis and summary reports into a combined trace+HWC.cube report.

Figure 4.1.: Dashed red frames guide the user in locating the call paths where the most
severe instances of the wait states detected by Scalasca (here: Late Broad-
cast) occured.

{LateBcastVampir.pdf,LateBcastVampir,Location of the worst Late Broadcast instance
shown in the timeline display of Vampir. It can be seen that some processes enter the
{{MPI}} operation earlier than the root process, leading to a wait state.,width=1.0}

39

Chapter 4. Measurement collection & analysis

The automatic parallel event trace analyzer also supports calculating additional pattern
statistics as well as tracking of the five most severe instances of each wait-state pattern
detected during the analysis. For point-to-point operations, the severity corresponds to
the waiting time according to the pattern description. In case of collective operations, the
severity correponds to the sum of the waiting times detected for each process involved in
the operation. To enable this additional trace analysis, the environment variable SCAN_-
ANALYZE_OPTS needs to include “-i” during the analysis phase.

In the CUBE3 browser, the pattern statistics display can be opened via the "Statistics"
entry in the metric’s context menu. The call paths of the most severe instances are high-
lighted in the call tree pane using dashed red frames (see Figure 4.1). In case CUBE3 is
configured with external trace browser support, these instances can also be shown in the
timeline display of Paraver or Vampir (see Figure ??). Additional information on this
topic can be found in the CUBE3 documentation[8].

4.5. Automatic sequential event trace analysis

EXPERT is an automatic serial analyzer for merged EPILOG event traces. It can be
manually applied to OpenMP, MPI and hybrid MPI+OpenMP traces in EPIK experiment
archives after they have been merged via

elg_merge epik_<title>

to produce epik_<title>/epik.elg.

Note:

It may take quite a long time to merge large event traces, and the resulting epik.elg
will typically be more than three times as large as the unmerged process traces!

Explicit execution of EXPERT on a merged EPILOG event trace in an EPIK experiment
archive via

expert epik_<title>

produces an analysis report epik_<title>/expert.cube.

Note:

Bear in mind, that both merging of MPI rank traces and EXPERT analysis are se-
quential operations that might take a long time for large experiments!

Warning:

The EXPERT analyzer requires the event trace to represent a call tree with a single
root. Therefore you should instrument the entry and exit of the application’s "main"
function if necessary. Also note that EXPERT requires OpenMP applications to use
the same number of threads during all parallel regions. A dynamically changing
number of threads is not supported!

40

4.5. Automatic sequential event trace analysis

Integrated merged trace analysis and results presentation is provided by the command:

kanal epik_<title>

or

kanal <file>[.elg|.cube]

The command takes as argument either an EPIK experiment archive (contain-
ing a merged trace), a merged trace <file>.elg or a generated analysis report
<file>.cube. If <file>.cube already exists (and is newer than <file>.elg),
CUBE3 is used to present it and browse the analysis. If the trace <file>.elg is newer
(or no analysis file exists), then EXPERT is run to generate <file>.cube before it is
presented with CUBE3. Where generation of a new <file>.cube would overwrite an
existing (older) file with the same name, a prompt will confirm whether to continue.

The EXPERT event trace analysis and CUBE analysis visualization can also be executed
separately, which is particularly appropriate when the CUBE viewer is installed on a sep-
arate system (e.g., desktop) from the measurement system (e.g., a remote HPC system).

EXPERT analysis performance for particular trace files can be tuned via EARL environ-
ment variables which trade efficiency and memory requirements. In order to analyze a
trace file, EXPERT reads the trace file once from the beginning to the end. After access-
ing a particular event, EXPERT might request other events usually from the recent past
of the event or ask for state information related to one of those events. Random access
to events as well as the calculation of state information is done inside the EARL event
accessor library, a component used by EXPERT.
During the analysis process, EARL dynamically builds up a sparse index structure on
the trace file. At fixed intervals the state information is stored in so-called bookmarks
to speed up random access to events. If a particular event is requested, EARL usually
needs not start reading from the beginning of the trace file in order to find it. Instead,
the interpreter looks for the nearest bookmark and takes the state information from there
which is required to correctly interpret the subsequent events from the file. Then it starts
reading the trace from there until it reaches the desired event. The distance of bookmarks
can be set using the following environment variable:

EARL_BOOKMARK_DISTANCE (default 10000)

To gain further efficiency, EARL automatically caches the most recently processed
events in a history buffer. The history buffer always contains a contiguous subsequence
of the event trace and the state information referring to the beginning of this subsequence.
So all information related to events in the history buffer can be completely generated
from the buffer including state information. The size of the history buffer can be set
using another environment variable:

EARL_HISTORY_SIZE (default 1000 * number of processes or threads)

41

Chapter 4. Measurement collection & analysis

Note:

Choosing the right buffer parameters is usually a trade-off decision between access
efficiency and memory requirements. In particular, for very long traces with many
events or very wide traces with many processes or threads, adjustment of these pa-
rameters might be recommended.

42

Chapter 5. Analysis report examination

5. Analysis report examination

The Scalasca analysis report explorer facilitates interactive examination of analysis re-
ports, both arising from runtime summarization and tracing experiments.

Analysis report examination can only be done after measurement and analysis are com-
pleted, and the corresponding archive directory is unlocked. Parallel resources are not
required, and it is often more convenient to examine analysis reports on a different sys-
tem, such as a desktop computer where interactivity is superior.

Scalasca analysis reports are produced in the CUBE format which can be interactively
explored with the CUBE GUI and processed with the CUBE algebra utilities, as previ-
ously outlined in section 2.3.1 and detailed in the separate CUBE manual[8]. Metrics
determined by Scalasca are documented in[10].

5.1. Examination options

The Scalasca analysis report explorer (SQUARE) takes as argument the name of an EPIK
experiment directory containing one or more analysis reports or the name of a specific
analysis report (cubefile).
In the usual case,

scalasca -examine epik_<title>

post-processes intermediate analysis reports produced by measurement and analysis to
derive additional metrics and construct a hierarchy of measured and derived metrics,
and then presents this final report. If there is more than one analysis report in an EPIK
experiment archive directory, the most comprehensive report is shown by default.

If intermediate reports were already processed, the final report is shown immediately.
Should it be desirable to re-process intermediate reports, the ‘-F’ flag can be given to
force this.
Alternatively, a specified analysis report can be presented immediately with

scalasca -examine epik_<title>/epitome.cube

Since no post-processing is done in this case, only a subset of Scalasca analyses and
metrics may be shown.

43

Chapter 5. Analysis report examination

It can be desirable to post-process intermediate reports in an experiment archive directory
immediately after measurement collection, without attempting to subsequently load the
final report in the GUI, and this is achieved with the ‘-s’ flag. As well as skipping
starting the GUI, it also ‘scores’ the final analysis report (with the cube3_score utility)
and produces a textual epik.score report. This report provides a breakdown of the
different types of region included in the measurement and their associated trace buffer
capacity requirements, aggregate trace size (total_tbc) and the largest process trace
size (max_tbc).

This information can be determined from summary experiments and used to ensure suf-
ficient memory and disk storage is configured for a subsequent trace experiment (with an
identical execution and measurement configuration).

Note:

Since scoring only provides estimates, and the penalties for exceeding buffer or disk
capacity limits are highly perturbed and/or incomplete measurements, it is recom-
mended to include a generous cushion when interpreting the reported values.

max_tbc should be used to specify the size of trace buffers (i.e., ELG_BUFFER_SIZE) so
that highly disruptive flushing of full trace buffers to disk during measurement is avoided.
It is also indicative of the amount of memory on each process that the trace analyzer will
require to hold the trace in memory during its analysis.

Note:

Trace analysis may require more than twice as much memory as the trace size, since
the analyzer must also allocate additional data structures.

total_tbc is an estimate of the disk space that would be required to store the complete
trace from all processes, so you can check your disk quota and filesystem capacity are
sufficient. Total trace size will also be a factor in how long it takes to write the trace to
disk after measurement is complete and for the trace analyzer to read it back from disk.

Note:

The most efficient parallel filesystem available should be used when generating and
analysing traces. After analysis is complete, traces can be deleted or archived as
desired.

Although total trace size is generally proportional to the number of processes, often the
most appropriate way to reduce the size of a trace is to specify a shorter execution (e.g.,
covering fewer simulation timesteps or iterations) or selectively trace particular timesteps
or phases of execution (e.g., using measurement control instrumentation as described in
section 3.3).

The score report can also be used to identify frequently-executed purely computational
routines that provide little value in Scalasca summary and trace analyses in relation to
their measurement overhead and possible distortion. User-level source-program routines
(classified as USR), which are not involved with MPI and OpenMP parallelism, with

44

5.1. Examination options

large max_tbc are prime candidates to be excluded from measurement via selective in-
strumentation (section 3.6 or possibly 3.5) or the generally more convenient runtime
filtering (section 4.2.1).
Potential filters can be verified using

scalasca -examine -s -f <filter_file> epik_<title>

Each Scalasca release is provided with its own performance properties analysis documen-
tation that gets installed with it. By default, however, potentially revised documentation
on the Scalasca download website is prefered. To disable fetching documentation from
the network set CUBE_DISABLE_HTTP_DOCS .

45

Chapter 5. Analysis report examination

46

Chapter 6. Additional utilities

6. Additional utilities

6.1. Additional EPILOG event trace utilities

Process-local EPILOG traces in EPIK experiment archives can be merged by executing

elg_merge epik_<title>

in order to produce a single merged trace file epik_<title>/epik.elg.

Note:

It may take quite a long time to merge large event traces, and the resulting epik.elg
will typically be more than three times as large as the unmerged process traces!

Two utility programs are provided to check the correctness and to summarize the contents
of EPILOG trace files:

elg_print <file>.elg

Prints the contents of the EPILOG trace file <file>.elg to the standard output stream.
elg_print creates a readable representation of the EPILOG low-level record format.
This is mainly provided for debugging purposes to check the correct structure and content
of the EPILOG trace records.

elg_stat <file>.elg

By default, elg_stat calculates and reports some very simple event statistics to standard
output. In addition, options -d (definition records) and -e (event records) enable the
printing of a human-readable representation of the trace contents on the event level.

6.2. Trace converters

The following utility programs can be used to convert merged EPILOG trace file into
other formats.

If support for the trace formats OTF and/or VTF3 were included during configuration
and installation, merged EPILOG event traces can be converted for visual analysis with
the VAMPIR trace visualizer from TU Dresden ZIH [7].
To convert a merged trace to the VampirTrace Open Trace Format (OTF) use

47

Chapter 6. Additional utilities

elg2otf epik_<title>

and to convert to the older VAMPIR version 3 format (VTF3) use

elg2vtf3 epik_<title>/<file>.elg

which stores the resulting trace in <file>.vpt.

Note:

Newer versions of VAMPIR (7.3 and later) are also able to handle Scalasca traces
directly, without merging and conversion, via

vampir epik_<title>/epik.esd

Experimental support is provided to convert merged EPILOG traces to the format used
by the PARAVER trace visualizer from the Barcelona Supercomputing Center [3] via

elg2prv epik_<title>

and to the Slog2 format used by MPE from Argonne National Laboratory[4] via

elgTOslog2 epik_<title>/epik.elg

To visualize the resulting Slog2 file with Jumpshot use

jumpshot epik_<title>/epik.elg.slog2

6.3. Recording user-specified virtual topologies

A virtual topology defines the mapping of processes and threads onto the application do-
main, such as a weather model simulation grid. In general, a virtual topology is specified
as a graph (e.g., a ring) or a Cartesian topology such as two- or higher-dimensional grids.
Virtual topologies can include processes, threads or a combination of both, depending on
the programming model.

Virtual topologies can be useful to identify performance problems. Mapping perfor-
mance data onto the topology can help uncover inefficient interactions between neighbors
and suggest algorithmic improvements. EPIK supports the recording of {n}-dimensional
Cartesian grids as the most common case. To do this, the user has two options:

1. using MPI Cartesian-topology functions

2. manual recording using the EPIK topology API

If an application uses MPI topology functions to set up a Cartesian grid, EPIK automat-
ically includes this information in the measurement experiment.
In addition, EPIK provides users who do not use MPI topologies with an API to define
an {n}-dimensional Cartesian topology. These functions are available in C and Fortran
and have corresponding include files:

48

6.3. Recording user-specified virtual topologies

#include "epik_topol.h"
#include "epik_ftopol.inc"

Note: In Fortran, the inclusion must be in the function where topologies are to be
recorded.

Whereas in C all functions start with the prefix EPIK_, in Fortran they start with EPIKF_.
Here are the signatures of these functions:

1. EPIK(F)_CART_CREATE(topology_index, name, num_dims)

defines a Cartesian grid topology of any number of dimensions, where

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran),

• name is a string to identify this topology, and

• num_dims is an integer describing the number of dimensions in this topology.

In C, this function returns a pointer to a struct of the type EPIK_TOPOL. In For-
tran, it returns an integer which should be used to address this topology on other
functions.

2. EPIK(F)_CART_ADD_DIM(topology_index, size, periodic, name)

adds a new dimension to an existing topology.

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran),

• size is the number of possible coordinates in that dimension,

• periodic is an integer describing periodicity in this dimension. It should be

– zero if the dimension is not periodic, or

– non-zero if dimension is periodic.

• name is a string containing the name of this dimension (e.g. "X", "Y", "Z",
"Thread", or anything else).

3. EPIK(F)_CART_SET_COORDS(topology_index, coords)

Sets coordinates per process or thread.

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran),

• coords, in C, is a variable number of arguments, each containing an integer
for the coordinates in each previously defined dimension. In Fortran, it is an
array of integer giving the coordinates in the dimensions previously defined,
in the same order they were defined.

4. EPIK(F)_CART_COMMIT(topology_index)

Writes the topology definition in the definition record. From there on, the topology

49

Chapter 6. Additional utilities

is read-only.

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran)

5. EPIK(F)_CART_COORDS_COMMIT(topology_index)

Writes the topology coordinates in the definition record.

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran).

6. EPIK(F)_CART_FREE(topology_index)

Releases the memory used by the topology its related data structures.

• topology_index is the pointer to the topology (in C), or the index to the
topology (in Fortran).

Note:

There are currectly a few restrictions that need to be obeyed when using the EPIK
topology API:

• For each manually defined topology, every MPI thread has to call the creation
function EPIK(F)_CART_CREATE() exactly once.

• EPIK(F)_CART_COMMIT must be called before EPIK(F)_COORDS_COMMIT.

50

Appendix A. MPI wrapper affiliation

A. MPI wrapper affiliation

A.1. Enabling and disabling wrappers at compile-time

During configuration of the Scalasca build process, special groups of wrappers can be
enabled and disabled. For these, no wrappers will be generated, resulting in no additional
measurement overhead. One of the groups listed in the help output is the MINI group,
which currently has no corresponding affiliation to the groups listed here. This class
of wrappers comprises all MPI functionality that can be expected to have very little
overhead. It is highly recommended to disable these wrappers completely at configure
time. If the standard set of wrappers are used, the MINI wrappers are also disabled.
If the configure option --enable-all-mpi-wrappers is used, you should to manually
disable this class of wrappers again as follows:

% configure --enable-all-mpi-wrappers --disable-mpi-wrappers=MINI

Note: Currently the MINI group comprises the wrappers for MPI_Comm_rank, MPI_-
Comm_remote_size, MPI_Comm_size, MPI_Group_rank, and MPI_Group_size. Addi-
tionally, wrappers for MPI_Wtick, MPI_Wtime, and MPI_Sizeof will never be generated,
regardless of any configuration option passed to configure.

A.2. Subgrouping or cross-group enabling

Some wrapper functions are affiliated with a function group that has not been described
for direct user access in section 4.2.2. These groups are subgroups that contain function
calls that are only enabled when both main groups are enabled. The reason for this is to
control the amount of events generated during measurement, a user might want to turn
off the measurement of non-critical function calls before the measurement of the com-
plete main group is turned off. Subgroups can either be related to MISC (miscellaneous
functions, e.g. handle conversion), EXT (external interfaces, e.g. handle attributes), or
ERR (error handlers).

For example, the functions in group CG_MISC will only generate events if both groups CG
and MISC are enabled at runtime.

51

Appendix A. MPI wrapper affiliation

A.3. Function to group

52

A.3. Function to group

Function Group
MPI_Abort EXT
MPI_Accumulate RMA
MPI_Add_error_class ERR
MPI_Add_error_code ERR
MPI_Add_error_string ERR
MPI_Address MISC
MPI_Allgather COLL
MPI_Allgatherv COLL
MPI_Alloc_mem MISC
MPI_Allreduce COLL
MPI_Alltoall COLL
MPI_Alltoallv COLL
MPI_Alltoallw COLL
MPI_Attr_delete CG_EXT
MPI_Attr_get CG_EXT
MPI_Attr_put CG_EXT
MPI_Barrier COLL
MPI_Bcast COLL
MPI_Bsend P2P
MPI_Bsend_init P2P
MPI_Buffer_attach P2P
MPI_Buffer_detach P2P
MPI_Cancel P2P
MPI_Cart_coords TOPO
MPI_Cart_create TOPO
MPI_Cart_get TOPO
MPI_Cart_map TOPO
MPI_Cart_rank TOPO
MPI_Cart_shift TOPO
MPI_Cart_sub TOPO
MPI_Cartdim_get TOPO
MPI_Close_port SPAWN
MPI_Comm_accept SPAWN
MPI_Comm_c2f CG_MISC
MPI_Comm_call_errhandler CG_ERR
MPI_Comm_compare CG
MPI_Comm_connect SPAWN
MPI_Comm_create CG

53

Appendix A. MPI wrapper affiliation

MPI_Comm_create_errhandler CG_ERR
MPI_Comm_create_keyval CG_EXT
MPI_Comm_delete_attr CG_EXT
MPI_Comm_disconnect SPAWN
MPI_Comm_dup CG
MPI_Comm_f2c CG_MISC
MPI_Comm_free CG
MPI_Comm_free_keyval CG_EXT
MPI_Comm_get_attr CG_EXT
MPI_Comm_get_errhandler CG_ERR
MPI_Comm_get_name CG_EXT
MPI_Comm_get_parent SPAWN
MPI_Comm_group CG
MPI_Comm_join SPAWN
MPI_Comm_rank CG
MPI_Comm_remote_group CG
MPI_Comm_remote_size CG
MPI_Comm_set_attr CG_EXT
MPI_Comm_set_errhandler CG_ERR
MPI_Comm_set_name CG_EXT
MPI_Comm_size CG
MPI_Comm_spawn SPAWN
MPI_Comm_spawn_multiple SPAWN
MPI_Comm_split CG
MPI_Comm_test_inter CG
MPI_Dims_create TOPO
MPI_Dist_graph_create TOPO
MPI_Dist_graph_create_adjacent TOPO
MPI_Dist_graph_neighbors TOPO
MPI_Dist_graph_neighbors_count TOPO
MPI_Errhandler_create ERR
MPI_Errhandler_free ERR
MPI_Errhandler_get ERR
MPI_Errhandler_set ERR
MPI_Error_class ERR
MPI_Error_string ERR
MPI_Exscan COLL
MPI_File_c2f IO_MISC
MPI_File_call_errhandler IO_ERR

54

A.3. Function to group

MPI_File_close IO
MPI_File_create_errhandler IO_ERR
MPI_File_delete IO
MPI_File_f2c IO_MISC
MPI_File_get_amode IO
MPI_File_get_atomicity IO
MPI_File_get_byte_offset IO
MPI_File_get_errhandler IO_ERR
MPI_File_get_group IO
MPI_File_get_info IO
MPI_File_get_position IO
MPI_File_get_position_shared IO
MPI_File_get_size IO
MPI_File_get_type_extent IO
MPI_File_get_view IO
MPI_File_iread IO
MPI_File_iread_at IO
MPI_File_iread_shared IO
MPI_File_iwrite IO
MPI_File_iwrite_at IO
MPI_File_iwrite_shared IO
MPI_File_open IO
MPI_File_preallocate IO
MPI_File_read IO
MPI_File_read_all IO
MPI_File_read_all_begin IO
MPI_File_read_all_end IO
MPI_File_read_at IO
MPI_File_read_at_all IO
MPI_File_read_at_all_begin IO
MPI_File_read_at_all_end IO
MPI_File_read_ordered IO
MPI_File_read_ordered_begin IO
MPI_File_read_ordered_end IO
MPI_File_read_shared IO
MPI_File_seek IO
MPI_File_seek_shared IO
MPI_File_set_atomicity IO
MPI_File_set_errhandler IO_ERR

55

Appendix A. MPI wrapper affiliation

MPI_File_set_info IO
MPI_File_set_size IO
MPI_File_set_view IO
MPI_File_sync IO
MPI_File_write IO
MPI_File_write_all IO
MPI_File_write_all_begin IO
MPI_File_write_all_end IO
MPI_File_write_at IO
MPI_File_write_at_all IO
MPI_File_write_at_all_begin IO
MPI_File_write_at_all_end IO
MPI_File_write_ordered IO
MPI_File_write_ordered_begin IO
MPI_File_write_ordered_end IO
MPI_File_write_shared IO
MPI_Finalize ENV
MPI_Finalized ENV
MPI_Free_mem MISC
MPI_Gather COLL
MPI_Gatherv COLL
MPI_Get RMA
MPI_Get_address MISC
MPI_Get_count EXT
MPI_Get_elements EXT
MPI_Get_processor_name EXT
MPI_Get_version MISC
MPI_Graph_create TOPO
MPI_Graph_get TOPO
MPI_Graph_map TOPO
MPI_Graph_neighbors TOPO
MPI_Graph_neighbors_count TOPO
MPI_Graphdims_get TOPO
MPI_Grequest_complete EXT
MPI_Grequest_start EXT
MPI_Group_c2f CG_MISC
MPI_Group_compare CG
MPI_Group_difference CG
MPI_Group_excl CG

56

A.3. Function to group

MPI_Group_f2c CG_MISC
MPI_Group_free CG
MPI_Group_incl CG
MPI_Group_intersection CG
MPI_Group_range_excl CG
MPI_Group_range_incl CG
MPI_Group_rank CG
MPI_Group_size CG
MPI_Group_translate_ranks CG
MPI_Group_union CG
MPI_Ibsend P2P
MPI_Info_c2f MISC
MPI_Info_create MISC
MPI_Info_delete MISC
MPI_Info_dup MISC
MPI_Info_f2c MISC
MPI_Info_free MISC
MPI_Info_get MISC
MPI_Info_get_nkeys MISC
MPI_Info_get_nthkey MISC
MPI_Info_get_valuelen MISC
MPI_Info_set MISC
MPI_Init ENV
MPI_Init_thread ENV
MPI_Initialized ENV
MPI_Intercomm_create CG
MPI_Intercomm_merge CG
MPI_Iprobe P2P
MPI_Irecv P2P
MPI_Irsend P2P
MPI_Is_thread_main ENV
MPI_Isend P2P
MPI_Issend P2P
MPI_Keyval_create CG_EXT
MPI_Keyval_free CG_EXT
MPI_Lookup_name SPAWN
MPI_Op_c2f MISC
MPI_Op_commutative MISC
MPI_Op_create MISC

57

Appendix A. MPI wrapper affiliation

MPI_Op_f2c MISC
MPI_Op_free MISC
MPI_Open_port SPAWN
MPI_Pack TYPE
MPI_Pack_external TYPE
MPI_Pack_external_size TYPE
MPI_Pack_size TYPE
MPI_Pcontrol PERF
MPI_Probe P2P
MPI_Publish_name SPAWN
MPI_Put RMA
MPI_Query_thread ENV
MPI_Recv P2P
MPI_Recv_init P2P
MPI_Reduce COLL
MPI_Reduce_local COLL
MPI_Reduce_scatter COLL
MPI_Reduce_scatter_block COLL
MPI_Register_datarep IO
MPI_Request_c2f MISC
MPI_Request_f2c MISC
MPI_Request_free P2P
MPI_Request_get_status MISC
MPI_Rsend P2P
MPI_Rsend_init P2P
MPI_Scan COLL
MPI_Scatter COLL
MPI_Scatterv COLL
MPI_Send P2P
MPI_Send_init P2P
MPI_Sendrecv P2P
MPI_Sendrecv_replace P2P
MPI_Sizeof TYPE
MPI_Ssend P2P
MPI_Ssend_init P2P
MPI_Start P2P
MPI_Startall P2P
MPI_Status_c2f MISC
MPI_Status_f2c MISC

58

A.3. Function to group

MPI_Status_set_cancelled EXT
MPI_Status_set_elements EXT
MPI_Test P2P
MPI_Test_cancelled P2P
MPI_Testall P2P
MPI_Testany P2P
MPI_Testsome P2P
MPI_Topo_test TOPO
MPI_Type_c2f TYPE_MISC
MPI_Type_commit TYPE
MPI_Type_contiguous TYPE
MPI_Type_create_darray TYPE
MPI_Type_create_f90_complex TYPE
MPI_Type_create_f90_integer TYPE
MPI_Type_create_f90_real TYPE
MPI_Type_create_hindexed TYPE
MPI_Type_create_hvector TYPE
MPI_Type_create_indexed_block TYPE
MPI_Type_create_keyval TYPE_EXT
MPI_Type_create_resized TYPE
MPI_Type_create_struct TYPE
MPI_Type_create_subarray TYPE
MPI_Type_delete_attr TYPE_EXT
MPI_Type_dup TYPE
MPI_Type_extent TYPE
MPI_Type_f2c TYPE_MISC
MPI_Type_free TYPE
MPI_Type_free_keyval TYPE_EXT
MPI_Type_get_attr TYPE_EXT
MPI_Type_get_contents TYPE
MPI_Type_get_envelope TYPE
MPI_Type_get_extent TYPE
MPI_Type_get_name TYPE_EXT
MPI_Type_get_true_extent TYPE
MPI_Type_hindexed TYPE
MPI_Type_hvector TYPE
MPI_Type_indexed TYPE
MPI_Type_lb TYPE
MPI_Type_match_size TYPE

59

Appendix A. MPI wrapper affiliation

MPI_Type_set_attr TYPE_EXT
MPI_Type_set_name TYPE_EXT
MPI_Type_size TYPE
MPI_Type_struct TYPE
MPI_Type_ub TYPE
MPI_Type_vector TYPE
MPI_Unpack TYPE
MPI_Unpack_external TYPE
MPI_Unpublish_name SPAWN
MPI_Wait P2P
MPI_Waitall P2P
MPI_Waitany P2P
MPI_Waitsome P2P
MPI_Win_c2f RMA_MISC
MPI_Win_call_errhandler RMA_ERR
MPI_Win_complete RMA
MPI_Win_create RMA
MPI_Win_create_errhandler RMA_ERR
MPI_Win_create_keyval RMA_EXT
MPI_Win_delete_attr RMA_EXT
MPI_Win_f2c RMA_MISC
MPI_Win_fence RMA
MPI_Win_free RMA
MPI_Win_free_keyval RMA_EXT
MPI_Win_get_attr RMA_EXT
MPI_Win_get_errhandler RMA_ERR
MPI_Win_get_group RMA
MPI_Win_get_name RMA_EXT
MPI_Win_lock RMA
MPI_Win_post RMA
MPI_Win_set_attr RMA_EXT
MPI_Win_set_errhandler RMA_ERR
MPI_Win_set_name RMA_EXT
MPI_Win_start RMA
MPI_Win_test RMA
MPI_Win_unlock RMA
MPI_Win_wait RMA
MPI_Wtick EXT
MPI_Wtime EXT

60

A.4. Group to function

A.4. Group to function

CG Communicators and Groups
MPI_Comm_compare,
MPI_Comm_create, MPI_Comm_dup,
MPI_Comm_free, MPI_Comm_group,
MPI_Comm_rank,
MPI_Comm_remote_group,
MPI_Comm_remote_size,
MPI_Comm_size, MPI_Comm_split,
MPI_Comm_test_inter,
MPI_Group_compare,
MPI_Group_difference,
MPI_Group_excl, MPI_Group_free,
MPI_Group_incl,
MPI_Group_intersection,
MPI_Group_range_excl,
MPI_Group_range_incl,
MPI_Group_rank, MPI_Group_size,
MPI_Group_translate_ranks,
MPI_Group_union,
MPI_Intercomm_create,
MPI_Intercomm_merge,

61

Appendix A. MPI wrapper affiliation

CG_ERR Error handlers for Communicators
and Groups
MPI_Comm_call_errhandler,
MPI_Comm_create_errhandler,
MPI_Comm_get_errhandler,
MPI_Comm_set_errhandler,

CG_EXT External interfaces for
Communicators and Groups
MPI_Attr_delete, MPI_Attr_get,
MPI_Attr_put,
MPI_Comm_create_keyval,
MPI_Comm_delete_attr,
MPI_Comm_free_keyval,
MPI_Comm_get_attr,
MPI_Comm_get_name,
MPI_Comm_set_attr,
MPI_Comm_set_name,
MPI_Keyval_create, MPI_Keyval_free,

CG_MISC Miscellaneous functions for
Communicators and Groups
MPI_Comm_c2f, MPI_Comm_f2c,
MPI_Group_c2f, MPI_Group_f2c,

COLL Collective communication
MPI_Allgather, MPI_Allgatherv,
MPI_Allreduce, MPI_Alltoall,
MPI_Alltoallv, MPI_Alltoallw,
MPI_Barrier, MPI_Bcast, MPI_Exscan,
MPI_Gather, MPI_Gatherv,
MPI_Reduce, MPI_Reduce_local,
MPI_Reduce_scatter,
MPI_Reduce_scatter_block, MPI_Scan,
MPI_Scatter, MPI_Scatterv,

62

A.4. Group to function

ENV Environmental management
MPI_Finalize, MPI_Finalized, MPI_Init,
MPI_Init_thread, MPI_Initialized,
MPI_Is_thread_main,
MPI_Query_thread,

ERR Common error handlers
MPI_Add_error_class,
MPI_Add_error_code,
MPI_Add_error_string,
MPI_Errhandler_create,
MPI_Errhandler_free,
MPI_Errhandler_get,
MPI_Errhandler_set, MPI_Error_class,
MPI_Error_string,

EXT Common external interfaces
MPI_Abort, MPI_Get_count,
MPI_Get_elements,
MPI_Get_processor_name,
MPI_Grequest_complete,
MPI_Grequest_start,
MPI_Status_set_cancelled,
MPI_Status_set_elements, MPI_Wtick,
MPI_Wtime,

63

Appendix A. MPI wrapper affiliation

IO Parallel I/O
MPI_File_close, MPI_File_delete,
MPI_File_get_amode,
MPI_File_get_atomicity,
MPI_File_get_byte_offset,
MPI_File_get_group,
MPI_File_get_info,
MPI_File_get_position,
MPI_File_get_position_shared,
MPI_File_get_size,
MPI_File_get_type_extent,
MPI_File_get_view, MPI_File_iread,
MPI_File_iread_at,
MPI_File_iread_shared,
MPI_File_iwrite, MPI_File_iwrite_at,
MPI_File_iwrite_shared,
MPI_File_open, MPI_File_preallocate,
MPI_File_read, MPI_File_read_all,
MPI_File_read_all_begin,
MPI_File_read_all_end,
MPI_File_read_at,
MPI_File_read_at_all,
MPI_File_read_at_all_begin,
MPI_File_read_at_all_end,
MPI_File_read_ordered,
MPI_File_read_ordered_begin,
MPI_File_read_ordered_end,
MPI_File_read_shared, MPI_File_seek,
MPI_File_seek_shared,
MPI_File_set_atomicity,
MPI_File_set_info, MPI_File_set_size,
MPI_File_set_view, MPI_File_sync,
MPI_File_write, MPI_File_write_all,
MPI_File_write_all_begin,
MPI_File_write_all_end,
MPI_File_write_at,
MPI_File_write_at_all,
MPI_File_write_at_all_begin,
MPI_File_write_at_all_end,
MPI_File_write_ordered,
MPI_File_write_ordered_begin,
MPI_File_write_ordered_end,
MPI_File_write_shared,
MPI_Register_datarep,

64

A.4. Group to function

IO_ERR Error handlers for Parallel I/O
MPI_File_call_errhandler,
MPI_File_create_errhandler,
MPI_File_get_errhandler,
MPI_File_set_errhandler,

IO_MISC Miscellaneous functions for Parallel
I/O
MPI_File_c2f, MPI_File_f2c,

MISC Miscellaneous functions
MPI_Address, MPI_Alloc_mem,
MPI_Free_mem, MPI_Get_address,
MPI_Get_version, MPI_Info_c2f,
MPI_Info_create, MPI_Info_delete,
MPI_Info_dup, MPI_Info_f2c,
MPI_Info_free, MPI_Info_get,
MPI_Info_get_nkeys,
MPI_Info_get_nthkey,
MPI_Info_get_valuelen, MPI_Info_set,
MPI_Op_c2f, MPI_Op_commutative,
MPI_Op_create, MPI_Op_f2c,
MPI_Op_free, MPI_Request_c2f,
MPI_Request_f2c,
MPI_Request_get_status,
MPI_Status_c2f, MPI_Status_f2c,

P2P Point-to-point communication
MPI_Bsend, MPI_Bsend_init,
MPI_Buffer_attach, MPI_Buffer_detach,
MPI_Cancel, MPI_Ibsend, MPI_Iprobe,
MPI_Irecv, MPI_Irsend, MPI_Isend,
MPI_Issend, MPI_Probe, MPI_Recv,
MPI_Recv_init, MPI_Request_free,
MPI_Rsend, MPI_Rsend_init,
MPI_Send, MPI_Send_init,
MPI_Sendrecv, MPI_Sendrecv_replace,
MPI_Ssend, MPI_Ssend_init,
MPI_Start, MPI_Startall, MPI_Test,
MPI_Test_cancelled, MPI_Testall,
MPI_Testany, MPI_Testsome,
MPI_Wait, MPI_Waitall, MPI_Waitany,
MPI_Waitsome,

65

Appendix A. MPI wrapper affiliation

PERF Profiling Interface
MPI_Pcontrol,

RMA One-sided communication (Remote
Memory Access)
MPI_Accumulate, MPI_Get, MPI_Put,
MPI_Win_complete, MPI_Win_create,
MPI_Win_fence, MPI_Win_free,
MPI_Win_get_group, MPI_Win_lock,
MPI_Win_post, MPI_Win_start,
MPI_Win_test, MPI_Win_unlock,
MPI_Win_wait,

RMA_ERR Error handlers for One-sided
communication (Remote Memory
Access)
MPI_Win_call_errhandler,
MPI_Win_create_errhandler,
MPI_Win_get_errhandler,
MPI_Win_set_errhandler,

RMA_EXT External interfaces for One-sided
communication (Remote Memory
Access)
MPI_Win_create_keyval,
MPI_Win_delete_attr,
MPI_Win_free_keyval,
MPI_Win_get_attr,
MPI_Win_get_name, MPI_Win_set_attr,
MPI_Win_set_name,

RMA_MISC Miscellaneous functions for One-sided
communication (Remote Memory
Access)
MPI_Win_c2f, MPI_Win_f2c,

66

A.4. Group to function

SPAWN Process spawning
MPI_Close_port, MPI_Comm_accept,
MPI_Comm_connect,
MPI_Comm_disconnect,
MPI_Comm_get_parent,
MPI_Comm_join, MPI_Comm_spawn,
MPI_Comm_spawn_multiple,
MPI_Lookup_name, MPI_Open_port,
MPI_Publish_name,
MPI_Unpublish_name,

67

Appendix A. MPI wrapper affiliation

TOPO Topology (cartesian and graph)
communicators
MPI_Cart_coords, MPI_Cart_create,
MPI_Cart_get, MPI_Cart_map,
MPI_Cart_rank, MPI_Cart_shift,
MPI_Cart_sub, MPI_Cartdim_get,
MPI_Dims_create,
MPI_Dist_graph_create,
MPI_Dist_graph_create_adjacent,
MPI_Dist_graph_neighbors,
MPI_Dist_graph_neighbors_count,
MPI_Graph_create, MPI_Graph_get,
MPI_Graph_map,
MPI_Graph_neighbors,
MPI_Graph_neighbors_count,
MPI_Graphdims_get, MPI_Topo_test,

TYPE Datatypes
MPI_Pack, MPI_Pack_external,
MPI_Pack_external_size,
MPI_Pack_size, MPI_Type_commit,
MPI_Type_contiguous,
MPI_Type_create_darray,
MPI_Type_create_f90_complex,
MPI_Type_create_f90_integer,
MPI_Type_create_f90_real,
MPI_Type_create_hindexed,
MPI_Type_create_hvector,
MPI_Type_create_indexed_block,
MPI_Type_create_resized,
MPI_Type_create_struct,
MPI_Type_create_subarray,
MPI_Type_dup, MPI_Type_extent,
MPI_Type_free,
MPI_Type_get_contents,
MPI_Type_get_envelope,
MPI_Type_get_extent,
MPI_Type_get_true_extent,
MPI_Type_hindexed,
MPI_Type_hvector, MPI_Type_indexed,
MPI_Type_lb, MPI_Type_match_size,
MPI_Type_size, MPI_Type_struct,
MPI_Type_ub, MPI_Type_vector,
MPI_Unpack, MPI_Unpack_external,

68

A.4. Group to function

TYPE_EXT External interfaces for datatypes
MPI_Type_create_keyval,
MPI_Type_delete_attr,
MPI_Type_free_keyval,
MPI_Type_get_attr,
MPI_Type_get_name,
MPI_Type_set_attr,
MPI_Type_set_name,

TYPE_MISC Miscellaneous functions for datatypes
MPI_Type_c2f, MPI_Type_f2c,

69

Appendix A. MPI wrapper affiliation

70

Appendix B. Environment variables

B. Environment variables

Table B.1.: Scalasca instrumenter environment variables
Variable name Description Default
SKIN_COMP Specifies routines that the compiler

should instrument (“all” or “none”) or
a custom instrumentation specification.

all

SKIN_MODE Specifies the instrumentation mode
(e.g., MPI, OpenMP, MPI+OpenMP) or
none to skip instrumentation.

determined automatically

SKIN_VERBOSE Produces additional information during
instrumentation if non-zero.

0

71

Appendix B. Environment variables

Table B.2.: Scalasca measurement collection & analysis nexus environment variables
Variable name Description Default
SCAN_ANALYZE_OPTS Specifies trace analyzer options: severest in-

stance tracking (value ‘i’), timestamp correction
(value ‘s’), verbosity (value ‘v’).

-

SCAN_CLEAN Removes trace data after successful trace analy-
sis if it is non-zero.

0

SCAN_MPI_LAUNCHER Specifies a non-standard MPI launcher name. -
SCAN_MPI_RANKS Specifies the number of MPI processes. -
SCAN_OVERWRITE Removes existing experiment archive directory

if non-zero.
0

SCAN_SETENV In order to set environment variables to MPI
processes by the launcher, one can specify the
syntax that the launcher requires for this as
SCAN_SETENV (e.g., “-x=”).

-

SCAN_TARGET If there is an imposter executable or script, e.g.,
used to specify placement, that precedes the in-
strumented target, it may be necessary to explic-
itly identify the target executable.

-

SCAN_TRACE_ANALYZER Specifies alternative trace analyzer (e.g.
scout.mpi, scout.hyb). If none specified, it
skips automatic trace analysis.

-

SCAN_WAIT Wait for synchronization of a distributed filesys-
tem after measurement completion (in seconds).

0

72

Table B.3.: Scalasca measurement environment variables for EPIK configuration
Variable name Description Default
EPK_CONF Specifies file with a list of EPIK

configuration variables
./EPIK.CONF

EPK_FILTER Specifies file with a list of compiler-
instrumented USR functions which
should not be included in measure-
ment.

-

EPK_GDIR Specifies the directory to contain the
EPIK measurement archive.

./

EPK_LDIR Specifies a temporary location to
be used as intermediate storage, be-
fore the data is finally archived in
EPK_GDIR.

EPK_GDIR

EPK_MACHINE_ID Specifies a unique identifier for the
current machine.

0

EPK_MACHINE_NAME Specifies a name for the current ma-
chine.

Depends on installation

EPK_METRIC_SPEC Specifies a file with a list of hard-
ware counter metric group defini-
tions.

Depends on installation

EPK_METRICS Includes hardware counters in mea-
surement: specify a colon-separated
list of PAPI preset or native counter
names, or a predefined group.

-

EPK_MPI_ENABLED Activates event generation for pre-
defined groups of MPI routines:
specify a colon-separated list of to-
kens (e.g. “COLL:IO:P2P:RMA”).

Depends on installation

EPK_MPI_HANDLES Maximum number of MPI com-
municator/group/window/epoch
handles tracked simultaneously.

64

EPK_SUMMARY Enables run-time summarization if
non-zero.

1

EPK_TITLE Specifies title for experiment
archive directory (without the
mandatory ‘epik_’ prefix).

a

EPK_TRACE Enables event trace collection if
non-zero.

0

EPK_VERBOSE Produces lot of additional informa-
tion during measurement.

0

73

Appendix B. Environment variables

Table B.4.: Scalasca measurement environment variables for EPISODE configuration
Variable name Description Default
ESD_BUFFER_SIZE Size of per-process definitions buffers in

bytes.
100 000

ESD_FRAMES Maximum stack frame depth of measured
call-paths.

32

ESD_MAX_THREADS Maximal number of threads for OpenMP
measurements.

OMP_NUM_THREADS

ESD_PATHS Maximum number of measured call-
paths.

4096

Table B.5.: Scalasca measurement environment variables for EPILOG configuration
Variable name Description Default
ELG_BUFFER_SIZE Size of per-thread event trace buffers in bytes. 10 000 000
ELG_COMPRESSION Compression level of data in event trace files (0..9

or ‘u’ for uncompressed).
6

ELG_MERGE Automatic merges trace files if non-zero. 0
ELG_SION_FILES Number of physical SION files (0 for one file per

MPI process without SIONlib, -1 for system- or
configuration-dependent default number of files).

0

ELG_VT_MODE Generates VAMPIR-compatible traces if non-
zero.

0

Table B.6.: KOJAK sequential trace analyzer environment variables
Variable name Description Default
EARL_BOOKMARK_DISTANCE Specifies distance of bookmarks (fixed

interval the state information is stored).
10 000

EPT_INCOMPLETE_COMPUTATION Accepts metric computations which are
missing one or more component mea-
surement.

-

EPT_MEASURED_METRICS Modifies the handling of unparented
measured metrics, such that they can
be ignored (value 0), listed separately
(value 1) or listed together with par-
ented metrics (value 2).

1

74

Bibliography

Bibliography

[1] D. Becker, R. Rabenseifner, F. Wolf, J. Linford: Scalable timestamp synchroniza-
tion for event traces of message-passing applications. Journal of Parallel Computing
35(12):595–607, December 2009. 38

[2] D. Becker, R. Rabenseifner, F. Wolf: Implications of non-constant clock drifts for
the timestamps of concurrent events. In: Proc. of the IEEE Cluster Conference
(Cluster 2008), pp. 59–68, IEEE Computer Society, September 2008. 38

[3] Barcelona Supercomputing Center: Paraver – Obtain Detailed Information from
Raw Performance Traces. June 2009.5, 48

http://www.bsc.es/plantillaA.php?cat_id=485

[4] A. Chan, W. Gropp, E. Lusk: Scalable Log Files for Parallel Program Trace Data
--- DRAFT, 2003. 48

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf

[5] M. Geimer, F. Wolf, B. J. N. Wylie, B. Mohr: Scalable Parallel Trace-Based Perfor-
mance Analysis. In Proc. of the 13th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI), LNCS 4192, pp. 303–312, Springer, Berlin/Heidelberg, Septem-
ber 2006. 1

[6] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, B. Mohr: The Scalasca
performance toolset architecture. In Concurrency and Computation: Practice and
Experience, 22(6):702-719, April 2010. 1

[7] Gesellschaft für Wissens- und Technologietransfer der TU Dresden mbH: Vampir
– Performance Optimization. June 2009.5, 47

http://vampir.eu

[8] Jülich Supercomputing Centre: CUBE User Guide: Generic display for application
performance data.10, 40, 43

http://apps.fz-juelich.de/scalasca/releases/cube/3.4/docs/CubeGuide.pdf

[9] Jülich Supercomputing Centre: Scalasca Open Issues and Limitations.8, 19

http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/docs/OPEN_-
ISSUES.txt

[10] Jülich Supercomputing Centre: Scalasca Performance Properties.17, 43

http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_-

75

http://www.bsc.es/plantillaA.php?cat_id=485
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf
http://vampir.eu
http://apps.fz-juelich.de/scalasca/releases/cube/3.4/docs/CubeGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/docs/OPEN_ISSUES.txt
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/docs/OPEN_ISSUES.txt
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_patterns.html
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_patterns.html

Bibliography

patterns.html

[11] Jülich Supercomputing Centre: Scalasca Instrumentation/Measurement Regions.
15

http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_-
regions.html

[12] J. Labarta, S. Girona, V. Pillet, T. Cortes, L. Gregoris: DiP: A Parallel Program
Development Environment. In Proc. of the 2nd International Euro-Par Conference,
LNCS 1123, pp. 665–674, Springer, Berlin/Heidelberg, August 1996. 5

[13] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
Version 2.2, September 2009.3

http://www.mpi-forum.org

[14] W. Nagel, M. Weber, H.-C. Hoppe, K. Solchenbach: VAMPIR: Visualization and
Analysis of MPI Resources. Supercomputer 12(1), pp. 69–80, SARA, Amsterdam,
January, 1996. 5

[15] OpenMP Architecture Review Board: OpenMP API specification for parallel pro-
gramming. Version 3.1, July 2011.3

http://www.openmp.org

[16] Performance Research Lab, University of Oregon: ParaProf User’s Manual.5

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk02.html

[17] Performance Research Lab, University of Oregon: TAU User Guide, chapter Selec-
tively Profiling an Application.28

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch01s03.html

[18] Performance Research Lab, University of Oregon: TAU Reference Guide, chapter
TAU Instrumentation Options.28

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html

[19] F. Wolf, B. Mohr: Automatic performance analysis of hybrid MPI/OpenMP ap-
plications. Journal of Systems Architecture 49(10–11), pp. 421–439, Elsevier,
November 2003. 1

76

http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_patterns.html
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_patterns.html
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_patterns.html
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_regions.html
http://apps.fz-juelich.de/scalasca/releases/scalasca/1.4/help/scalasca_regions.html
http://www.mpi-forum.org
http://www.openmp.org
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk02.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch01s03.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html

www.scalasca.org

	Introduction
	How to read this document
	Performance optimization cycle
	Scalasca overview

	Getting started
	Instrumentation
	Runtime measurement collection & analysis
	Analysis report examination
	A full workflow example

	Application instrumentation
	Automatic compiler instrumentation
	Manual region instrumentation
	Measurement control instrumentation
	Semi-automatic instrumentation
	Automatic source-code instrumentation using PDT
	Selective instrumentation

	Measurement collection & analysis
	Nexus configuration
	Measurement configuration
	Measurement and analysis of hardware counter metrics
	Automatic parallel event trace analysis
	Automatic sequential event trace analysis

	Analysis report examination
	Examination options

	Additional utilities
	Additional EPILOG event trace utilities
	Trace converters
	Recording user-specified virtual topologies

	MPI wrapper affiliation
	Enabling and disabling wrappers at compile-time
	Subgrouping or cross-group enabling
	Function to group
	Group to function

	Environment variables
	Bibliography

