
CubeGUI 4.9 User Guide
Introduction in Cube GUI and its usage

March 2025
The Scalasca Development Team
scalasca@fz-juelich.de

Attention

The Cube GUI User Guide is currently being rewritten and still incomplete.
However, it should already contain enough information to get you started
and avoid the most common pitfalls.

ii

Contents

1 Copyright 1

2 Cube User Guide 3
2.1 Abstract . 3
2.2 Introduction . 3
2.3 Command line options . 4
2.4 Environment variables . 5
2.5 Using the Display . 6

2.5.1 Basic Principles . 6
2.5.2 GUI Components . 9

2.5.2.1 Menu Bar . 9
2.5.2.2 Value modes . 14
2.5.2.3 System resource subsets . 16
2.5.2.4 Tree browsers . 16
2.5.2.5 Selected value info . 22
2.5.2.6 Color legend . 22
2.5.2.7 Status Bar . 23

2.6 Client-Server . 23
2.6.1 Cube Server . 23
2.6.2 Cube Client . 23

2.7 Cube GUI Plugins . 23
2.7.1 Detach Plugin Tabs . 24
2.7.2 Context free plugins . 24

2.7.2.1 Plugin "Diff" . 25
2.7.2.2 Plugin "Mean" . 25
2.7.2.3 Plugin "Merge" . 25
2.7.2.4 Plugin "Scaling" . 25
2.7.2.5 Plugin "Tau2Cube" . 26
2.7.2.6 Plugin "Measurement" . 26

2.7.3 Tree Item Marker . 26
2.7.4 Advanced Color Map Plugin . 28
2.7.5 Metric Editor Plugin . 29
2.7.6 Metric Identification Plugin . 32
2.7.7 Score-P Configuration Plugin . 32
2.7.8 Source Code Viewer . 32

2.7.8.1 Source Code Viewer Keyboard control 34
2.7.9 System Barplot Plugin . 35

2.7.9.1 Basic Principles . 36
2.7.9.2 Toolbar . 37
2.7.9.3 Menu Bar . 38

2.7.10System Heatmap Plugin . 39
2.7.10.1Basic Principles . 39

iii

Contents

2.7.10.2Menu Heatmap . 40
2.7.11System Statistics Plugin . 41
2.7.12System Sunburst Plugin . 42
2.7.13System Topology Plugin . 44

2.7.13.1Topology mapping panel . 46
2.7.13.2Topology plugin menu . 47
2.7.13.3Toolbar . 48
2.7.13.4Topology keyboard and mouse control 49

2.7.14Tree Item Marker Plugin . 49
2.7.15Launch Plugin . 50

2.7.15.1.launch File . 50
2.8 Other Features . 52

2.8.1 Features enabled through statistic files 52
2.8.2 Statistical information about performance patterns 53
2.8.3 Display of most severe pattern instances using a trace browser 54

2.8.3.1 Troubleshooting . 55
2.8.4 Synchronization of several cube instances 56

2.9 Keyboard and mouse control . 57

3 Cube POP Advisor Plugin 59
3.1 Getting Started with Advisor . 59
3.2 Supported Assessments . 59

4 Customization with Qt Stylesheets 61

5 Appendix 63
5.1 File format of statistics files . 63

6 Getting Started with Plugin "Measurement" 65
6.1 Start the Plugin . 65
6.2 Step-by-Step example . 65

7 Overview 67
7.1 Layout . 67
7.2 Tabs . 67
7.3 Virtual Console . 67

8 Setup 69
8.1 Load Measurement . 69

8.1.1 Load recent Measurement Button . 69
8.1.2 Submitted Jobs . 69

8.1.2.1 Job Status . 69
8.2 Start new Measurement . 70

8.2.1 Select Compiler version and MPI . 70
8.2.1.1 Compiler . 70
8.2.1.2 MPI . 71

8.2.2 Score-P version found in PATH . 71
8.2.2.1 Usable Configuration Status . 71

8.2.3 Find Score-P versions Button . 71
8.2.4 Browse Score-P Button . 71
8.2.5 Proceed Button . 72

iv

Contents

8.2.6 Help Button . 72

9 Instrumentation 73
9.1 Browse Executable File Button . 73
9.2 Select Instrumentation Box . 73

9.2.1 Use Former Instrumentation . 74
9.2.2 Prepare New Instrumentation . 74

9.3 Adapt Build System . 74
9.3.1 Select Build System Box . 74

9.3.1.1 Adjust Makefile . 74
9.3.2 Open Makefile for Editing . 74

9.3.2.1 Browse Makefile Button . 74
9.3.2.2 Open detected Makefile Button 75

9.4 Rebuild Application . 75
9.4.1 Build Command Box . 75
9.4.2 Build Application Button . 75

9.5 Continue with Analysis Button . 75

10Measurement 77
10.1Presettings . 77

10.1.1Number of Processes . 77
10.1.2Number of Threads . 77
10.1.3Experiment Directory Name . 78

10.2Runs . 78
10.2.1Initial Run . 78
10.2.2Finetuned Run . 78

10.2.2.1Filter . 78
10.3Run the program . 79

10.3.1Prepare job Script . 79
10.3.1.1Open generated job Script . 79
10.3.1.2Open own job Script . 79

10.4Options after running the Program . 79

Bibliography 81

v

1 Copyright

Copyright © 1998–2024 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

2 Cube User Guide

2.1 Abstract

CUBE is a presentation component suitable for displaying performance data for parallel programs including MPI

and OpenOpenMP applications. Program performance is represented in a multi-dimensional space including

various program and system resources. The tool allows the interactive exploration of this space in a scalable

fashion and browsing the different kinds of performance behavior with ease. CUBE also includes a library to

read and write performance data as well as operators to compare, integrate, and summarize data from different

experiments. This user manual provides instructions of how to use the CUBE display, how to use the operators,

and how to write CUBE files.

The version 4 of CUBE implementation has an incompatible API and file format to preceding versions.

2.2 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for
displaying a wide variety of performance data for parallel programs including MPI [?]
and OpenMP [?] applications. CUBE allows interactive exploration of the performance
data in a scalable fashion. Scalability is achieved in two ways: hierarchical decomposition
of individual dimensions and aggregation across different dimensions. All metrics are
uniformly presented in the same display and thus provide the ability to easily compare the
effects of different kinds of program behavior.

CUBE has been designed around a high-level data model of program behavior called the
cube performance space. The CUBE performance space consists of three dimensions: a
metric dimension, a program dimension, and a system dimension. The metric dimension
contains a set of metrics, such as communication time or cache misses. The program
dimension contains the program's call-tree, which includes all the call paths onto which
metric values can be mapped. The system dimension contains the components executing in
parallel, which can be processes or threads depending on the parallel programming model.
Each point (m, c, s) of the space can be mapped onto a number representing the actual
measurement for metric m while the control flow of process/thread s was executing call
path c . This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy where a metric at a lower level is a subset
of its parent. For example, communication time is a subset of execution time. Second,
the program dimension is organized in a call-tree hierarchy. However, sometimes it can
be advantageous to abstract away from the hierarchy of the call-tree, for example if one
is interested in the severities of certain methods, independently of the position of their
invocations. For this purpose CUBE supports also flat call profiles, that are represented as
a flat sequence of all methods. Finally, the system dimension is organized in a multi-level

3

2 Cube User Guide

hierarchy consisting of the levels, e.g., machine, smp node, process, and thread. This
hierarchy can vary depending on the used system.

CUBE also provides a library to read and write instances of the previously described data
model in the form of a cubex file (which is a tar ed directory). The file representation is
divided into a metadata part and a data part. The metadata part describes the structure
of the three dimensions plus the definitions of various program and system resources and
stored in a form of an tar file anchor.xml inside of the cubex envelope. The data part
contains the actual severity numbers to be mapped onto the different elements of the
performance space and stored in binary format in various files inside of the cubex envelope.

The display component can load such a file and display the different dimensions of the
performance space using three coupled tree browsers (figure 2.1). The browsers are
connected in such a way that you can view one dimension with respect to another dimension.
The connection is based on selections: in each tree you can select one or more nodes. For
example, in Figure 2.1 the Execution metric, the adi call path node, and Process 0 are
selected. For each tree, the selections in the trees on its left-hand-side (if any) restrict the
considered data: The metric nodes aggregate data over all call paths and all system-tree
nodes, the call-tree aggregates data for the Execution metric over all system nodes, and
each node of the system-tree shows the severity for the Execution metric of the selected
call path for this system node.

If the CUBE file contains topological information, the distribution of the performance
metric across the topology can be examined using the topology view.

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE includes a feature designed to
simplify cross-experiment analysis. The CUBE algebra [?] is an extension of the framework
for multi-execution performance tuning by Karavanic and Miller [?] and offers a set of
operators that can be used to compare, integrate, and summarize multiple CUBE data sets.
The algebra allows the combination of multiple CUBE data sets into a single one that can
be displayed and examined like the original ones.

In addition to the information provided by plain CUBE files a statistics file can be provided,
enabling the display of additional statistical information of severity values. Furthermore,
a statistics file can also contain information about the most severe instances of certain
performance patterns – globally as well as with respect to specific call paths. If a trace file
of the program being analyzed is available, the user can connect to a trace browser (i.e.
Vampir) and then use CUBE to zoom their timelines to the most severe instances of the
performance patterns for a more detailed examination of the cause of these performance
patterns.

The following sections explain how to use the CUBE display, how to create CUBE files, and
how to use the algebra and other tools.

2.3 Command line options

To invoke GUI for CUBE profile exploration one uses command:

cube [options] filename

4

2.4 Environment variables

A list of main options:

-disable-plugins start cube with all plugins disabled

-docpath=<path>\ path to the html documentation

-presentation opens cube in presentation mode, which shows a mouse icon next to the
cursor

-single disable parallel execution of cube

-start <plugin> [args] start context free plugin with the name <plugin>

-verbose print detailed information

-h|-help Display list of command line options

A list of developer options:

-disable-calculation disable automatic calculation of tree items

-expert start cube in expert mode which shows e.g. ghost metrics or additional analyses
in Advisor plugin

-memory=<strategy> uses given memory strategy. If the option is omitted, CubeGUI
reads the data from the .cubex file at the first access. "preload" reads all data into
memory during the initialization phase. "lastN" keeps the last N data rows in memory.
N is set via environment CUBE_NUMBER_ROWS.

2.4 Environment variables

CUBE provides the option of displaying an online description for entries in the metric-tree
via a context menu. By default, it will search for the given HTML description file on all
the mirror URLs specified in the CUBE file. In case there is no Internet connection, the
Qt-based CUBE GUI can be configured to also search in a list of local directories for
documentation files. These additional search paths can be specified via the environment
variable CUBE_DOCPATH as a colon-separated list of local directories, e.g.,

CUBE_DOCPATH=/opt/software/doc:/usr/local/share/doc

Note that this feature is only available in the Qt-based GUI and not in the older wxWidgets-
based one.

To prevent CUBE from trying to load the HTML documentation via HTTP or HTTPS mirror
URLs (e.g., in restricted environments were outbound connections are blocked by a firewall
and the timeout is taking very long), the environment variable CUBE_DISABLE_HTTP_DOCS
can be set to either 1, yes or true.

Cube searches for plugins in the directory "cube-plugins/" below the installation directory.
This is the place where the predefined plugins are installed. With the environment variable
CUBE_PLUGIN_DIR one can specify a user defined place where third-party plugins are
installed. If CUBE_PLUGIN_DIR contains a colon or semicolon separated list of paths, these

5

2 Cube User Guide

paths are prepended to the default search path.

There are environment variables comming from the CubeLib library. Hence the will have
an effect also for the CubeLib tools.

These are two variables, CUBE_TMP and CUBE_DATA_LOADING.

During runtime CubeLib creates some temporary files, which usually are saved into the
TMP directory. However, some systems put a quota on file size and on file numbers on the
temporary directory. One wants to overcome this limitation by using another places.

Variable CUBE_TMP (following are aliases CUBE_TEMP, CUBE_TMPDIR, SCALASCA_TMP, SCALASCA_TEMP,
SCALASCA_TMPDIR, SCOREP_TMP, SCOREP_TEMP, SCOREP_TMPDIR, TMP, TEMP, (TMPDIR win32
only)) informs CubeLib wich directory to use for the temporary files.

CUBE C++ library allows to control the way it loads the data using the environment
variable CUBE_DATA_LOADING. Following values are possible:

1. keepall - data is loaded on demand and kept in memory to the end of lyfecycle of the
Cube object.

2. preload - all data is loaded during the metric initialization and kept in memory to the
end of lyfecycle of the Cube object.

3. manual - Application should request and drop the data sets explicitly. No correctness
check is performed. Therefore one has to use this strategy with care.

4. lastn - Only N last used data rows are kept in memory. N is specified via environment
variable CUBE_NUMBER_ROWS

2.5 Using the Display

This section explains how to use the CUBE-QT display component. After installation, the
executable "cube" can be found in the specified directory of executables (specifiable by the
“prefix'' argument of configure, see the CUBE Installation Manual). The program supports
as an optional command-line argument the name of a cube file that will be opened upon
program start.

After a brief description of the basic principles, different components of the GUI will be
described in detail.

2.5.1 Basic Principles

The CUBE-QT display has three tree browsers, each of them representing a dimension of
the performance space (figure 2.1). Per default, the left tree displays the metric dimension,
the middle tree displays the program dimension, and the right tree displays the system
dimension. The nodes in the metric tree represent metrics. The nodes in the program
dimension can have different semantics depending on the particular view that has been
selected. In Figure2.1, they represent call paths forming a call-tree. The nodes in the
system dimension represent machines, nodes, processes, or threads from top to bottom.

Each node is associated with a value, which is called the severity and is displayed simul-
taneously using a numerical value as well as a colored square. Colors enable the easy

6

2.5 Using the Display

Figure 2.1: CUBE display window

Figure 2.2: CUBE display window with expanded metric node ''Execution''

identification of nodes of interest even in a large tree, whereas the numerical values enable
the precise comparison of individual values. The sign of a value is visually distinguished by
the relief of the colored square. A raised relief indicates a positive sign, a sunken relief
indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing a
node. In the metric-tree in figure 2.1, the metric Execution is selected. Selecting a node
in a tree causes the other trees on its right to display values for that selection. For the
example of figure 2.1, the metric-tree displays the total metric values over all call-tree
and system nodes, the call-tree displays values for the Execution metric over all system
entities, and the system-tree for the Execution metric and the adi call-tree node. Briefly, a
tree is always an aggregation over all selected nodes of its neighboring trees to the left.

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded nodes
with a visible subtree by a [-] sign. You can expand/collapse a node by left-clicking on the
corresponding [+]/[-] signs. Collapsed nodes have inclusive values, i.e., their severity is
the sum of the severities over the whole collapsed subtree. For the example of Figure2.1,
the Execution metric value 3496.10 is the total time for all executions. On the other hand,
the displayed values of expanded nodes are their exclusive values. E.g., the expanded
Execution metric node in Figure 2.2 shows that the program needed 2839.54 seconds for
execution other than MPI.

Note that expanding/collapsing a selected node causes the change of the current values

7

2 Cube User Guide

in the trees on its right-hand side. As explained above, in our example in Figure 2.1
the call-tree displays values for the Execution metric over all system entities. Since the
Execution node is collapsed, the call-tree severities are computed for the whole Execution
metric's subtree. When expanding the selected Execution node, as shown in Figure 2.2,
the call-tree displays values for the Execution metric without the MPI metric.

8

2.5 Using the Display

2.5.2 GUI Components

The GUI consists (from top to bottom) of

• a menu bar,

• three value mode combo boxes,

• three resizable panes each containing some tabs,

• three selected value information widgets,

• a color legend, and

• a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane.
You can switch between the different tabs of a pane by left-clicking on the desired tab at
the top of the pane. Note that the order of the panes can be changed (see the description
of the menu item Display ⇒ Dimension order in Section 2.5.2.1).

The metric pane provides only the metric-tree browser. The call pane offers a call-tree
browser and a flat call profile. If OpenMP tasks have been instrumented, an additional
task-tree is inserted. The system pane has a system-tree browser. Tree browsers also
provide a context menu.

2.5.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a plugin menu and a
help menu. Some menu functions also have a keyboard shortcut, which is written besides
the menu item's name in the menu. E.g., you can open a file with Ctrl+O without going
into the menu. A short description of the menu items is visible in the status bar if you stay
for a short while with the mouse above a menu item.

1. File: The file menu offers the following functions:

a) Open (Ctrl+O): Offers a selection dialog to open a CUBE file. In case of an
already opened file, it will be closed before a new file gets opened. If a file got
opened successfully, it gets added to the top of the recent files list (see below). If
it was already in the list, it is moved to the top.

b) Open URL: Opens a remote file dialog (see section 2.6)

c) Save as (Ctrl+S): Offers a selection dialog to save a copy of a CUBE file. Opened
CUBE file stays loaded in cube.

d) Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file is
opened.

e) Open external: Opens a file for the external percentage value mode (see section
2.5.2.2).

f) Close external: Closes the current external file and removes all corresponding
data. Disabled if no external file is opened.

g) Settings: Offers saving, loading, and deletion of global settings. Global settings
don't depend on the loaded cube file and are saved in a system specific format.
These settings e.g. store the appearance of the application like the widget sizes,

9

2 Cube User Guide

color and precision settings, the order of panes, etc.

"Restore last state" depends on a loaded cube file. If it is activated, the state of
the cube file, e.g. selected and expanded items, is saved before the cube file is
closed and restored after loading.

h) Screenshot: The function offers you to save a screen snapshot in a PNG file. Un-
fortunately the outer frame of the main window is not saved, only the application
itself.

i) Quit (Ctrl+Q): Closes the application.

j) Recent files: The last 5 opened files are offered for re-opening, the top-most
being the most recently opened one. A full path to the file is visible in the status
bar if you move the mouse above one of the recent file items in the menu.

2. Display: The display menu offers the following functions:

a) Dimension order: As explained above, CUBE has three resizable panes. Initially
the metric pane is on the left, the call pane is in the middle, and the system
pane is on the right-hand side. However, sometimes you may be interested in
other orders, and that is what this menu item is about. It offers all possible pane
orderings. For example, assume you would like to see the metric and call values
for a certain thread. In this case, you could place the system pane on the left,
the metric pane in the middle, and the call pane on the right, as shown in Figure
2.3. Note that in panes to the left of the metric pane no meaningful valuescan be
presented, since they miss a reference metric; in this case values are specified
to be undefined, denoted by a “-'' (minus) sign.

Figure 2.3: Modified pane order via the menu ''Display => Dimension order''

b) Choose/Edit colormap: Allows for selection of color maps and changing of
color settings in a new dialog. In the configuration dialog, the Ok button applies
the settings to the display and closes the dialog, the Apply button applies the
settings to the display, and Cancel cancels all changes since the dialog was
opened (even if "Apply" was pressed in between) and closes the dialog.

The configuration dialog in Figure 2.4 shows the default color map for Cube.
Other colormaps may be added using plugins, see for example the Advanced
Colormap Plugin (2.7.4). At the top of the dialog you see a color legend with

10

2.5 Using the Display

Figure 2.4: Configuration dialog of the default colormap which opened via the menu ''Dis-
play => Edit colormap''

some vertical black lines, showing the position of the color scale start, the colors
cyan, green, and yellow, and the color scale end. These lines can be dragged
with the left mouse button, or their position can also be changed by typing in
some values between 0.0 (left end) and 1.0 (right end) below the color legend in
the corresponding spins.

The different coloring methods offer different functions to interpolate the colors
at positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a threshold
percentage value between 0.0 and 100.0, below which colors are lightened. The
nearer to the left end of the color scale, the stronger the lightening (with linear
increase).

With the spin at the bottom of the dialog you can define a threshold percentage
value between 0.0 and 100.0 , below which values should be colored white.

c) Set font size: Opens a dialog to set the font size. The size can also be changed
with Control+<mouse-wheel> or Control+<->/<+>

d) Customize style sheets Opens a dialog to define 4 to change e.g. the fonts and
sizes of GUI elements.

e) Configure value view: This menu item opens a dialog in which the icon and the
textual value representation of the tree items can be configured. Depending on
the data type of the selected metric, additional options and additional value view
plugins may be available. For metrics that consist of more than one value, e.g.
tau metrics (see figure 2.5), the user can select which value should be used for
the icon and which values for the following text.

11

2 Cube User Guide

Figure 2.5: Value view config dialog for tau metrics

f) Precision: Activating this menu item opens a dialog for precision settings (see
Figure 2.6). Besides Ok and Cancel, the dialog offers an Apply button, that
applies the current dialog settings to the display. Pressing Cancel undoes all
changes due to the dialog, even if you already pressed Apply previously, and
closes the dialog. Ok applies the settings and closes the dialog.

It consists of two parts: precision settings for the tree displays, and precision
settings for the selected value info widgets and the topology displays. For both
formats, three values can be defined:

i. Number of digits after the decimal point: As the name suggests, you
can specify the precision for the fraction part of the values. E.g., the number
1.234 is displayed as 1.2 if you set this precision to 1, as 1.234 if you set it
to 3, and as 1.2340 if you set it to 4.

ii. Exponent representation above 10x with x: Here you can define above
which threshold scientific notation should be used. E.g., the value 1000 is
displayed as 1000 if this value is larger then 3 and as 1e3 otherwise.

iii. Display zero values below 10−x with x: Due to inexact floating point
representation, it often happens that users wish to round down values very
near by zero to zero. Here you can define the threshold below which this
rounding should take place. E.g., the value 0.0001 is displayed as 0.0001 if
this value is larger than 3 and as zero otherwise.

iv. Use human readable units for bytes and occ: If enabled, units will be
displayed in a human readable format, e.g. MB or GB.

g) Trees: This menu offers options to change the contents and the appearance of
the items of all trees.

i. Configure Tree Item Marker In this dialog, you can change the appearance
of defined tree item markers. You may choose if the items should be marked
with a special background color or with an icon (see 2.7.3).

ii. Demangle Function Names (only call trees) If this option is enabled
(default), cube tries to demangle function names.

iii. Shorten Function Names (only call trees) This menu item opens a dialog
in which you can hide parts of long function names. You may hide argument

12

2.5 Using the Display

Figure 2.6: Display => Precision

lists and return values of C++ functions. You may also hide namespaces,
class and templates from C++ function names. For Fortran subroutines,
module names can be hidden.

iv. Append rank to system tree items If this option is enabled, the MPI rank
is appended to all system tree leafs. This is useful, if the MPI level is hidden
or if there is a large amount of threads.

v. Hide unvisited locations Hides locations in the system tree that do not
contain a region. These locations can be generated by OTF2 or CUDA and
don't provide the user with any information.

h) Optimize width: Under this menu item CUBE offers widget rescaling such that
the amount of information shown is maximized, i.e., CUBE optimally distributes
the available space between its components. You can chose if you would like to
stick to the current main window size, or if you allow to resize it.

i) Show synchronization toolbar The synchronization of several cube instances
is described in 2.8.4.

j) Show bookmark toolbar Shows a toolbar which allows you to save the current
state of a loaded cube file along with a name and a textual description. The state
implies e.g. the currenly selected items, the value mode of the trees, the active
tabs and the state of the plugins. These states are saved next to the opened cube
file in cubebasename.ini.

k) Enable presentation mode If the presentation mode is enable, a mouse icon
is shown next to the cursor

l) Enable QWebEngine QWebEngine is used for the HTML-rendering of the
documentation, if the module is available. On some systems, problems with the
graphics driver or OpenGL cause QWebEngine to display a blank window. For

13

2 Cube User Guide

that reason it's possible to disable QWebEngine (Display ⇒ QWebEngine) and to
show the documentation in a basic layout instead. This option is also saved as
setting and used for the next start of CubeGUI.

3. Plugins: The plugin menu allows the user to define which plugins are laoded. For
each loaded plugin, a submenu is added. The submenu contains a menu item to
enable or disable the plugin and the plugin may add additional menu items.

a) Initial activation settings: Opens a dialog to define which plugins should be
loaded.

b) Activate/deactivate plugins: Allows to activate or deactive a plugin for the
current session.

4. Help: The help menu provides help on usage and gives some information about
CUBE.

a) Getting started: Opens a dialog with some basic information on the usage of
CUBE.

b) Mouse and keyboard control: Lists mouse and keyboard controls as given in
Section 2.7.8.1.

c) What's this?: Here you can get more specific information on parts of the CUBE
GUI. If you activate this menu item, you switch to the “What's this?'' mode. If
you now click on a widget, an appropriate help text is shown. The mode is left
when help is given or when you press Esc.

Another way to ask the question is to move the focus to the relevant widget and
press Shift+F1.

d) About: Opens a dialog with release information.

e) Plugin info Shows information about the plugin version, a short description and
its location in the file system

f) Plugin documentation shows the plugin documentation in a browser window

g) Selected metric description: Opens a new window showing the description of
the currently selected metric, equivalent to Documentation in the metric-tree
context menu. Disabled if online documentation is unavailable.

h) Selected region description: Opens a new window showing the description
of the currently selected region, equivalent to Documentation in the call-tree
context menu. Disabled if online documentation is unavailable.

2.5.2.2 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree, where
it is possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below, the
severity values from the CUBE file are displayed. However, sometimes these values may be
hard to interpret, and in such cases other value modes can be applied. Basically, there are
three categories of additional value modes.

• The first category presents all severities in the tree as percentage of a reference

14

2.5 Using the Display

value. The reference value can be the absolute value of a selected or a root node
from the same tree or in one of the trees on the left-hand side. For example, in the
Own root percent value mode the severity values are presented as percentage of
the own root's (inclusive) severity value. This way you can see how the severities are
distributed within the tree. All the value modes (3 – 9) fall into this category.

All nodes of trees on the left-hand side of the metric-tree have undefined values.
(Basically, we could compute values for them, but it would sum up the severities
over all metrics, that have different meanings and usually even different units, and
thus those values would not have much expressiveness.) Since we cannot compute
percentage values based on undefined reference values, such value modes are not
supported. For example, if the call-tree is on the left-hand side, and the metric-tree is
in the middle, then the metric-tree does not offer the Call root percent mode.

• The second category is available for system-trees only, and shows the distribution
of the values within hierarchy levels. E.g., the Peer percent value mode displays
the severities as percentage of the maximal value on the same hierarchy depth. The
value modes (10 – 11) fall into this category.

• Finally, the External percent value mode relates the severity values to severities
from another external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be available:

1. Absolute (default): Available for all trees. The displayed values are the severity
value as read from the cube file, in units of measurement (e.g., seconds). Note that
these values can be negative, too, i.e., the expression “absolute'' in not used in its
mathematical sense here.

2. Absolute - peer percent color scheme:For the system-tree only. The absolute
values are shown, but the color scheme is the same as for "Peer percent", so that the
largest inclusive value between all entities on the current hierarchy depth is painted
with the rightmost value of the color bar below.

3. Own root percent:Available for all trees. The displayed node values are the percent-
age of their absolute values with respect to the absolute value of their root node in
collapsed state.

4. Metric root percent: Available for trees on the right-hand side of the metric-tree.
The displayed node values are the percentage of their absolute values with respect to
the absolute value of the collapsed metric root node. If there are several metric roots,
the root of the selected metric node is taken. Note, that multiple selection in the
metric-tree is possible within one root's subtree only, thus there is always a unique
metric root for this mode.

5. Metric selection percent: Available for trees on the right-hand side of the metric-
tree. The displayed node values are the percentage of their absolute values with
respect to the selected metric node's absolute value in its current collapsed/expanded
state. In case of multiple selection, the sum of the selected metrics' values for the
percentage computation is taken.

6. Call root percent: Available for trees on the right-hand side of the call-tree. Similar
to the metric root percent, but the call-tree root instead of the metric-tree root is
considered. In case of multiple selection with different call roots, the sum of those
root values is considered.

15

2 Cube User Guide

7. Call selection percent: Available for trees on the right-hand side of the call-tree.
Similar to the metric selection percent, percentage is computed with respect to the
selected call node's value in its current collapsed/expanded state. In case of multiple
selections, the sum of the selected call values is considered.

8. System root percent: Available for trees on the right-hand side of the system-tree.
Similar to the call root percent, the sum of the inclusive values of all roots of selected
system nodes are considered for percentage computation.

9. System selection percent:Available for trees on the right-hand side of the system-
tree. Similar to the call selection percent, percentage is computed with respect to the
selected system node(s) in its current collapsed/expanded state.

10. Peer percent:For the system-tree only. The peer percentage mode shows the percent-
age of the nodes' inclusive absolute values relative to the largest inclusive absolute
peer value, i.e., to the largest inclusive value between all entities on the current
hierarchy depth. For example, if there are 3 threads with inclusive absolute values
100, 120, and 200, then they have the peer percent values 50, 60, and 100.

11. Peer distribution:For the system-tree only. The peer distribution mode shows the
percentage of the system nodes' inclusive absolute values on the scale between
the minimum and the maximum of peer inclusive absolute values. For example, if
there are 3 threads with absolute values 100, 120 and 200, then they have the peer
distribution values 0, 20 and 100.

12. External percent: Available for all trees, if the metric tree is the left-most widget.
To facilitate the comparison of different experiments, users can choose the external
percentage mode to display percentages relative to another data set. The external
percentage mode is basically like the metric root percentage mode except that the
value equal to 100% is determined by another data set.

Note that in all modes, only the leaf nodes in the system hierarchy (i.e., processes or
threads) have associated severity values. All other hierarchy levels (i.e., machines, nodes
and eventually processes) are only used to structure the hierarchy. This means that their
severity is undefined—denoted by a “-'' (minus) sign—when they are expanded.

2.5.2.3 System resource subsets

By default, all system resources (typically threads) are included when determining boxplot
statistics. Other defined subsets can be chosen from the combobox below the boxplot,
such as “Visited'' threads which are only those threads that visited the currently selected
callpath. The current subset is retained until another is explicitly chosen or a new subset is
defined.

Additional subsets are defined from the system-tree with the Define subset context menu
using the currently selected threads via multiple selection (Ctrl+<left-mouse click>) or
with the Find Items context menu selection option.

2.5.2.4 Tree browsers

A tree browser displays different hierarchical data structures in form of trees. Currently
supported tree types are metric-trees, call-trees and their flat call profiles, and system-trees.

16

2.5 Using the Display

The structure of the displayed data is common in all trees: The indentation of the tree
nodes reflects the hierarchical structure. Expandable nodes, i.e., nodes with non-hidden
children, are equipped with a [+]/[-] sign ([+] for collapsed and [-] for expanded nodes).
Furthermore, all nodes have a color icon, a value, and a label.

The value of a node is computed, as explained earlier, basing on the current selections
in the trees on the left-hand side and on the current value mode. The precision of the
value display in trees can be modified, see the menu item Display ⇒ Precision in Section
2.5.2.1. The color icon reflects the position of the node's value between 0.0 and a maximal
value. These maximal value is the maximal value in the tree for the absolute value mode,
or 100.0 otherwise. See the menu item Display ⇒ Choose colormap in Section 2.5.2.1 and
the context menu item Min/max values in the context menu description below for color
settings.

A label in the metric-tree shows the metric's name. A label in the call-tree shows the last
callee of a particular call path. If you want to know the complete call path, you must read
all labels from the root down to the particular node you are interested in. After switching
to the flat profile view (see below), labels in the flat call profile denote methods or program
regions. A label in the system-tree shows the name of the system resource it represents,
such as a node name or a machine name. Processes and threads are usually identified by a
rank number, but it is possible to give them specific names when creating a CUBE file. The
thread level of single-threaded applications is hidden. Multiple root nodes are supported.

After opening a data set, the middle panel shows the call-tree of the program. However,
a user might wish to know which fraction of a metric can be attributed to a particular
region (e.g., method) regardless of from where it was called. In this case, you can switch
from the call-tree view (default) to the flat-profile view (Figure 2.7). In the flat-profile
view, the call-tree hierarchy is replaced with a source-code hierarchy consisting of two
levels: regions and their subroutines. Any subroutines are displayed as a single child node
labeled Subroutines. A subroutine node represents all regions directly called from the
region above. In this way, you are able to see which fraction of a metric is associated with
a region exclusively, that is, without its regions called from there.

When tasks are encountered while reading the Cube file, a third tab next to call-tree is
provided to display them separately. In general terms, tasks are pieces of code scheduled
and executed by a runtime asynchronously. Due to their asynchronous nature and their
ability to be suspended and continued at a potentially different position in the call-tree
handling them inside the call-tree itself may lead to inconsistent results. For OpenMP,
the call-tree therefore contains only stub nodes with visit and time metric values at those
execution points, while the executions and their task local call-trees will be displayed in a
separate tasks tab. Currently, only OpenMP tasks are generated by Score-P, however the
paradigm attribute of those task instances allows handling of tasks of different paradigms.

If tasks are involved, the values of the trees on the left (default: metric tree) depend on the
active call tab. The task-tree only contains the task related paths. The call-tree contains all
paths except for the task-local trees, which are replaced by stub nodes at their execution
points. The flat-tree on the other hand, still contains all execution paths. There may be
items of the flat-tree, that cannot be calculated for exclusive metrics. These items consist
of paths from the task tree and of paths from the call-tree. Their exact contributions cannot
be determined. These values are marked with a dash and a warning message is displayed
on the status line.

17

2 Cube User Guide

Tree displays are controlled by the left and right mouse buttons and some keyboard keys.
The left mouse button is used to select or expand/collapse a node: You can expand/collapse
a node by left-clicking on the attached [+]/[-] sign, and select it by left-clicking elsewhere
in the node's line. To select multiple items, Ctrl+<left-mouse click> can be used. Selection
without the Ctrl key deselects all previously selected nodes and selects the clicked node.
In single-selection mode you can also use the up/down arrows to move the selection one
node up/down. The right mouse button is used to pop up a context menu with node-specific
information, such as online documentation (see the description of the context menu below).

Figure 2.7: CUBE flat profile

Each tree has its own context menu which can be activated by a right mouse click within
the tree's window. If you right-click on one of the tree's nodes, this node gets framed, and
serves as a reference node for some of the menu items. If you click outside of tree items,
there is no refernce node, and some menu items are disabled.

The context menu consists, depending on the type of the tree, of some of the following
items. If you move the mouse over a context menu item, the status bar displays some
explanation of the functionality of that item.

1. Collapse all: Collapses all nodes in the tree.

2. Collapse subtree: Enabled only if there is a reference node. It collapses all nodes in
the subtree of the reference node (including the reference node).

3. Expand all: Expands all nodes in the tree.

4. Expand subtree: Enabled only if there is a reference node. Expands all nodes in the
subtree of the reference node (including the reference node).

5. Expand largest: Enabled only if there is a reference node. Starting at the reference
node, expands its child with the largest inclusive value, and continues recursively
with that child until it finds a leaf.

6. Expand marked: Shows all marked nodes by expanding their parents (see 2.7.3).

7. Expand current level: For system-trees only. Shows all nodes that are on the same
hierarchy level as the chosen one by expanding their parents.

8. Dynamic hiding: Not available for metric-trees. This menu item activates dynamic

18

2.5 Using the Display

hiding. All currently hidden nodes get shown. You are asked to define a percentage
threshold between 0.0 and 100.0. All nodes whose color position on the color scale (in
percent) is below this threshold get hidden. As default value, the color percentage
position of the reference node is suggested, if you right-clicked over a node. If not, the
default value is the last threshold. The hiding is called dynamic, because upon value
changes (caused for example by changing the node selection) hiding is re-computed
for the new values. In other words, value changes may change the visibility of the
nodes.

a) Redefine threshold: This menu item is enabled if dynamic hiding is already
activated. This function allows to re-define the dynamic hiding threshold as
described above.

During dynamic hiding, for expanded nodes with some hidden children and for nodes
with all of its children hidden, their displayed (exclusive) value includes the hidden
children's inclusive value. The percentage of the hidden children is shown in brackets
next to this aggregate value.

9. Static hiding: Not available for metric-trees. This menu item activates static hiding.
All currently hidden nodes stay hidden. Additionally, you can hide and show nodes
using the now enabled sub-items:

a) Static hiding of minor values: Enabled only in the static hiding mode. As
described under dynamic hiding, you are asked for a hiding threshold. All nodes
whose current color position on the color scale is below this percentage threshold
get hidden. However, in contrast to dynamic hiding, these hidings are static:
Even if after some value changes the color position of a hidden node gets above
the threshold, the node stays hidden.

b) Hide this: Enabled only in the static hiding mode if there is a reference node.
Hides the reference node.

c) Show children of this: Enabled only in the static hiding mode if there is a
reference node. Shows all hidden children of the reference node, if any.

Like for dynamic hiding, for expanded nodes with some hidden children and for nodes
with all of its children hidden, their displayed (exclusive) value includes the hidden
children's inclusive value. The percentage of the hidden children is shown in brackets
next to this aggregate value.

10. No hiding: Not available for metric-trees. This menu item deactivates any hiding,
and shows all hidden nodes.

11. Find items: For all trees. Opens a text input widget below the corresponding tree to
enter a regular expression to search for. If the user called the context menu over an
item, the default text is the name of the reference node. All non-hidden nodes whose
names contain the given expression are marked with a yellow background, and all
collapsed nodes whose subtree contains such a non-hidden node by a light yellow
background.

The button expand all expands all found items.

The button select all selects all found items. The selected items may still be collapsed.

The arrow buttons select the next or the previous found item. The shortcuts for these

19

2 Cube User Guide

actions are F3 and Shift+F3.

12. Clear found items: For all trees. Removes the background markings of the preceding
"find items" action.

13. Define subset: Only for system-tree. Uses the currently selected system resources
(e.g., from a preceding Find items) to create a new subset of all system resources
(typically threads) with the provided name. This is added to the combobox at the
bottom of the system-tree and boxplot statistics panes, and becomes the currently
active subset for which statistics are calculated.

14. Info/Documentation: For metric and call-trees Shows combined information about
the selected metric an call-tree items in a new tab. For the selected metric, informa-
tion about display, unique name, data type, unit of measurements and kind of metric
is shown. If the metric is derived, the CubePL expression is shown.

For the selected call path, information about call path id (to use it with command line
tools like cube_dump), region begining line, region ending line, region module, url
with the online help and finally description of the region is shown.

If online documentation for the reference node is available, it is shown in a html
widget below the informataion panels. For example, metrics might point to an online
documentation explaining their semantics, or regions representing library functions
might point to the corresponding library documentation.

QWebEngine is used for the HTML-rendering of the documentation, if the module
is available. On some systems, problems with the graphics driver or OpenGL cause
QWebEngine to display a blank window. For that reason it's possible to disable
QWebEngine (Display ⇒ QWebEngine) and to show the documentation in a basic
layout instead. This option is also saved as setting and used for the next start of
CubeGUI.

Disabled, if not clicked over metric or call path item.

Figure 2.8: The item main_loop with 1000 iteration is marked as a loop. The aggregated
view on the right is the result of selecting ''Hide iterations''.

15. Hide iterations: Only visible for calltree items that are recognized or manually
defined as loop (see "Set as loop" below). By activating, all children of the loop are
hidden. The grandchildren are shown and its values for the different iterations are
aggregated (see Figure2.8).

20

2.5 Using the Display

16. Call site: For call-trees only. Enabled only if there is a reference node. Offers
information about the caller of the reference node.

a) Location: Displays information about the module and position within the module
(line numbers) of the caller of the reference node.

b) Set as loop: Marks the selected tree item as loop. All subitems are treated as
iterations. An additional context menu item "Hide iterations" appears.

17. Called region: For call-trees only. Enabled only if there is a reference node. Offers
information about the reference node.

a) Info: Gives some short information about the reference node.

b) Documentation: Shows some (usually more extensive) online description for
the reference node. Disabled if no online documentation is available.

c) Location: Displays information about the module and position within the module
(line numbers) where the callee method of the reference node is defined.

18. Min/max values: Not for metric-trees. Here you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes, i.e.,
the values corresponding to the left and right end of the color legend. If you activate
user-defined values for the color extremes, you are asked to define two values that
should correspond to the minimal and to the maximal colors. All values outside of this
interval will get the color gray. Note that canceling any of the input windows causes
no changes in the coloring method. If user-defined min/max values are activated,
the selected value information widget (see Section 2.5.2.5) displays a (u)'' foruser-
defined'' behind the minimal and maximal color values.

19. Statistics: Only available if a statistics file for the current CUBE file is provided.
Displays statistical information about the instances of the selected metric in the form
of a box plot. For an in-depth explanation of this feature see subsection 2.8.2.

20. Max severity in trace browser: Only available for metric and call-trees and only
if a statistics file providing information about the most severe instance(s) of the
selected metric is present. If CUBE is already connected to a trace browser (via File
⇒ Connect to trace browser), the timeline display of the trace browser is zoomed to
the position of the occurrence of the most severe pattern so that the cause for the
pattern can be examined further. For a more detailed explanation of this feature see
subsection 2.8.3.

21. Cut call tree/Cut selected call tree items This context menu is enabled, if the right
mouse button is pressed on a call tree item. If the mouse button is pressed and the
item below the mouse pointer is part of a group of selected items, the action affects
all selected items. Otherwise, only the item below the mouse item will be modified.
The menu offers different modification possibilities:

a) Set as root: Removes all call paths above the selected items and sets selected
call paths as a root nodes.

b) Prune element: Removes the selected items and all their children. Their
inclusive value will be added then to the exclusive value of their parents.

c) Set as leaf: Removes all children of the elements and shows the inclusive values.

d) Undo Undo last operation.

21

2 Cube User Guide

22. Sort by inclusive/exclusive value (descending): Sorts the nodes by their current
values in descending order. The items will be automatically sorted, if the values
change. If "Apply now" is selected, the values are only sorted once.

23. Sort by name (ascending): Sorts the nodes alphabetically by name in ascending
order.

24. Sort by name and trailing number (ascending): For system tree only. Sorts the
nodes alphabetically by name and the trailing rank in ascending order.

25. Sort by order of definition: Restores the original order.

2.5.2.5 Selected value info

Below each pane there is a selected value information widget. If no data is loaded, the
widget is empty. Otherwise, the widget displays more extensive and precise information
about the selected values in the tree above. This information widget and the topologies
may have different precision settings than the trees, such that there is the possibility to
display more precise information here than in the trees (see Section 2.5.2.1, menu Display
⇒ Precision).

The widget has a 3-line display. The first line displays at most 4 numbers. The left-most
number shows the smallest value in the tree (or 0.0 in any percentage value mode for trees,
or the user-defined minimal value for coloring if activated), and the right-most number
shows the largest value in the tree (or 100.0 in any percentage value mode in trees, or
the user-defined maximal value for coloring if activated). Between these two numbers the
current value of the selected node is displayed, if it is defined. Additionally, in the absolute
value mode it is followed by the percentage of the selected value on the scale between
the minimal and maximal values, shown in brackets. Note that the values of expanded
non-leaf system nodes and of nodes of trees on the left-hand side of the metric-tree are not
defined. If the value mode is not the absolute value mode, then in the second line similar
information is displayed for the absolute values in a light gray color.

In case of multiple selection, the information refers to the sum of all selected values. In
case of multiple selection in system trees in the peer distribution and in the peer percent
modes, this sum does not state any valuable information, but is displayed for consistency
reasons.

If the widget width is not large enough to display all numbers in the given precision, then a
part of the number displays get cut down and a “ . . . '' indicates that not all digits could be
displayed.

Below these numbers, in the third line, a small color bar shows the position of the color of
the selected node in the color legend. In case of undefined values, the legend is filled with
a gray grid.

2.5.2.6 Color legend

By default, the colors are taken from a spectrum ranging from blue over cyan, green, and
yellow to red, representing the whole range of possible values. You can change the color
settings in the menu,Display ⇒ Choose colormap, see Section 2.5.2.1. Exact zero values
are represented by the color white (in topologies you can decide whether you would like to

22

2.6 Client-Server

use white or the minimal color, see Section 2.7.13, menu Topology).

2.5.2.7 Status Bar

The status bar displays some status information, like state of execution for longer proce-
dures, hints for menus the mouse pointing at etc.

The status bar shows the most recent log message. By clicking on it, the complete log
becomes visible.

2.6 Client-Server

2.6.1 Cube Server

cube_server is part of the cubelib installation.

cube_server [-p N] Bind socket on port N (default port: 3300)

Many hosts don't allow ports to be accessed from the outside. You may use SSH tunneling
(also referred to as SSH port forwarding) to route the local network traffic throught SSH to
the remote host.
In the following example, cube_server is started with the default port 3300 on the remote
server server.example.com. The traffic, which is sent to localhost:3000, will be forwarded
to server.example.com on the same port.

[client]$ ssh -L 3300:server.example.com:3300 server.example.com
[server.example.com]$ cube_server
Cube Server: CubeLib-4.6.0 (external) [POSIX]
cube_server[5247] Waiting for connections on port 3300.

2.6.2 Cube Client

CubeGUI can also be used to open a cube file on a remote host which runs cube_server (see
Figure 2.9). After selecting "Open Url..." a remote file dialog appears (see Figure 2.10) .
The first line contains the URL to the remote cube server 2.6.1. After having changed this

line, the reload-Button on the right has to be pushed to reconnect to the server.

2.7 Cube GUI Plugins

The features of cube can be extended using plugins. There is a set of predefined plugins
which are described in the following sections. Before a cube file is loaded, the Plugin
menu only contains the menu items "Configure plugin search path" and "Initial activation
settings".

23

2 Cube User Guide

Figure 2.9: File menu

By Selecting the second item, a dialog is created which lists all available plugins (see
Figure 2.12).

You may enable or disable all plugins, or select individual plugins that will be activated or
deactivated. After loading a cube file, all suitable plugins are activated. Each plugin may
add a submenu (see Figure 2.11) to the Plugins menu.

Cube searches for plugins in the directory "cube-plugins/" below the installation directory.
This is the place where the predefined plugins are installed. If the environment variable
CUBE_PLUGIN_DIR contains a colon or semicolon separated list of paths, these paths are
prepended to the default search path.

Selecting "Configure plugin search path" of the plugin menu shows a dialog (see Figure
2.13), which allows to prepend additional search paths. The directory icon on the right
opens a file browser whose selection is added to the input line on top and which is added
to the path with the "add" button. If the installation contains a directory for experimental
plugins in "lib/cube-experimental-plugins", an option will appear to easily add this path.

2.7.1 Detach Plugin Tabs

By clicking with the right mouse button on a plugin tab, the contents of the tab are moved
to a separate window (see Figure 2.14). If the window is closed, the contents are moved to
the tab widget again.

2.7.2 Context free plugins

Context free plugins are available via menu "File -> Start" as long no Cube is loaded in
Cube GUI. Is one Cube file is loaded, one should close it using "File -> Close".

24

2.7 Cube GUI Plugins

Figure 2.10: Remote file dialog

2.7.2.1 Plugin "Diff"

This plugin allows to perform algebra operation "difference" on two selected cubes and
displays result in Gui.

2.7.2.2 Plugin "Mean"

This plugin allows to perform algebra operation "mean" on selected cubes and displays
result in Gui.

2.7.2.3 Plugin "Merge"

This plugin allows to perform algebra operation "merge" on selected cubes and displays
result in Gui.

2.7.2.4 Plugin "Scaling"

This plugin allows user to do a simple scaling analysis. One selects a directory with the
series of measurements. "Scaling" plugin creates a scaling profile, where metric and
call-trees are identical (merged) with the input measurements, and the system-tree is an
artificial scaling tree. Every entry in it corresponds to a singe measurement. In couple with
the "Jenga Fett" plugin (third party, www.scalasca.org) result is displayed as a series of
stacked bars and allows the user to analysis the scaling behavior of the application.

25

2 Cube User Guide

Figure 2.11: plugin menu

Figure 2.12: plugin settings dialog

2.7.2.5 Plugin "Tau2Cube"

This plugin allows user to open TAU Profile Directory using Cube Gui and explore it in
casual way.

2.7.2.6 Plugin "Measurement"

This plugin allows user to perform a Score-P measurement of own project and explore
result in the CubeGUI. See 6

2.7.3 Tree Item Marker

A plugin may define one or more tree item marker to tag items of interest.

Tree items are marked in different ways:

• Items with a colored background show that a plugin has set a marker

26

2.7 Cube GUI Plugins

Figure 2.13: plugin search path dialog

Figure 2.14: Boxplot plugin tab is detached

• Items with a colored frame indicate that a collapsed child has been marked.

• Items with a black frame indicate that there are several collapsed children with
different marker.

• Items with a dotted frame show a dependency. A marked item of the right neighbor
tree depends on

• Items can be grayed out. These items are either marked as unimportant by a plugin,
or the user has choosen to gray out all items, for which no marker is set. this item.
The dependent item is only marked, if the dotted item is selected.

The figure 2.16 shows two plugins which define marker. The Statistic Plugin marks all
items with information about the most severe instances with a blue background and an
icon. The Launch Plugin uses green marker and does not define an icon. Both of them use
marker for items of the system-tree and for items of the call-tree that depend on items of
the system-tree.

The Tree Item Marker dialog (see figure 2.11) allows the user to change the color of each
marker, to disable the drawing of colors or icons and to emphasize the marked items by
graying out the other items.

27

2 Cube User Guide

Figure 2.15: Plugin Diff

Figure 2.16: Tree item marker

2.7.4 Advanced Color Map Plugin

Advanced Color Map Plugin provides additional color maps. The configuration dialogs are
presented in Figure 2.17. For every color map, the plot allows for change of data accepted
by color map and one can do that using left and right marker, by dragging the marker or
providing exact position through a double click near the marker value (new dialog will
appear). The default color for values out of range is grey.
One can change colors of scheme (for some color maps) and color for values out of range.
Double mouse click on proper part of the plot opens a dialog with selection of RGB color.
Additionally, one can adjust the plot marker or reset to default values through the context
menu.

Currently the plugin adds four different sets of color maps:

1. Sequential: Scheme is defined by starting and ending color with linear or exponential
interpolation between them. Predefined schemes provide simple interpolation from
one color to pure white. Middle marker allows for subtle change of interpolation.

2. Divergent: This scheme is defined by an interpolation from starting to ending color,
but with a critical value between them, depicted with the pure white. The position of
critical point can be set with the middle marker.

28

2.7 Cube GUI Plugins

Figure 2.17: The examples of configuration for Advanced Color Maps. Upper row, starting
from left: sequential, divergent; lower row, starting from left: cubehelix,
improved rainbow.

3. Cubehelix: Scheme designed primarily for display of astronomical intensity images.
The coloring is based on distribution from black to white, with R, G and B helixes
giving additional deviations. Cubehelix is defined by four parameters:
Start colour - starting value for color, floating-point number between 0.0 and 3.0. R =
1, G = 2, B = 0
Rotations - floating-point number of R -> G -> B rotations from the start to the end.
Negative value corresponds to negative direction of rotation.
Hue - non-negative value which controls saturation of the scheme, with pure greyscale
for hue equal to 0.
Gamma factor - non-negative value which configures intensity of colours. Values
below one emphasizes low intensity values and creates brighter color scheme. Values
above one emphasizes high intensity values and generates darker color map.
Reference: Green, D. A., 2011, ‘A colour scheme for the display of astronomical
intensity images', Bulletin of the Astronomical Society of India, 39, 289.

4. Improved rainbow colormap: Set of color maps based on original jet (rainbow)
scheme, but with different lightness distribution. The goal behind these schemes is
to provide map with more balanced perception, which is poor for original jet, mainly
because of sharp changes in lightness. These maps doesn't provide any possibility for
configuration.
Reference: Perceptually improved colormaps, MATLAB Central

2.7.5 Metric Editor Plugin

The metric editor plugin allows to create derived metrics as root or child metrics. To
create or edit such a metric, use the right mouse button to show the context menu of
the metric-tree. Then select the menu item "Edit metric->Create derived metric". If the
context menu is called on a tree item, the new metric may also be inserted as a child".

29

2 Cube User Guide

Figure 2.18: Create derived metric

For detailed documentation of CubePL please see [?].

Some details about the fields in the dialog:

1. Select metric from collection: Provides a list of predefined derived metric, which
might be helpful for the analysis. A new metric may be added to the collection with
the plus button, existing user defined metrics may be updated that way.

2. Derived metric type: Selects the type of the derived metrics. Available are :
Postderived metric, Prederived exclusive metric and Prederived inclusive
metric.

3. Display name: Sets the display name of the metric in the metric-tree.

4. Unique name: Sets the unique name of the metric. There is no check done if another
metric is present with the same unique name.

5. Data type : For derived metrics it is preselected and is always DOUBLE.

6. Unit of measurement: Selects a unit of measurement. It is a user defined string.

7. URL: Selects a URL with the documentation about this metric.

8. Description: Describes a metric.

9. Calculation: Field where one enters the CubePL expression for the derived metric.
Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

10. Calculation Init: Field where one enters the initialisation CubePL expression for

30

2.7 Cube GUI Plugins

the derived metric,which is executed only once after metric creation.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

11. Aggregaton "+":Prederived metrics can specify an expression for the operator "+"
in the aggregation formula. In this field one can redefine it.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

12. Calculation "-": Prederived inclusive metric can specify an expression for the
operator "-" in the aggregation formula. In this field one can redefine it.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

13. Create metric - This button is only enabled, if all required fields are set, the metric
identifier is unique and the syntax is valid. First, the new metric is checked for
undefined references. Other metrics, which are referenced by the new metric and
which are part of the collection are inserted automatically. These automatically
inserted metrics are hidden. If all references are resolved, the dialog is closed and a
new metric with the given values is created.

14. Cancel - closes dialog without creating any metric.

15. Share this metric with SCALASCA group - Offers you to sent the metric definition
via email to the SCALASCA group, so it might be included into the library of derived
metrics in the future releases. Enabled only if definition of metric is valid.

To simplify the creation of a derived metric a little bit there is a way to fill the fields of this
dialog automatically.

If one prepares a file with the following syntax one can select it and open "drop" on dialog
via drag'n'drop, or copy its content into clipboard and paste in the dialog.

Example of a syntax of this file:

metric type: postderived
display name: Average execution time
unique name: kenobi
uom:sec
url: https://scalasca.org/documentation.html#kenobi
description:Calculates an average execution time
#
Here is the Kenobi metric
#
cubepl expression: metric::time(i)/metric::visits(e)

cubepl init expression:

cubepl plus expression: arg1 + arg2

cubepl minus expression: arg1 - arg2

metric type can have values: postderived, prederived_exclusive or prederived_inclusive.

1. Remove metric Removes metric from the metric-tree, if it is not used by other
metrics.

2. Edit metric It offers a dialog to edit expressions (standard, initialisation, aggregation)
of a derived metric. Enabled if selected metric is a derived metric. Window for editing

31

2 Cube User Guide

is same like in "Create derived metric" case.

2.7.6 Metric Identification Plugin

Cube displays relatively many metrics in its "Metric" pane. These metrics have different
origin or purpose. They can be generated by Score-P, Scalasca, Cube remapper or be
hardware counters. On order to support user to identify which metric origins from which
tool, serves which purpose, Cube provides "Metric Identification Plugin" (see Figure 2.19)

Figure 2.19: Metric identification

Tooltip displays help to every used environment variable with its possible values.

2.7.7 Score-P Configuration Plugin

This plugin (see Figure 2.20) presents the file "scorep.cfg", if found, in tabullar way.
Tooltip displays help to every used environment variable with its possible values.

2.7.8 Source Code Viewer

The Source code viewer plugin (see figure 2.21) displays the source code of the selected
call-tree item. The file is opened in read-only mode per default. If you wish to edit the
text, please uncheck the Read only box in the plugin menu. The menu item "Set external
editor" allows to open the source file with an external editor.

If CUBE doesn't find the file at its original location, a button to open a file dialog is displayed.
The new location of the source files is saved in the global settings.

The context menu (right mouse button) shows following options:

1. Copy copies the selection to the clipboard

2. Select All selects the whole source file

32

2.7 Cube GUI Plugins

Figure 2.20: Score-P Configuration

Figure 2.21: Source code viewer plugin

3. Show call site/function definition if call site information is available, this item
allows to switch between the call site and the function definition

4. Find adds an additional widget at the bottom ot the viewer to search inside the source
code

5. Open in external editor opens an external editor, after it is configured

6. Reset user defined path allows to select another path for the source code look-up
(removes previous selection)

General options can be set in the plugin menu (Plugins->SourceCodeViewer).

1. Set font Change the default viewer font

2. Read only The default viewer mode is read only. You can enable editing here.

3. Set external editor This options allows to select one of the predefined external
editors or define a new one.

33

2 Cube User Guide

2.7.8.1 Source Code Viewer Keyboard control

Control in read only mode:

34

2.7 Cube GUI Plugins

Up Arrow Move one line up
Down Arrow Move one line down
Left Arrow Scroll one character to the left (if

horizontally scrollable)
Right Arrow Scroll one character to the right (if

horizontally scrollable)
Page Up Move one (viewport) page up
PageDown Move one (viewport) page down
Home Move to the beginning of the text
End Move to the end of the text
< scroll mouse-wheel > Scroll the page vertically
Alt+< scroll mouse-wheel > Scroll the page horizontally (if horizontally

scrollable)
Ctrl+F Find text
Ctrl+< scroll mouse-wheel > Zoom the text
Ctrl+A Select all text

Additionally for the read and write mode:

Left Arrow Move one character to the left
Right Arrow Move one character to the right
Backspace Delete the character to the left of the

cursor
Delete Delete the character to the right of the

cursor
Ctrl+C Copy the selected text to the clipboard
Ctrl+Insert Copy the selected text to the clipboard
Ctrl+K Delete to the end of the line
Ctrl+V Paste the clipboard text into text edit
Shift+Insert Paste the clipboard text into text edit
Ctrl+X Delete the selected text and copy it to the

clipboard
Shift+Delete Delete the selected text and copy it to the

clipboard
Ctrl+Z Undo the last operation
Ctrl+Y Redo the last operation
Ctrl+Left arrow Move the cursor one word to the left
Ctrl+Right arrow Move the cursor one word to the right
Ctrl+Home Move the cursor to the beginning of the

text
Ctrl+End Move the cursor to the end of the text
Hold Shift + some movement (e.g., Right
arrow)

Select region

2.7.9 System Barplot Plugin

BARPLOT plugin is a CUBE plugin that plots vertical bar graph for the CUBE file which
has iterations. Horizontal axis shows different iterations being compared and on vertical
axis, several operations can be used to represent the value. The User can apply different
metrics and call paths on the bar graph.

35

2 Cube User Guide

2.7.9.1 Basic Principles

As a start point, it should be mentioned that BARPLOT works only on a CUBE file that has
iterations. For those files which have not, user would face the warning on the terminal :
"No iterations for Barplot" and the plugin will not be shown.

By loading the plugin, on system dimension, the corresponding tab, Barplot, will be added.
In the Barplot tab, the user can select different operations and assign desired color to them.
Figure 2.22 displays a view of it.

Figure 2.22: BARPLOT display window

User can select different metrics such as Visits and Time, by clicking on them in metric
dimension. In addition, it is possible to get a BARPLOT for different call paths of iterations,
via clicking on them. However, for call paths that are not located in iterations, like input_in
in figure 2.23, no bar graph is displayed and user face the message "No data to display"
on the window.

Figure 2.23: No data to display

Furthermore, the values on BARPLOT, can be evaluated in Inclusive and Exclusive manner.
Therefore, user can easily collapse the tree on call path and click on the desired path to
get the exclusive value of it.

36

2.7 Cube GUI Plugins

Additionally, the exact calculated values can be seen by clicking left button of mouse on
the desired position on the graph, a tooltip would display a value corresponding to the
iteration.

In a situation that user needs to store the graph, it is just needed to do right click on a
graph, and select "Save as image", then the Save dialog will be opened to specifying the
path and name of the PNG file.

2.7.9.2 Toolbar

On the top of the Barplot space, there is a toolbar that allows user to specify the kind of an
operation and its color(Figure 2.24).

Figure 2.24: BARPLOT toolbar

By operation item, the user can select different operations, Minimum, Maximum, Average,
Median, 1st Quartile and 3rd Quartile or the combination of Maximum, Minimum and
Average. This provides the situation for the user to have different values for comparing
at one time. These operations are done on all threads in each iterations. For instance, by
Minimum operation, the minimum value among the existing threads for each iteration, is
calculated and plotted. They are kind of statistical measurements.

Color item offers a color for an operation, however for each operation, a default color is
assigned automatically. By changing the operation, corresponding color will be shown on
color combo box. In a situation that different bar graphs are overlaid on each other, each
graph will be shown by different color in order to distinguish various graphs.

In addition to above items, two buttons are also designed to manage the order of the bar
graphs.

Keep on Stack: It is possible that user intents to compare different graphs by laying them
on each other. For this matter, a push-button keep on stack is defined. Generally, by
clicking on each call path or metric, a responding graph is replaced the previous one in the
stack. In a situation, that the user intends to compare the next graph by the existing one,
at one time, it is needed to click on the button keep on the stack, then the next graph will
be added over the previous one, or in another words, it is overlaid on the last graph. If its
values are less than the previous graph, user can see two graphs by different colors that
help him/her in comparing, and in a situation that new values are greater than previous
one, the new one will cover the previous with fresh color. Therefore, for keeping the top
row of the stack, the user should click on the keep the stack button, otherwise the coming
values will replace the last one.

Clean Stack: By clicking this button, all displayed graphs, are erased and the stack will be
empty.

37

2 Cube User Guide

2.7.9.3 Menu Bar

Plugin menu offers the general function to enable or disable a plugin, and specific functions
for each plugin. Barplot plugin provides the following functions in two areas, Measurement
Customization and Threads Ruler Customization(Figure 2.25).

Figure 2.25: BARPLOT menu

Ruler Customization: User can modify the number of major and minor ticks of the ruler
on vertical axis. For adjusting the major vertical ticks, user can set the drawing intervals or
the number of ticks. By specifying the number of major ticks, the length of the vertical axis
will be divided to the specified number and major ticks are drawn by length longer than
minor ticks. Then in each divided length, if there is enough space, the specified number
of minor ticks will be displayed. It is possible that the user set major ticks by interval.
In order to do that, select the major ticks by interval option, and set the interval value.
Therefore, after each interval, one major tick will be drawn.

Top Notch Value: The value of the top notch on a vertical axis can be altered by user as
well as automatically. Therefore, due to scale issue, it can affect on the drawing of the
graph.

Button Notch Value: The value of the button notch on a vertical axis can be altered by
user as well as automatically. Therefore, due to scale issue,it can affect on the drawing of
the graph.

Iterations Ruler Customization: User can modify the number of major and minor ticks
of the ruler on horizontal axis. For adjusting the major horizontal ticks, user can set the

38

2.7 Cube GUI Plugins

drawing intervals or the number of ticks. By specifying the number of major ticks, the
width of the horizontal axis will be divided to the specified number and major ticks are
drawn by length longer than minor ticks. Then in each divided length, if there is enough
space, the specified number of minor ticks will be displayed. It is possible that the user set
major ticks by interval of iterations. In order to do that, select the major ticks by interval
option, and set the interval. Therefore, after each specified number of iterations, one major
tick will be drawn.

2.7.10 System Heatmap Plugin

HEATMAP plugin is a CUBE plugin that represents the value of the thread in each iteration,
as colors. The User can apply different metrics and call paths on heatmap graph.

2.7.10.1 Basic Principles

As a start point, it should be mentioned that HEATMAP works only on CUBE file that has
iterations. For those files which have not, user would face the warning on the terminal :
"No iterations for Heatmap" and the plugin will not be shown.

By loading the plugin, on system dimension, the corresponding tab, Heatmap, will be added.
Figure 2.26 displays a view of it.

Figure 2.26: HEATMAP display window

User can select different metrics such as Visits and Time, by clicking on them in metric
dimension. In addition, it is possible to get a HEATMAP for different call paths of iterations,
via clicking on them. However, for call paths that are not located in iterations, like
input_in figure 2.27, no heatmap graph is displayed and user face the message "No data
to display" on a window.

Furthermore, the values on HEATMAP, can be evaluated in Inclusive and Exclusive manner.
Therefore, user can easily collapse the tree on call path and click on the desired path to
get the exclusive value of it.

Additionally, the exact calculated values can be seen by clicking left button of mouse on

39

2 Cube User Guide

Figure 2.27: No data to display

the desired position on the graph, a tooltip would display a value corresponding to the
iteration.

In a situation that user needs to store the graph, it is just needed to do right click on a
graph, and select "Save as image", then the Save dialog will be opened to specifying the
path and name of the PNG file.

2.7.10.2 Menu Heatmap

Plugin menu offers the general function to enable or disable a plugin, and specific functions
for each plugin. Heatmap plugin provides the following functions in two areas, horizontal
tick and vertical ticks(Figure 2.28).

Horizontal ticks: For adjusting the major horizontal ticks, user can set the drawing
intervals or the number of ticks. By specifying the number of major ticks, the width of the
horizontal axis will be divided to the specified number and major ticks are drawn by length
longer than minor ticks. Then in each divided length, if there is enough space, the specified
number of minor ticks will be displayed.

Also, it is possible that the user set major ticks by interval of iterations. In order to do
that, select the major ticks by interval option, and set the interval. Therefore, after each
specified number of iterations, one major tick will be drawn.

Vertical ticks: For adjusting the major vertical ticks, user can set the drawing intervals or
the number of ticks. By specifying the number of major ticks, the length of the vertical axis
will be divided to the specified number and major ticks are drawn by length longer than
minor ticks. Then in each divided length, if there is enough space, the specified number of
minor ticks will be displayed.

Also, it is possible that the user set major ticks by interval of threads. In order to do
that, select the major ticks by interval option, and set the interval. Therefore, after each
specified number of threads, one major tick will be drawn.

40

2.7 Cube GUI Plugins

Figure 2.28: 'HEATMAP menu'

2.7.11 System Statistics Plugin

This plugin adds a statistics display tab next to the system-tree tab. It shows the value
distribution either in a box plot or in a violin plot.

The box plot shows a box-and-whisker distribution of metric severity values for the currently
active subset of system resources (typically threads). The active subset is changed via the
combobox menu at the bottom of the pane, and the y-axis scale is adjusted via the display
mode combobox at the top of the pane.

The vertical whisker ranges from the smallest value (minimum) and to the largest value
(maximum), while the bottom and top of the box mark the lower quartile (Q1) and upper
quartile (Q3). Within the box, the bold horizontal line represents the median (Q2) and the
dashed line the mean value.

The violin plot is an alternative method of plotting statistical data, which additionally shows
the distribution of the data. It is a box plot with a rotated kernel density plot on each side.
The violin plot shows a thick black line for the median of the data, a dotted line for the
mean, and red lines for quartiles.

To see the statistics as numeric values in a separate window, use <left-mouse click> inside
the chart or use <right-mouse click> to show them in a tooltip. With <left-mouse drag>,
an area is selected and the number of elements within this area is shown.

41

2 Cube User Guide

Figure 2.29: Statistical data shown in a box plot on the left side and violin plot on the right
side

2.7.12 System Sunburst Plugin

This plugin adds a sunburst chart display tab to the system pane. The sunburst chart uses
a radial tree to visualize the system-tree in a more compact form than the system-tree.

The sunburst chart and the system-tree are coupled, allowing the user to expand and
collapse tree nodes in either widget with the changed state showing in the other widget.
The arcs of the sunburst chart can be expanded and collapsed by <left-mouse click> on
the outer edge of the arc. The edge is highlighted as shown in Figure 2.31 when hovering
over it with the mouse cursor.

When expanded, the accumulated width of the child arcs is bounded by the width of their
parent arc. To adjust the width of an arc, the user can expand its area by using Ctrl+<left-
mouse drag> while clicking close to the side edge of the respective arc, as shown in Figure
2.32. The width of sibling arcs is adjusted automatically.

The standard interaction, next to expanding and collapsing arcs, is to rotate the sunburst
chart, which is done via simple <left-mouse drag>. The user can zoom into and out of parts
of the sunburst chart using the mouse wheel. The zoom behavior can be customized using
the context menu. Furthermore, the user can move the visible canvas width Shift+<left-
mouse drag>.

The user experience can be customized through flags set in the context menu via <right-

42

2.7 Cube GUI Plugins

Figure 2.30: Expanded sunburst chart

Figure 2.31: Arc edge highlighted when hovering over it

mouse click>. Furthermore, the context menu allows to reset specific or all interactions
(e.g., rotation, arc width) with the chart to their default value.

The following table lists all available mouse interactions:

<left-mouse click> On arc:Select arc
On arc edge:Expand/collapse arc

<right-mouse click> Context menu
<left-mouse drag> Rotate chart
Ctrl+<left-mouse drag> Change arc width
Shift+<left-mouse drag> Move chart on canvas
< scroll mouse-wheel > Zoom in/out

43

2 Cube User Guide

Figure 2.32: Adjusting the arc width using Ctrl+<left-mouse drag>

The following table lists all setting available via context menu:

Frame coloring Adjust the frame color of arcs
Selection coloring Adjust the frame color of selected arcs
Mark 0 degrees Draw a line where the widget start the fan

of arcs
Hide info tooltip Do not show arc info in top left corner

when hovering over a arc
Hide frame of small arcs Avoid visual clutter by not drawing frames

around thin arcshal
Zoom towards the cursor Instead of zooming into the chart origin,

zoom towards the cursor
Invert zoom Invert zoom direction when using the

mouse wheel of track pad
Reset Reset selected or all interactions (e.g., arc

width, rotation,...) to default state

2.7.13 System Topology Plugin

In many parallel applications, each process (or thread) communicates only with a limited
number of processes. The parallel algorithm divides the application domain into smaller
chunks known as sub-domains. A process usually communicates with processes owning
sub-domains adjacent to its own. The mapping of data onto processes and the neighborhood
relationship resulting from this mapping is called virtual topology. Many applications use
one or more virtual topologies specified as multi-dimensional Cartesian grids.

Another sort of topologies are physical topologies reflecting the hardware structure on
which the application was run. A typical three-dimensional physical topology is given by
the (hardware) nodes in the first dimension, and the arrangement of cores/processors on
nodes in further two dimensions.

The CUBE display supports multi-dimensional Cartesian grids, where grids with high
dimensionality can be sliced or folded down to two or three dimensions for presentation.
If the currently opened cube file defines one or more such topologies, separate tabs are
available for each using the topology name when one is provided. The topology display

44

2.7 Cube GUI Plugins

shows performance data mapped onto the Cartesian topology of the application. The
corresponding grid is specified by the number of dimensions and the size of each dimension.
Threads/processes are attached to the grid elements, as specified by the CUBE file. Not
all system items have to be attached to a grid element, and not every grid element has a
system item attached. An example of a two-dimensional topology is shown on Figure 2.33.
Note that the topology toolbar is enabled when a topology is available to be displayed.

Figure 2.33: Topology Displays

The Cartesian grid is presented by planes stacked on top of each other in a three dimen-
sional projection. The number of planes depends on the number of dimensions in the grid.
Each plane is divided into tiles (typically shown as rombi). The number of tiles depends
on the dimension size. Each tile represents a system resource (e.g., a process) of the
application and has a coordinate associated with it.

The current value of each grid element (with respect to the selections on the left-hand
side and to the current value mode) is represented by coloring the grid element. Coloring
is based on a value scale from 0.0 to 100.0. Grid elements without having a system item
attached to it are colored gray. See Section 2.5.2.1 (menu Topology) for further topology-
specific coloring settings. For example, the upper topology in Figure 2.33 is drawn wit
black lines, the 2D topology in Figure 2.34 is drawn without lines.

If the selected system item occurs in the topology, it is marked by an additional frame
and by additional lines at the side of the plane which contains the corresponding grid
point, such that the selected item's position is also visible if the corresponding plane is not
completely visible.

If zooming into planes is enabled, the plane containing the recently selected item is selected
and the plane distance is adjusted to show this plane complely.

Selecting a collapsed tree in the system-tree selects all its children in the topology view.

Besides the functions offered by the topology toolbar (see 2.24), the following functionality
is supported:

1. Item selection: You can change the current system selection by left-clicking on a
grid element which has a system item assigned to it (resulting in the selection of that
system item). Multiple items may be selected or deselected by holding down the Ctrl

45

2 Cube User Guide

Figure 2.34: Topology Displays

key while clicking on an item.

2. Info: By right-clicking on a grid element, an information widget appears with infor-
mation about the system item assigned to it. The information contains

• the coordinate of the grid point in each topology dimension,

• the hardware node to which the attached system item belongs to,

• the system item's name,

• its MPI rank,

• its identifier,

• and its value, followed by the percentage of this value on the scale between the
minimal and maximal topology values.

3. Rotation about the x and y axes: can be done with left-mouse drag (click and hold
the left-mouse button while moving the mouse).

4. Increasing/decreasing the distance between the planes: with Ctrl+<left-mouse
drag>

5. Moving the whole topology up/down/left/right: with Shift+<left-mouse drag>

2.7.13.1 Topology mapping panel

If the number of topology dimensions is larger than three, the first three dimensions are
shown and an additional control panel appears below the displayed topology. This panel
allows rearranging topology dimensions on the x, y and z axes, as well as slicing or folding
of higher dimensionality topologies for presentation in three or fewer dimensions.

Rearranging topology dimensions is achieved simply by dragging the topology dimension
labels to the desired axis. When dragged on top of an existing topology dimension label,
the two are exchanged.

When slicing, select up to three of the dimensions to display completely and choose
one element of each of the remaining dimensions. The example in Figure2.35 shows a

46

2.7 Cube GUI Plugins

topology with 4 dimensions (32x16x32x4) labelled X, Y, Z and T. The first element of the
4th dimension (T) is automatically selected. By clicking on the button above the T, an index
in this dimension from 0 to 3 can be chosen. If the index is set to all, the selection becomes
invalid until an index of another dimension is selected.

Figure 2.35: 4-dimensional example

Alternatively, the folding mode can be activated by clicking on the fold button. This mode
is available for topologies with four to six dimensions and allows to display all elements by
folding two dimensions into one. Every dimension appears in a box, with can be dragged
into one of the three container boxes for the displayed dimensions x, y and z. In folding
mode, the color of the inner borders is changed into gray. The black bordered rectangles
show the element borders of each of the three displayed dimensions.

The right image in Figure2.35 shows the folding of dimension Z with dimension T. One
element with index (0,0,1,3) has been selected by clicking with the right mouse button into
it. All elements inside the black rectancle around the selection belong to Z index one. The
gray lines devide the rectangle into four elements which correspond to the elements of
dimension T with index 0 to 3.

2.7.13.2 Topology plugin menu

• Topology: The topology menu offers the following functions related to the topology
display described in Section 2.33 :

1. Item coloring: Offers a choice how zero-valued system nodes should be colored
in the topology display. The two offered options are either to use white or to use
white only if all system leaf values are zero and use the minimal color otherwise.

2. Line coloring: Allows to define the color of the lines in topology painting.
Available colors are black, gray, white, or no lines.

3. Toolbar: This menu item allows to specify if the topology toolbar buttons should
be labeled by icons, by a text description, or if the toolbar should be hidden. For
more information about the toolbar see Section 2.24 .

47

2 Cube User Guide

4. Show also unused hardware in topology: If not checked, unused topology
planes, i.e., planes whose grid elements don't have any processes/threads as-
signed to, are hidden. Unused plane elements, if not hidden, are colored gray.

5. Topology antialiasing: If checked, anti-aliasing is used when drawing lines in
the topologies.

6. Zoom into current plane: If checked, the plane containing the recently selected
item is shown completely. It is never covered by a neighbor plane.

2.7.13.3 Toolbar

The system pane may contain topology displays if corresponding data is specified in the
CUBE file. Basically, a topology display draws a two- or three-dimensional grid, in the form
of some planes placed one above the other. Each plane consists of a two-dimensional grid
of processes or threads.

The toolbar is enabled only if the system pane shows a topology display, and it offers
functions to manipulate the display of the above grid planes. The toolbar can be labeled by
icons, by text, or it can be hidden, see menu Topology ⇒ Toolbar in Section 2.5.2.1. The
toolbar buttons have tool tips, i.e., a short description pops up if the toolbar is enabled and
you move the mouse above a button.

The functions are the following, listed from the left to the right in the topology toolbar:

Move left Moves the whole topology to the left.

Move right Moves the whole topology to the right.

Move up Moves the whole topology upwards.

Move down Moves the whole topology downwards.

Increase plane distance Increase the distance between the planes of the topology.

Decrease plane distance Decrease the distance between the planes of the topology.

Zoom in Enlarge the topology.

Zoom out Scale down the topology.

Reset Reset the display. It scales the topology such that it fits into the visible rectangle,
and transforms it into a default position.

Scale into window It scales the topology such that it fits into the visible rectangle,
without transformations.

Set minimum/maximum values for coloring Similarly to the functions offered in the
context menu of trees (see Section 2.5.2.4), you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes, i.e.,
the values corresponding to the left and right end of the color legend. If you activate
user-defined values for the color extremes, you are asked to define two values that
should correspond to the minimal and to the maximal colors. All values outside of this
interval will get the color gray. Note that canceling any of the input windows causes
no changes in the coloring method. If user-defined min/max values are activated,
the selected value information widget displays a (u)'' foruser-defined'' behind the
minimal and maximal color values.

48

2.7 Cube GUI Plugins

x-rotation Rotate the topology cube about the x-axis with the defined angle.

y-rotation Rotate the topology cube about the y-axis with the defined angle.

topolygy Allows to choose a topology from the list of defined topologies. If the topology
is shown in the tab bar (default at startup), the corresponding tab will be selected. If
the topology widget is detached, the widget will be shown on top of the main widget.

Using the grip at the left of the toolbar, it can be dragged to another position or detached
entirely from the main window. The toolbar can also be closed after a right-click in the
grip.

2.7.13.4 Topology keyboard and mouse control

<left-mouse click> select item
<right-mouse click> context information
Ctrl+<left-mouse drag> increase plane distance
Shift+<left-mouse drag> move topology
< scroll mouse-wheel > zoom in/out
<left-mouse drag> rotate topology
Up arrow scroll one unit up
Down arrow scroll one unit down
Page up scroll one page up
Page down scroll one page down

2.7.14 Tree Item Marker Plugin

This Plugin marks related items in the call, task and system tree. In the call tree, the
correlation between a location group and its creator is shown. If an accelerator item is
selected, this item and the related creator item are marked with a chain icon.

Figure 2.36: Related tree items in system tree

In the call tree, the relationship between an accelarator item and its call site is indicated
by a marker. If the call site is located in the task tree, an additional marker is set to show
that the item can be found in the next tab. The automatically marked call site items can
be selected via the context menu item "Select marked items".

This plugins also adds an element to the context menu which allows to mark tree items
manually. This is helpful to relocate the item after other selections have been done. The

49

2 Cube User Guide

Figure 2.37: Related tree items in call tree

marked items are stored into the experiment specific settings.

2.7.15 Launch Plugin

This Plugin allows one to create the connection between the performance measurement
aka the cube file, and some another application via the simple assignment of the element
in the profile, be it metric- or callpath- element and the to-be-executed command.

This connection is always established individually to the performance measurement. If a
more general connection is needed, an additional CubeGUI plugin has to be developed.

2.7.15.1 .launch File

To achieve this one needs to create the file with the same name as the cube file and with
the extension ".launch". For example, profile.cubex -> profile.launch, summary.cubex ->
summary.launch etc.

This has to be located in the same directory as the corresponding .cubex file and can be
created manually (also postfactum) or automatically.

2.7.15.1.1 Structure of the .launch file The content of the file has three main sections:
INIT, MAIN, FINALIZE

• INIT - defines the command, which has to be executed before other commands of
the launch get active. This might be used to initialize a third-party application. This
command won't be executed automatically, but is only available in the plugin menu
"Plugins".

Syntax:

[INIT]
<init menu title>
<command> <paramer>

The init menu title defines the menu item, which the user would need to select to
execute the command

50

2.7 Cube GUI Plugins

• FINALIZE - this command, if defined, is automatically executed when the cube file is
closed

Syntax:

[FINALIZE]
<command> <paramer>

This section is "mute", means the command is executed without the additional
(except "Close Cube") actions from the user.

• MAIN - this section defines commands for individual tree elements.

Syntax:

...
<metric uniq name>
<menu title in metric tree>
<metric tree command> <paramer>
- cnode <cnode id>
<menu title in call tree for given id>
<call tree command> <paramer>
...

In this section one defines metric wise the series of the entries. This means that
for the selected metric metric unit name, the command metric tree command is
defined, which is executed when menu title in metric tree is selected in the context
menu in the metric tree. The prefix "- cnode" is used to define an ID (cnode id) of the
call path, for which the command call tree command is specified. This command is
excecuted when the the menu item menu title in call tree for given ID is selected
in the context menu of the call path.

One can specify multiple - cnode <cnode id> for the selected metric <metric uniq
name> or one can specify <metric uniq name> for every cnode individually. The sequence
of the entries is irrelevant.

One can choose instead of <metric uniq name> the placeholder "∗∗", which makes the
command available for every call path.

NOTICE Execution of the command is done in the "current directory", which is the
directory in which "./cube" has been executed. Every command should be executable. This
means that the executable is either found via the PATH variable or must be specified with
an absolute path.

2.7.15.1.2 Parameters in the .launch file To establish the meaningful connection
between the performance profile and the To-be-executed command one can specify the
paramteres (placeholders) for the command. These will be replaces by the corresponding
values. Available placeholders always start with the symbol "%" and are :

• %f - stands for the path to the .cubex file

• %mn - stands for the name of the selected metric

• %mi - stands for the id of the selected metric

• %me - stands for the expansion state of the selected metric

• %m - stands for the value in the metric tree of the selected metric

• %mn - defines the name of the selected call path

51

2 Cube User Guide

• %cn - stands for the name of the selected call path

• %ci - stands for the id of the selected call path

• %ce - stands for the expansion state of the selected call path

• %c - stands for the value in the call tree of the selected call path

• %cn - defines the name of the selected call path

2.7.15.1.3 Example of the .launch file Example of the .launch file

[INIT]
Init Visualisation
initialize.sh %f START

time
- cnode 4
display_timing_cnode.sh %cn %ci $ce %c

visits
Display calls in ParaView
display_calls_metric.sh %mn %mi $me %m
- cnode 3
Display this call in ParaView
display_calls_cnode.sh %cn %ci $ce %c
- cnode 10
Display this call in ParaView
display_calls_cnode.sh %cn %ci $ce %c

[FINALIZE]
finalize.sh %f DONE

.launch file doesn't support comments.

2.8 Other Features

2.8.1 Features enabled through statistic files

In this section we will explain two features – namely the display of statistical information
about performance patterns which represent performance problems and the display of the
most severe instances of these patterns in a trace browser – which both are only available if
a statistic file for the currently opened CUBE file is present. Currently, such a statistic file
can be generated by the SCOUT analyzer [?]. The file format of statistic files is described
in the Appendix 5.1.

For CUBE to recognize the statistic file, it must be placed in the same directory as the
CUBE file. The basename of the statistic file should be identical to that of the CUBE file,
but with the suffix .stat. For example, when the CUBE file is called trace.cubex, the
corresponding statistic file is called trace.stat.

52

2.8 Other Features

2.8.2 Statistical information about performance patterns

If a statistic file is provided, you can view statistical information about one or multiple
patterns (for example in order to compare them). This is done by selecting the desired
metrics in the metric-tree and then selecting the Statistics menu item in the context menu.
This brings up the box plot window as shown in Figure 2.38.

Figure 2.38: Screenshot of a box plot as shown by CUBE displaying statistical information
about the selected patterns. The tooltip shows the exact values of the statistics.

The box plot shows a graphical representation of the statistical data of the selected patterns.
The slender black lines on the top and the bottom designate the maximum and the minimum
measured severity of the pattern, respectively. The lower and the upper borders of the
white box indicate the values of the 25% and 75% quantile. The thick line inside the box
represents the median of the values, while the dashed line indicates the mean.

There are two ways of interacting with the box plot. You can zoom to a certain interval on
the y-axis by clicking on a position with the height of the desired maximal or minimal value
and by consecutively dragging the mouse to a position with the height of the corresponding
other extreme value. You can reset the view (i.e., to undo all zooming) by clicking the
middle mouse button somewhere on the box plot.

If you are interested in more precise values for the severity statistics of a certain metric, you

53

2 Cube User Guide

can click with the left mouse button somewhere in the column of the desired metric, which
will yield a small window (as shown in the top right corner of Figure 2.38) displaying the
exact values of the statistics. Clicking with the right mouse button shows the information
in a tooltip.

2.8.3 Display of most severe pattern instances using a trace
browser

If a statistic file also contains information about the most severe instances of certain
patterns, CUBE can be connected to a trace browser (currently only Vampir [? ?] is
supported) in order to view the state of the program being analyzed at the time this most
severe pattern instance occurred. For collective operations, the most severe instance is
the one with the largest sum of the waiting times of all processes, which is not necessarily
the one with the largest maximal waiting time of each individual process.

Figure 2.39: The dialog windows for a connection to a trace browser e.g. Vampir

To use this feature, you first have to connect to a trace browser by using the Connect to
menu item of the Vampir Plugin submenu of the Plugin menu. This will open one of the two
dialog windows shown below.

For Vampir, you have to specify the host name and port of the Vampir server you
want to connect to and the path of the trace file you want to load. This will launch
the Vampir client (if it is correctly configured) and load the specified trace file. To
configure Vampir so that it can be started automatically by CUBE, a service file
com.gwt.vampir.service, describing the path to your Vampir client executable must be
placed under (/usr/share/dbus-1/service) or ${HOME}/.local/share/dbus-1/services.
This service file must be exactly as shown below, with the exception that Exec should point
to your Vampir client executable.

[D-BUS Service]
Name=com.gwt.vampir
Exec=/private/utils/bin/vng

An example of the com.gwt.vampir.service file

54

2.8 Other Features

Once CUBE is connected to a trace browser you can select the Max severity in trace
browser menu item of the metric-tree so that all connected trace browsers are zoomed to
the (globally) most severe instance of the selected pattern.

A more sophisticated feature of CUBE is the ability to zoom to the most severe instance of
a pattern in a selected call path. This can be done by selecting a metric in the metric-tree
which will highlight the most severe call paths in the call-tree. You can then use the context
menu of the call tree to select the Max severity in trace browser menu item which will then
zoom all connected trace browsers to the most severe instance of the selected pattern with
respect to the chosen call path (see Figure 2.40).

Figure 2.40: Context menu called on the metric "Wait at Barrier", showing the maximum
severity in trace browser, which results in the location of the worst instance
shown in the timeline display of Vampir.

2.8.3.1 Troubleshooting

1. In some D-BUS configurations Vampir does not start automatically. In this case it
might solve the problem to have Vampir already running (with explicitly enabled
D-BUS subsystem)

user@host: vampir --dbus&

2. On some HPC system it might be helpful to extend your environment. Add to your
.bashrc file following code snippet:

test for an existing bus daemon, just to be safe
if test -z "$DBUS_SESSION_BUS_ADDRESS" ; then

if not found, launch a new one
eval ‘dbus-launch --sh-syntax‘
echo "D-Bus per-session daemon address is: $DBUS_SESSION_BUS_ADDRESS"

fi

55

2 Cube User Guide

2.8.4 Synchronization of several cube instances

The current state of a cube instance (selections, expanded tree items, ...) can be synchro-
nized with other cube instances on the same or on different machines. The synchronization
function uses the clipboard to exchange data, so no network protocol is required. Synchro-
nization can be useful e.g. for following tasks:

• Comparation of several runs of the same program with different number of processes
or threads.

• Examination of different metrics at the same time.

Figure 2.41: Enable Synchronization
To enable Synchronization, the corresponding toolbar has to be enabled (Figure 2.41). Press
the toolbar button with the red outgoing arrow to enable sending of status information.
The current state is sent when the button is activated and after every change while the
button is checked. To receive status information press the button with the white incoming
arrow. If activated, cube listens for changed status information.
Tree items are identified by their label, not by the position in the tree. This might lead to
unexpected selections, if a tree item has multiple children with the same label.

With the "Synchronize state" menu, you can select the information that is sent and received.
By default, this is the state of the trees. If you want to show different metrics in each
cube instance, but synchronize the selected callpath and system-tree, you have to disable
"Metric tree" (Figure 2.42).

Figure 2.42: Synchronization toolbar

56

2.9 Keyboard and mouse control

2.9 Keyboard and mouse control

57

2 Cube User Guide

Shift+F1 Help: What's this?
Ctrl+O Shortcut for menu File ⇒ Open
Ctrl+W Shortcut for menu File ⇒ Close
Ctrl+Q Shortcut for menu File ⇒ Quit
<left-mouse click> over menu/tool bar: activate

menu/function
over value mode combo: select value
mode
over tab: switch to tab
in tree: select/deselect/expand/collapse
items

<right-mouse click> in tree: context menu
Ctrl+<left-mouse click> in tree: multiple selection/deselection
<left-mouse drag> over scroll bar: scroll
Up arrow in tree: move selection one item up

(+Shift: multiple selection)
Down arrow in tree: move selection one item down

(+Shift: multiple selection)
Left arrow in scroll area: scroll to the left
Right arrow in scroll area: scroll to the right
Ctrl+F find tree item
F3 move to next search result
Shift+F3 move to previous search result

For keyboard shortcuts in different plugins, see the corresponding sections:

• 2.7.8

• 2.7.13.4

58

3 Cube POP Advisor Plugin

POP Advisor is a standard plugin and is available as long as the measurement contains a
Time metric. The main goal of the POP Advisor plugin is to provide a user a fast access to
the various POP performance evaluations of the performance of their HPC application.

3.1 Getting Started with Advisor

If measurement contains metric Time, CubeGUI will enable the POP Advisor plugin in the
"General" tab in the plugins section.

Some 3.2 can be disabled due to missing performance properties, e.g. missing PAPI
counters. In such cases one potential solution is to merge original measurement with
measurement which includes missing properties and run analysis again. Measurement
merging can be done with one of the context-free plugins 2.7.2.3 or 2.7.2.2.

Moreover, some assessments are hidden and can be available in "expert" mode (see 2.3).

3.2 Supported Assessments

Advisor supports various performance assessments, Only-MPI assessment, Hybrid Additive
and Multiplicative Assessment, BSC POP Assessment. Detailed documentation about these
take look in the tools guide of CubeLib package

59

4 Customization with Qt Stylesheets

Style Sheet Editor

Qt Style Sheets allow the user to customize the appearance of widgets. Qt Style Sheets
are similar to HTML Cascading Style Sheets (CSS) but adapted to widgets. To define style
sheets, open the Editor with Display ⇒ Customize style sheet.

Figure 4.1: start style sheet editor

The following example customizes the appearance of the three tree views. The tree items
are drawn in black, selected tree items in red. The background color of the tree items is
set to lightgray, the background color of selected items to green. To draw the tree items,
the font family "Bitstream Charter" with 10 point size is used.

QTreeView {
color: black;
background-color: lightgray;
selection-color:red;
selection-background-color:lightgreen;
font-family: Bitstream Charter;
font-size: 10pt

}

For further information, refer to the Qt style sheet reference:

• List of widgets which can be customized

• List of properties

• Style sheet syntax

61

5 Appendix

5.1 File format of statistics files

Statistic files (for an example see 5.1) are simply text files which contain the necessary data.
The first line is always ignored but should look similar to that in the example as it simplifies
the understanding for the human reader. All values in a statistic file are simply separated
by an arbitrary number of spaces. For each pattern there is a line which contains at least

PatternName MetricID Count Mean Median Minimum Maximum Sum Variance Quartil25 Quartil75
LateBroadcast 6 4 0.010 0.000031 0.000004 0.042856 0.042 0.000459
- cnode: 5 enter: 0.245877 exit: 0.256608 duration: 0.042856

WaitAtBarrier 18 20 0.018 0.006477 0.000002 0.065293 0.369 0.000698 0.000040 0.047409
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000100
- cnode: 12 enter: 0.326120 exit: 0.335651 duration: 0.065293

BarrierCompletion 17 20 0.000 0.000005 0.000002 0.000018 0.000 0.000000 0.000003 0.000009
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000009
- cnode: 12 enter: 0.159321 exit: 0.165005 duration: 0.000018

WaitAtIBarrier 27 144 0.001 0.000027 0.000001 0.028451 0.212 0.000028 0.000002 0.000437
- cnode: 11 enter: 0.297292 exit: 0.297316 duration: 0.000057
- cnode: 10 enter: 0.322577 exit: 0.332093 duration: 0.028451

Figure 5.1: An example of a statistic file

the pattern name (as plain text without spaces), its corresponding metric id in the CUBE
file (integer as text) and the count – i.e., how many instances of the pattern exist (also as
integer). If more values are provided, there have to be the mean value, median, minimum
and maximum as well as the sum (all as floating point numbers in arbitrary format). If one
of these values is provided, all have to. The next optional value is the variance (also as
a floating point number). The last two optional values of which both or none have to be
provided are the 25% and the 75% quantile, also as floating point numbers.

If any of these values is omitted, all following values have to be omitted, too. If for example
the variance is not provided, the lower and the upper quartile must not be provided either.

In the subsequent lines (there can be an arbitrary number), the information of the most
severe instances is provided. Each of these lines has to begin with a minus sign (-). Then
the text cnode:, followed by the cnode id of this instance in the CUBE file (integer as text)
is provided. The same holds for enter, exit and duration (floats as text).

The begin of the next pattern is indicated by a blank line.

63

6 Getting Started with Plugin
"Measurement"

6.1 Start the Plugin

To start using the measurement plugin, first open CubeGUI and navigate to the "Measure-
ment Plugin" option under the "Open context-free plugin" menu. If you are unable to locate
the plugin in the menu, please ensure that you have followed all the steps listed in the
section 2.7.

If you're still having difficulty locating the plugin, one solution is to configure the plugin
search path. You can do this by accessing the "Plugins" menu, selecting "Configure Plugin
Search Paths," and adding the path to the project's .so file. Once you have done this, restart
CubeGUI to activate the plugin.

Alternatively, you can start CubeGUI in verbose mode by using the command line option
-verbose, which will list all the plugins that CubeGUI is able to locate. For additional
information, please refer to the CubeGUI User Guide.

6.2 Step-by-Step example

In this section, we will guide you through an example of how to use the Measurement
plugin. Once the Measurement plugin is launched, the user is prompted to either start
a new measurement or load a recent one. For this example, we choose to start a new
measurement. After selecting "Start New Measurement", the user will be taken to the 8
tab. Here, the user can specify the MPI and Compiler used to build the program they want
to measure. This information is required to select an appropriate Score-P version, since
the Score-P version must be installed with the same MPI and compiler. In our example, the
plugin has identified a matching Score-P version in our path. We select this version and
proceed to the 9 step. In the 9 tab, we select the "jacobi" executable using the 9.1. Since
the executable has not been instrumented yet, we choose to prepare a new instrumentation
and specify our preferred 9.3.1, which in this case is the makefile.

The plugin provides us with two options: to 9.3.2.1 for the makefile or to open a makefile
that has been 9.3.2.2 by the plugin. Since the plugin has detected our makefile, we choose
to open it. This displays a tab where we can edit the makefile. The plugin opens a window
to edit the makefile. At the top of this window, we find instructions on how to apply the
correct compiler wrapper to enable instrumentation. In this example, we changed the
compiler wrapper from CC=mpicc to CC=scorep-mpicc. After making the changes, we save
them to return to the 9 tab window. In the next step, a dialog box appears for specifying
the build command of the program. In our case, the plugin automatically suggests the
correct command. However, it is possible to customize this command if necessary. After

65

6 Getting Started with Plugin "Measurement"

entering the build command, we click the "Build your application" button to execute the
command. The build output is displayed in the 7.3. If the build is successful, a message is
displayed, and the 9.5 is enabled.

We click the 9.5 to proceed with the 10 tab. At this point, we select to perform an initial
run, which is the first run that can be performed. We choose to run four processes and
two threads. The plugin suggests a directory name for the experiment directory, where
the resulting profile.cubex file will be located. Additionally, the plugin suggests the run
command. The commands executed in the background and the required variable settings
can be viewed in the 7.3.

The plugin offers two options to perform the measurement: a job can be submitted, or
the measurement can be executed locally. In this example, we perform the measurement
locally. The measurement was performed successfully, and a corresponding message is
displayed. The user now has the option to either take another measurement or to view the
results of the measurement. For more information, please refer to 10.

As next, see 7

66

7 Overview

7.1 Layout

The layout of the Measurement Plugin is mainly divided into two sections. On the left side,
there is the layout part the user can interact with. On the right side, a 7.3 is displayed. The
interactive layout consists of three 7.2. At the top of each tab, users get an overview of the
steps that need to be completed before proceeding to the next tab.

1. 7.2

2. Tab-specific steps

3. 7.3

4. Hide/Show virtual Console

7.2 Tabs

The Measurement plugin includes three tabs: Setup, Instrumentation, and Measurement.
Each tab has a specific purpose and offers different functionalities to the user.

8: This tab allows the user to choose the Score-P installation for their measurement.

9: In this tab, the user can select their source code and specify the compilation command.

10: This tab is where the user can configure their measurement by selecting predefined
settings.

7.3 Virtual Console

On the right side of the Measurement Plugin GUI, there is a virtual console that logs all the
commands executed in the background when the user interacts with the GUI on the left
side. This console provides users with valuable information on what is happening during
their measurement and shows Score-P specific commands. It is possible to hide the console
by pressing (4).

As next, see 8

67

8 Setup

When the plugin is launched, the setup tab is displayed. There, the user can decide whether
to load a former measurement or to start a new one. It is important to note that the plugin
is only usable when there exists an installed Score-P version, and the plugin must be started
in the build environment of the application the user wants to measure.

1. 8.1.1

2. 8.2

3. Job ID of 8.1.2

4. 8.1.2.1 of 8.1.2

5. Load measurement of 8.1.2

6. Delete saved settings of 8.1.2

8.1 Load Measurement

8.1.1 Load recent Measurement Button

When the user clicks on the "Load Recent Measurement" button, the most recently saved
measurement will be loaded. This will return the user to the measurement at the same
point where they exited the plugin during the previous session.

8.1.2 Submitted Jobs

The plugin lists all measurements that were submitted as a job during previous usage of
the measurement. It displays the job ID, the status of the job and options to load or delete
the specific measurement. If the user selects the option to load the measurement, they will
be taken to the 10 tab, where they can access various options depending on the 8.1.2.1.

8.1.2.1 Job Status

The status of a job can be one of the following:

• COMPLETED: The job was successfully completed. The user can view the results of
the job.

• FAILED: The job failed to complete. The user can try starting the job again, but no
results are available for this job.

• RUNNING: The job is currently running.

69

8 Setup

• STATUS NOT AVAILABLE: The status of the job is not available. This could indicate
that the job was not properly submitted or that an error occurred while trying to
retrieve its status.

If the status of a job is not available, the user should try resubmitting the job or checking
for any errors that may have occurred.

8.2 Start new Measurement

When the user selects the "Start New Measurement" button, the setup tab layout will
change to show the steps required to select a Score-P installation.

The plugin offers multiple ways to select a Score-P version. If the user has a Score-P
version available on their system's path, it will be automatically detected and listed in the
8.2.2 section. Alternatively, if the user wants to load a Score-P module, they can use the
8.2.3 to search for and select the desired version. Finally, if the Score-P version is not
automatically detected or available as a module, the user can manually browse the system
directory using the 8.2.4 to select the appropriate version.

The plugin lists all detected Score-P versions and provides additional information about
each version, including whether PAPI counter and libunwind are available and whether it is
a 8.2.2.1. A usable configuration implies that the MPI and/or the compiler used to build the
Score-P version matches the MPI and compiler specified for building the user's application.

1. Select 8.2.1.1

2. Select 8.2.1.2

3. 8.2.2

4. 8.2.3

5. 8.2.5

6. 8.2.6

8.2.1 Select Compiler version and MPI

There are two drop down menus to select the MPI and Compiler used to build the program
being measured.

8.2.1.1 Compiler

The user can choose between the following options:

• gcc

• ibm

• intel

• pgi

• studio

• clang

70

8.2 Start new Measurement

8.2.1.2 MPI

The user can choose between the following options:

• mpich2

• impi

• openmpi

8.2.2 Score-P version found in PATH

If a Score-P installation was found in the user's PATH variable, the plugin lists it with pro-
viding additional information. It gives information whether PAPI counter and libunwinded
are available in this installation and if it is a 8.2.2.1.

8.2.2.1 Usable Configuration Status

The usable configuration status indicates whether the selected Score-P version is compati-
ble with the MPI and compiler used to build the user's application. The status can have
one of three values:

• "Usable configuration": Indicates that the selected Score-P version is compatible with
the user's MPI and compiler, and can be used to measure their application without
issues.

• "Possibly usable configuration": Indicates that the selected Score-P version may
be compatible with the user's MPI and compiler, but it was not specified during
installation. Therefore, the plugin cannot confirm if it is a usable configuration.

• "Not usable configuration": Indicates that the selected Score-P version is not com-
patible with the user's MPI and compiler, and cannot be used to measure their
application.

Next to the status message, an info icon is displayed. If the user hovers over this icon with
their mouse, a tooltip will appear containing information about the MPI and compiler used
to build the selected Score-P installation.

8.2.3 Find Score-P versions Button

This button allows the plugin to search for Score-P modules and display all available
versions. If no Score-P module is found, an error message is displayed to the user.

8.2.4 Browse Score-P Button

When the "Browse Score-P" button is pressed, a file dialog box will appear for the user to
select an installed Score-P version. Only visible after 8.2.3 is clicked.

71

8 Setup

8.2.5 Proceed Button

When the user has selected an appropriate Score-P installation, the "Proceed" button
becomes enabled. Clicking this button will move the user to the 9 tab and the selected
Score-P version is used for the measurement.

8.2.6 Help Button

If the user needs assistance in detecting a Score-P version, they can click on the "Help"
button. This opens a pop-up window with information on how to detect a Score-P version.

As next, see 9

72

9 Instrumentation

The "Instrumentation" tab guides the user through the process of instrumenting their
application. To begin instrumentation, the user must first select the executable they wish
to instrument. They can then choose whether to create a new instrumentation setup or
use an existing one. If the user chooses to create a new instrumentation setup, they must
select how the application was built and adjust the build settings as necessary. They can
then rebuild the application to instrument their application.

1. 9.1

2. Select whether to use an 9.2.1 or to create a 9.2.2

3. 9.3.1

4. 9.3.2.1

5. 9.3.2.2

6. 9.4.1

7. 9.4.2

8. 9.5

9.1 Browse Executable File Button

When the "Browse executable file" button is pressed, a file dialog box will appear for the
user to select the executable file. Selecting an executable file is required to ensure that
the user's application can be built without instrumentation. Once a file is selected, the
program will check if the file is executable. If it is not executable, an error message will be
displayed, and the user will not be able to proceed.

The program will also check if the selected file is already instrumented. If it is, the 9.2.1
option will be enabled. If the user selects a new executable file that is different from the
previous selection, any further steps will be hidden, and any previously selected options
will be unchecked.

9.2 Select Instrumentation Box

In the Select Instrumentation box, the user has the option to choose between using a 9.2.1
or preparing a 9.2.2. If the user's application is already instrumented, the option to use
the 9.2.1 is enabled. This allows the user to continue with the existing instrumentation
instead of preparing a new one. On the other hand, if the user wants to prepare a new
instrumentation, they can select the option to do so. This will lead to further steps where

73

9 Instrumentation

the user can select how the application was built, adjust the build settings, and rebuild the
application to perform the instrumentation.

9.2.1 Use Former Instrumentation

The "Use Former Instrumentation" option is only enabled if the selected executable is
already instrumented with Score-P. In this case, the 9.5 is enabled, and the user can skip
the rest of the instrumentation step and directly continue with the 10 step.

9.2.2 Prepare New Instrumentation

If "Prepare New Instrumentation" is selected, the user is displayed with the further step to
select their 9.3.1 in order to prepare a new instrumentation.

9.3 Adapt Build System

9.3.1 Select Build System Box

In the Select Build System Box, the user has the option to choose their build system for
the executable they selected in 9.1 step. For now, only makefile based build systems are
supported.

9.3.1.1 Adjust Makefile

When the user selects to adjust their makefile they are shown the next step 9.3.2 where
they are asked to adjust their makefile.

9.3.2 Open Makefile for Editing

There are two options to open a makefile. The user can browse their directory for their
makefile by clicking the 9.3.2.1 or the plugin is able to detect the makefile and it can be
opened by clicking the 9.3.2.2. When a makefile is selected, a layout is displayed for editing.
The plugin displays the required changes which the user has to add to their makefile and
opens the makefile for editing. Once the user has applied the required changes, they can
press the "Save changes" button to save the adapted makefile or the "Discard changes"
button to revert to the original makefile. In both cases, the user returns to the layout shown
before. But only when the "Save changes" button is pressed, the next step to 9.4 is shown.

9.3.2.1 Browse Makefile Button

When the user selects to browse the makefile manually, a file dialog box will be displayed
for the user to select the makefile.

74

9.4 Rebuild Application

9.3.2.2 Open detected Makefile Button

This option is only enabled when the plugin was able to locate a makefile. The plugin
searches the executable file's directory for a file that is named "Makefile", "makefile", or
"MAKEFILE". If the file is named differently or located elsewhere, the user has to 9.3.2.1
manually.

9.4 Rebuild Application

In order to instrument the program, it is required to rebuild it with the adapted build
settings.

9.4.1 Build Command Box

In the Build Command Box, the user can adjust the build command for their application.
The plugin displays a recommended build command for the user's application, but they can
also edit it if needed.

9.4.2 Build Application Button

When the user has made the necessary changes to their build settings and command, they
can press the "Build Application" button to rebuild the application to perform the Score-P
instrumentation. If the build is successful, the 9.5 will be enabled.

9.5 Continue with Analysis Button

When the user has successfully instrumented their application, the "Continue with Analysis"
button becomes enabled. Clicking this button will move the user to the 10 tab, where they
can configure the measurement settings for their instrumented application.

As next, see 10

75

10 Measurement

The "Measurement" tab provides guidance to the user on measuring their application. To
begin measurement, the user must first select the 10.2 they wish to perform. They can
choose whether to do an 10.2.1, 10.2.2, custom, or detailed run. Next, the user needs
to specify some 10.1 which are the same for all runs. This step is followed by selecting
run-specific settings. Afterward, the user needs to run their application and will be offered
options on how to proceed.

1. Select run

2. Specify 10.1.1

3. Specify 10.1.2

4. Specify 10.1.3

5. Specify 10.3 command

6. Prepare 10.3.1 button

7. 10.3 local button

10.1 Presettings

There are a few options that are the same for each run. These settings are specified in this
section.

10.1.1 Number of Processes

This combo box allows the user to specify the number of processes to be used for running
the program. The value will be included as a command line argument in the mpirun or
mpiexec command and will also be part of the suggested name for the 10.1.3.

10.1.2 Number of Threads

This combobox enables the user to specify the number of threads to be used for program
execution. Upon selection, the "OMP_NUM_THREADS" variable will be exported with the
corresponding value.

77

10 Measurement

10.1.3 Experiment Directory Name

This line edit allows the user to specify the name of the experiment directory. The directory
is where the profile.cubex file containing the measurement results will be stored after the
measurement is completed.

10.2 Runs

10.2.1 Initial Run

The initial run creates the first measurement, which serves as the basis for a more accurate
measurement. It is important to note that the initial run may not provide optimal results,
but it is necessary to conduct it before performing a more accurate measurement.

The initial run does not require any run-specific settings.

10.2.2 Finetuned Run

The finetuned run is available once the first measurement of the application exists. This
run employs a 10.2.2.1 to enhance the measurement. However, it does not improve the
application itself.

10.2.2.1 Filter

In the finetuned run, the user is required to use a filter file. Please refer to the Score-P
User Guide for more information on filter files. The plugin provides two options for using
a filter file: using an existing filter file by specifying its path, or creating a new filter file
within the plugin. If the user chooses to use an existing filter file, a window will appear
allowing them to browse the directory and select the filter file. If the user chooses to create
a filter file, the plugin provides two options: creating a filter file manually or generating an
initial filter file. If the user chooses to create a filter file manually, the plugin displays a
window allowing the user to create their own filter file. The plugin also provides hints on
how to create the filter file.

If the user chooses to generate an initial filter file, the plugin will prompt the user to select
a measurement that will serve as the basis for creating the filter. This is because the
plugin utilizes Score-P's scorep-score tool. In the following step, the user can customize
scorep-score's command line options. When the user has selected a filter file in any of the
described ways, the step to 10.3 will be visible. Additionally, the SCOREP_FILTERING_FILE
variable will be exported with the path to the selected filter file. The user will also have
the option to inspect the filter. Clicking on this button will open a window displaying the
selected filter file, allowing the user to edit it.

78

10.3 Run the program

10.3 Run the program

To create the measurement, it is necessary to execute the instrumented program. The
plugin provides two options for running the program: locally or by submitting a jobscript.

If the user chooses to run the program locally, the command specified in the run command
box will be executed. It should be noted that the full path to the command used must be
specified in the command line. Nevertheless, the plugin typically suggests this.

The plugin waits for the program to finish running, and during that time, the screen
may appear frozen. Therefore, it is recommended to use the jobscript option for larger
programs.

10.3.1 Prepare job Script

The plugin provides the option to open either a job script generated by the plugin itself, or
the user's own job script.

10.3.1.1 Open generated job Script

If the user selects to open a generated job script, the plugin creates a sbatch job script
containing all the necessary information specified earlier in this tab. The user can review
and modify the script before submitting it to the job scheduler.

10.3.1.2 Open own job Script

If the user selects to open their own job script, the plugin opens an edit window displaying
the script. The user is asked to modify it in order to apply the required changes corre-
sponding to the options selected earlier. The plugin provides appropriate suggestions that
should be added to the job script, which could look like the following: Once the user has
made the required changes, they can save the modified script and submit it. To submit the
job, the plugin uses the sbatch scheduler.

After the job is submitted, the user can wait for it to finish within the plugin or close the
plugin and return later. The job is added to the list of 8.1.2 which is displayed when the
plugin is started. From there, the user can easily check the status of the job and return
when it is finished.

10.4 Options after running the Program

After the program has been successfully run, the user has the option to save a shell script
which can be used to reconstruct the measurement they have just performed. The user is
also offered the option to view the measurement results or to perform another measurement
with the same executable. If the user selects to view the measurement results, the plugin
is closed and CubeGUI opens the created profile.cubex file containing the measurement
profile. If the user selects to perform another measurement, all the options selected in the
10 tab are reset, but there is no need to redo the 8 and 9 steps.

79

10 Measurement

To return, see 2.7.2.6

80

www.scalasca.org

	Copyright
	Cube User Guide
	Abstract
	Introduction
	Command line options
	Environment variables
	Using the Display
	Basic Principles
	GUI Components
	Menu Bar
	Value modes
	System resource subsets
	Tree browsers
	Selected value info
	Color legend
	Status Bar

	Client-Server
	Cube Server
	Cube Client

	Cube GUI Plugins
	Detach Plugin Tabs
	Context free plugins
	Plugin `¨Diff`¨
	Plugin `¨Mean`¨
	Plugin `¨Merge`¨
	Plugin `¨Scaling`¨
	Plugin `¨Tau2Cube`¨
	Plugin `¨Measurement`¨

	Tree Item Marker
	Advanced Color Map Plugin
	Metric Editor Plugin
	Metric Identification Plugin
	Score-P Configuration Plugin
	Source Code Viewer
	Source Code Viewer Keyboard control

	System Barplot Plugin
	Basic Principles
	Toolbar
	Menu Bar

	System Heatmap Plugin
	Basic Principles
	Menu Heatmap

	System Statistics Plugin
	System Sunburst Plugin
	System Topology Plugin
	Topology mapping panel
	Topology plugin menu
	Toolbar
	Topology keyboard and mouse control

	Tree Item Marker Plugin
	Launch Plugin
	.launch File

	Other Features
	Features enabled through statistic files
	Statistical information about performance patterns
	Display of most severe pattern instances using a trace browser
	Troubleshooting

	Synchronization of several cube instances

	Keyboard and mouse control

	Cube POP Advisor Plugin
	Getting Started with Advisor
	Supported Assessments

	Customization with Qt Stylesheets
	Appendix
	File format of statistics files

	Getting Started with Plugin `¨Measurement`¨
	Start the Plugin
	Step-by-Step example

	Overview
	Layout
	Tabs
	Virtual Console

	Setup
	Load Measurement
	Load recent Measurement Button
	Submitted Jobs
	Job Status

	Start new Measurement
	Select Compiler version and MPI
	Compiler
	MPI

	Score-P version found in PATH
	Usable Configuration Status

	Find Score-P versions Button
	Browse Score-P Button
	Proceed Button
	Help Button

	Instrumentation
	Browse Executable File Button
	Select Instrumentation Box
	Use Former Instrumentation
	Prepare New Instrumentation

	Adapt Build System
	Select Build System Box
	Adjust Makefile

	Open Makefile for Editing
	Browse Makefile Button
	Open detected Makefile Button

	Rebuild Application
	Build Command Box
	Build Application Button

	Continue with Analysis Button

	Measurement
	Presettings
	Number of Processes
	Number of Threads
	Experiment Directory Name

	Runs
	Initial Run
	Finetuned Run
	Filter

	Run the program
	Prepare job Script
	Open generated job Script
	Open own job Script

	Options after running the Program

	Bibliography

