
CubeGUI 4.8 User Guide
Introduction in Cube GUI and its usage

March 2023
The Scalasca Development Team
scalasca@fz-juelich.de

Attention

The Cube GUI User Guide is currently being rewritten and still incomplete.
However, it should already contain enough information to get you started
and avoid the most common pitfalls.

ii

Contents

1 Copyright 1

2 Cube User Guide 3
2.1 Abstract . 3
2.2 Introduction . 3
2.3 Command line options . 4
2.4 Environment variables . 5
2.5 Using the Display . 6

2.5.1 Basic Principles . 6
2.5.2 GUI Components . 9

2.5.2.1 Menu Bar . 9
2.5.2.2 Value modes . 14
2.5.2.3 System resource subsets . 16
2.5.2.4 Tree browsers . 16
2.5.2.5 Selected value info . 22
2.5.2.6 Color legend . 22
2.5.2.7 Status Bar . 22

2.6 Client-Server . 23
2.6.1 Cube Server . 23
2.6.2 Cube Client . 23

2.7 Cube GUI Plugins . 23
2.7.1 Detach Plugin Tabs . 24
2.7.2 Context free plugins . 24

2.7.2.1 Plugin "Diff" . 24
2.7.2.2 Plugin "Mean" . 25
2.7.2.3 Plugin "Merge" . 25
2.7.2.4 Plugin "Scaling" . 25
2.7.2.5 Plugin "Tau2Cube" . 25

2.7.3 Advanced Color Map Plugin . 26
2.7.4 Metric Editor Plugin . 28
2.7.5 Metric Identification Plugin . 31
2.7.6 Score-P Configuration Plugin . 31
2.7.7 Source Code Viewer . 32

2.7.7.1 Source Code Viewer Keyboard control 32
2.7.8 System Barplot Plugin . 33

2.7.8.1 Basic Principles . 34
2.7.8.2 Toolbar . 35
2.7.8.3 Menu Bar . 36

2.7.9 System Heatmap Plugin . 37
2.7.9.1 Basic Principles . 37
2.7.9.2 Menu Heatmap . 38

2.7.10System Statistics Plugin . 39

iii

Contents

2.7.11System Sunburst Plugin . 40
2.7.12System Topology Plugin . 42

2.7.12.1Topology mapping panel . 44
2.7.12.2Topology plugin menu . 45
2.7.12.3Toolbar . 46
2.7.12.4Topology keyboard and mouse control 47

2.7.13Tree Item Marker Plugin . 47
2.8 Other Features . 48

2.8.1 Features enabled through statistic files 48
2.8.2 Statistical information about performance patterns 48
2.8.3 Display of most severe pattern instances using a trace browser 48

2.8.3.1 Troubleshooting . 51
2.8.4 Synchronization of several cube instances 52

2.9 Keyboard and mouse control . 53

3 Tree Item Marker 55

4 Cube Advisor Plugin 57
4.1 Getting Started with Advisor . 57
4.2 Supported Assessments . 57

4.2.1 Only-MPI Assessment . 57
4.2.2 Multiplicative Hybrid Assessment . 58
4.2.3 Additive Hybrid Assessment . 59
4.2.4 BSC Hybrid Assessment . 59
4.2.5 JSC Hybrid Assessment . 59
4.2.6 KNL Vectorization analysis . 60
4.2.7 KNL Memory usage analysis . 60

5 AdvisorPOPHybridTestsParallel_efficiency 63
5.1 Parallel Efficiency . 63

6 AdvisorPOPHybridTestsMissing_parallel_efficiency 65
6.1 Missing Parallel Efficiency? . 65

7 AdvisorPOPHybridTestsProcess_efficiency 67
7.1 Process Efficiency . 67

8 AdvisorPOPHybridTestsMissing_process_efficiency 69
8.1 Missing Process Efficiency? . 69

9 AdvisorPOPHybridTestsLoad_balance 71
9.1 Computation Load Balance . 71

10AdvisorPOPHybridTestsMissing_load_balance 73
10.1Missing Computation Load Balance? . 73

11AdvisorPOPHybridTestsCommunication_efficiency 75
11.1MPI Communication Efficiency . 75

12AdvisorPOPHybridTestsMissing_communication_efficiency 77
12.1Missing Communication Efficiency? . 77

iv

Contents

13AdvisorPOPHybridTestsSerialisation_efficiency 79
13.1Serialisation Efficiency . 79

14AdvisorPOPHybridTestsMissing_serialisation_efficiency 81
14.1Missing Serialisation Efficiency? . 81

15AdvisorPOPHybridTestsTransfer_efficiency 83
15.1Transfer Efficiency . 83

16AdvisorPOPHybridTestsMissing_transfer_efficiency 85
16.1Missing Transfer Efficiency? . 85

17AdvisorPOPHybridTestsThread_efficiency 87
17.1Thread Efficiency . 87

18AdvisorPOPHybridTestsMissing_thread_efficiency 89
18.1Missing Thread Efficiency? . 89
18.2Missing Amdahl's Efficiency? . 89

19AdvisorPOPHybridTestsAmdahl_efficiency 91
19.1Amdahl's Efficiency . 91

20AdvisorPOPHybridTestsOmpRegion_efficiency 93
20.1OpenMP Region Efficiency . 93

21AdvisorPOPHybridTestsMissing_omp_region_efficiency 95
21.1Missing OpenMP Region Efficiency? . 95

22AdvisorPOPHybridTestsIpc 97
22.1IPC (only computation) . 97

23AdvisorPOPHybridTestsMissing_ipc 99
23.1Missing IPC? . 99

24AdvisorPOPHybridTestsStalled_resources 101
24.1Stalled resources (only computation) . 101

25AdvisorPOPHybridTestsMissing_stalled_resources 103
25.1Missing "Resource stall cycles"? . 103

26AdvisorPOPHybridTestsNoWaitINS_efficiency 105
26.1Instructions (only computation) . 105

27AdvisorPOPHybridTestsMissingNoWaitINS_efficiency 107
27.1Missing Instructions (only computation)? . 107

28AdvisorPOPHybridTestsComputationTime 109
28.1Computation time . 109

29AdvisorPOPHybridTestsMissingComputationTime 111
29.1Missing Computation time? . 111

30AdvisorPOPHybridAddTestsParallel_efficiency 113
30.1Parallel Efficiency . 113

v

Contents

31AdvisorPOPHybridAddTestsMissing_parallel_efficiency 115
31.1Missing Parallel Efficiency? . 115

32AdvisorPOPHybridAddTestsProcess_efficiency 117
32.1Process Efficiency . 117

33AdvisorPOPHybridAddTestsMissing_process_efficiency 119
33.1Missing Process Efficiency? . 119

34AdvisorPOPHybridAddTestsCommunication_efficiency 121
34.1MPI Communication Efficiency . 121

35AdvisorPOPHybridAddTestsMissing_communication_efficiency 123
35.1Missing Communication Efficiency? . 123

36AdvisorPOPHybridAddTestsSerialisation_efficiency 125
36.1Serialisation Efficiency . 125

37AdvisorPOPHybridAddTestsMissing_serialisation_efficiency 127
37.1Missing Serialisation Efficiency? . 127

38AdvisorPOPHybridAddTestsTransfer_efficiency 129
38.1Transfer Efficiency . 129

39AdvisorPOPHybridAddTestsMissing_transfer_efficiency 131
39.1Missing Transfer Efficiency? . 131

40AdvisorPOPHybridAddTestsLoad_balance 133
40.1Computation Load Balance . 133

41AdvisorPOPHybridAddTestsMissing_load_balance 135
41.1Missing Computation Load Balance? . 135

42AdvisorPOPHybridAddTestsThread_efficiency 137
42.1Thread Efficiency . 137

43AdvisorPOPHybridAddTestsMissing_thread_efficiency 139
43.1Missing Thread Efficiency? . 139
43.2Missing Amdahl's Efficiency? . 139

44AdvisorPOPHybridAddTestsAmdahl_efficiency 141
44.1Amdahl's Efficiency . 141

45AdvisorPOPHybridAddTestsOmpRegion_efficiency 143
45.1OpenMP Region Efficiency . 143

46AdvisorPOPHybridAddTestsMissing_omp_region_efficiency 145
46.1Missing OpenMP Region Efficiency? . 145

47AdvisorPOPHybridAddTestsIpc 147
47.1IPC (only computation) . 147

48AdvisorPOPHybridAddTestsMissing_ipc 149
48.1Missing IPC? . 149

vi

Contents

49AdvisorPOPHybridAddTestsStalled_resources 151
49.1Stalled resources (only computation) . 151

50AdvisorPOPHybridAddTestsMissing_stalled_resources 153
50.1Missing Stalled resources? . 153

51AdvisorPOPHybridAddTestsNoWaitINS_efficiency 155
51.1Instructions (only computation) . 155

52AdvisorPOPHybridAddTestsMissingNoWaitINS_efficiency 157
52.1Missing Instructions (only computation)? . 157

53AdvisorPOPHybridAddTestsComputationTime 159
53.1Computation time . 159

54AdvisorPOPHybridAddTestsMissingComputationTime 161
54.1Missing Computation time? . 161

55AdvisorBSPOPHybridTestsParallel_efficiency 163
55.1Hybrid Parallel Efficiency . 163

56AdvisorBSPOPHybridTestsMissing_parallel_efficiency 165
56.1Missing Hybrid Parallel Efficiency? . 165

57AdvisorBSPOPHybridTestsLoadBalance_efficiency 167
57.1Hybrid Load Balance Efficiency . 167

58AdvisorBSPOPHybridTestsMissing_loadbalance_efficiency 169
58.1Missing Hybrid Load Balance Efficiency? . 169

59AdvisorBSPOPHybridTestsCommunication_efficiency 171
59.1Hybrid Communication Efficiency . 171

60AdvisorBSPOPHybridTestsMissing_communication_efficiency 173
60.1Missing Hybrid Communication Efficiency? . 173

61AdvisorBSPOPHybridTestsMPIParallel_efficiency 175
61.1MPI Parallel Efficiency . 175

62AdvisorBSPOPHybridTestsMissing_MPIparallel_efficiency 177
62.1Missing MPI Parallel Efficiency? . 177

63AdvisorBSPOPHybridTestsMPILoad_balance_efficiency 179
63.1MPI Load Balance Efficiency . 179

64AdvisorBSPOPHybridTestsMissing_MPIload_balance_efficiency 181
64.1Missing MPI Load Balance Efficiency? . 181

65AdvisorBSPOPHybridTestsMPICommunication_efficiency 183
65.1MPI Communication Efficiency . 183

66AdvisorBSPOPHybridTestsMissing_MPIcommunication_efficiency 185
66.1Missing MPI Communication Efficiency? . 185

vii

Contents

67AdvisorBSPOPHybridTestsOMPParallel_efficiency 187
67.1OpenMP Parallel Efficiency . 187

68AdvisorBSPOPHybridTestsMissing_OMPparallel_efficiency 189
68.1Missing OpenMP Parallel Efficiency? . 189

69AdvisorBSPOPHybridTestsOMPLoadBalance_efficiency 191
69.1OpenMP Load Balance Efficiency . 191

70AdvisorBSPOPHybridTestsMissing_OMPloadbalance_efficiency 193
70.1Missing OpenMP Load Balance Efficiency? . 193

71AdvisorBSPOPHybridTestsOMPCommunication_efficiency 195
71.1OpenMP Communication Efficiency . 195

72AdvisorBSPOPHybridTestsMissing_OMPcommunication_efficiency 197
72.1Missing OpenMP Communication Efficiency? 197

73AdvisorBSPOPHybridTestsIpc 199
73.1IPC (only computation) . 199

74AdvisorBSPOPHybridTestsMissing_ipc 201
74.1Missing IPC? . 201

75AdvisorBSPOPHybridTestsStalled_resources 203
75.1Stalled resources (only computation) . 203

76AdvisorBSPOPHybridTestsMissing_stalled_resources 205
76.1Missing Stalled resources? . 205

77AdvisorBSPOPHybridTestsNoWaitINS_efficiency 207
77.1Instructions (only computation) . 207

78AdvisorBSPOPHybridTestsMissingNoWaitINS_efficiency 209
78.1Missing Instructions (only computation)? . 209

79AdvisorBSPOPHybridTestsComputationTime 211
79.1Computation time . 211

80AdvisorBSPOPHybridTestsMissingComputationTime 213
80.1Missing Computation time? . 213

81AdvisorJSCTestsLoad_balance 215
81.1MPI computation Load Balance . 215

82AdvisorJSCTestsMissing_load_balance 217
82.1Missing MPI computation Load Balance? . 217

83AdvisorJSCTestsCommunication_efficiency 219
83.1MPI communication Efficiency . 219

84AdvisorJSCTestsMissing_communication_efficiency 221
84.1Missing MPI communication Efficiency? . 221

viii

Contents

85AdvisorJSCTestsSerialisation_efficiency 223
85.1Serialisation Efficiency . 223

86AdvisorJSCTestsMissing_serialisation_efficiency 225
86.1Missing Serialisation Efficiency? . 225

87AdvisorJSCTestsTransfer_efficiency 227
87.1Transfer Efficiency . 227

88AdvisorJSCTestsMissing_transfer_efficiency 229
88.1Missing Transfer Efficiency? . 229

89AdvisorJSCTestsAmdahl_efficiency 231
89.1OpenMP Amdahl's Efficiency . 231

90AdvisorJSCTestsMissingAmdahl_efficiency 233
90.1Missing OpenMP Amdahl's Efficiency? . 233

91AdvisorJSCTestsOmpLoad_balance 235
91.1OpenMP Load Balance Efficiency . 235

92AdvisorJSCTestsMissing_omp_load_balance 237
92.1Missing OpenMP Load Balance Efficiency? . 237

93AdvisorJSCTestsOmpSerialisation_efficiency 239
93.1OpenMP Serialisation Efficiency . 239

94AdvisorJSCTestsMissing_omp_serialisation_efficiency 241
94.1Missing OpenMP Serialisation Efficiency? . 241

95AdvisorJSCTestsIpc 243
95.1IPC (only computation) . 243

96AdvisorJSCTestsMissing_ipc 245
96.1Missing IPC? . 245

97AdvisorJSCTestsStalled_resources 247
97.1Stalled resources (only computation) . 247

98AdvisorJSCTestsMissing_stalled_resources 249
98.1Missing Stalled resources? . 249

99AdvisorJSCTestsNoWaitINS_efficiency 251
99.1Instructions (only computation) . 251

100AdvisorJSCTestsMissingNoWaitINS_efficiency 253
100.1Missing Instructions (only computation)? . 253

101AdvisorJSCTestsComputationTime 255
101.1Computation time . 255

102AdvisorJSCTestsMissingComputationTime 257
102.1Missing Computation time? . 257

ix

Contents

103AdvisorPOPTestsParallel_efficiency 259
103.1Parallel Efficiency . 259

104AdvisorPOPTestsMissing_parallel_efficiency 261
104.1Missing Parallel Efficiency? . 261

105AdvisorPOPTestsLoad_balance 263
105.1Load Balance . 263

106AdvisorPOPTestsMissing_load_balance 265
106.1Missing Load Balance? . 265

107AdvisorPOPTestsCommunication_efficiency 267
107.1Communication Efficiency . 267

108AdvisorPOPTestsMissing_communication_efficiency 269
108.1Missing Communication Efficiency? . 269

109AdvisorPOPTestsSerialisation_efficiency 271
109.1Serialisation Efficiency . 271

110AdvisorPOPTestsMissing_serialisation_efficiency 273
110.1Missing Serialisation Efficiency? . 273

111AdvisorPOPTestsTransfer_efficiency 275
111.1Transfer Efficiency . 275

112AdvisorPOPTestsMissing_transfer_efficiency 277
112.1Missing Transfer Efficiency? . 277

113AdvisorPOPTestsIpc 279
113.1IPC (only computation) . 279

114AdvisorPOPTestsStalled_resources 281
114.1Stalled resources (only computation) . 281

115AdvisorPOPTestsMissing_stalled_resources 283
115.1Missing Stalled resources? . 283

116AdvisorPOPTestsNoWaitINS_efficiency 285
116.1Instructions (only computation) . 285

117AdvisorPOPTestsMissingNoWaitINS_efficiency 287
117.1Missing Instructions (only computation)? . 287

118AdvisorPOPTestsComputationTime 289
118.1Computation time . 289

119AdvisorPOPTestsMissingComputationTime 291
119.1Missing Computation time? . 291

120AdvisorPOPComputation_efficiency 293
120.1Computation Efficiency . 293

x

Contents

121AdvisorPOPInstruction_efficiency 295
121.1Instruction Efficiency . 295

122AdvisorPOPTestsIpc_efficiency 297
122.1IPC Efficiency . 297

123AdvisorPOPTestsMissing_ipc 299
123.1Missing IPC? . 299

124KNL Vectorization metrics 301
124.1KNL Vectorization metrics . 301

125Memory analysis for KNL 303

126Vectorization analysis for KNL 305

127Memory transfer 307

128Missing Memory transfer? 309

129Memory bandwidth 311

130Missing Memory bandwidth? 313

131LLC Miss metric 315

132Missing LLC Miss metric? 317

133VPU Intensity 319

134Missing VPU Intensity? 321

135L1 to Computation ratio 323

136Missing L1 to Computation ratio 325

137L2 to L1 ratio 327

138Missing L2 to L1 329

139Customization with Qt Stylesheets 331

140Appendix 333
140.1File format of statistics files . 333

Bibliography 335

xi

1 Copyright

Copyright © 1998–2022 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

2 Cube User Guide

2.1 Abstract

CUBE is a presentation component suitable for displaying performance data for parallel programs including MPI

and OpenOpenMP applications. Program performance is represented in a multi-dimensional space including

various program and system resources. The tool allows the interactive exploration of this space in a scalable

fashion and browsing the different kinds of performance behavior with ease. CUBE also includes a library to

read and write performance data as well as operators to compare, integrate, and summarize data from different

experiments. This user manual provides instructions of how to use the CUBE display, how to use the operators,

and how to write CUBE files.

The version 4 of CUBE implementation has an incompatible API and file format to preceding versions.

2.2 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for
displaying a wide variety of performance data for parallel programs including MPI [?]
and OpenMP [?] applications. CUBE allows interactive exploration of the performance
data in a scalable fashion. Scalability is achieved in two ways: hierarchical decomposition
of individual dimensions and aggregation across different dimensions. All metrics are
uniformly presented in the same display and thus provide the ability to easily compare the
effects of different kinds of program behavior.

CUBE has been designed around a high-level data model of program behavior called the
cube performance space. The CUBE performance space consists of three dimensions: a
metric dimension, a program dimension, and a system dimension. The metric dimension
contains a set of metrics, such as communication time or cache misses. The program
dimension contains the program's call-tree, which includes all the call paths onto which
metric values can be mapped. The system dimension contains the components executing in
parallel, which can be processes or threads depending on the parallel programming model.
Each point (m, c, s) of the space can be mapped onto a number representing the actual
measurement for metric m while the control flow of process/thread s was executing call
path c . This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy where a metric at a lower level is a subset
of its parent. For example, communication time is a subset of execution time. Second,
the program dimension is organized in a call-tree hierarchy. However, sometimes it can
be advantageous to abstract away from the hierarchy of the call-tree, for example if one
is interested in the severities of certain methods, independently of the position of their
invocations. For this purpose CUBE supports also flat call profiles, that are represented as
a flat sequence of all methods. Finally, the system dimension is organized in a multi-level

3

2 Cube User Guide

hierarchy consisting of the levels, e.g., machine, smp node, process, and thread. This
hierarchy can vary depending on the used system.

CUBE also provides a library to read and write instances of the previously described data
model in the form of a cubex file (which is a tar ed directory). The file representation is
divided into a metadata part and a data part. The metadata part describes the structure
of the three dimensions plus the definitions of various program and system resources and
stored in a form of an tar file anchor.xml inside of the cubex envelope. The data part
contains the actual severity numbers to be mapped onto the different elements of the
performance space and stored in binary format in various files inside of the cubex envelope.

The display component can load such a file and display the different dimensions of the
performance space using three coupled tree browsers (figure 2.1). The browsers are
connected in such a way that you can view one dimension with respect to another dimension.
The connection is based on selections: in each tree you can select one or more nodes. For
example, in Figure 2.1 the Execution metric, the adi call path node, and Process 0 are
selected. For each tree, the selections in the trees on its left-hand-side (if any) restrict the
considered data: The metric nodes aggregate data over all call paths and all system-tree
nodes, the call-tree aggregates data for the Execution metric over all system nodes, and
each node of the system-tree shows the severity for the Execution metric of the selected
call path for this system node.

If the CUBE file contains topological information, the distribution of the performance
metric across the topology can be examined using the topology view.

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE includes a feature designed to
simplify cross-experiment analysis. The CUBE algebra [?] is an extension of the framework
for multi-execution performance tuning by Karavanic and Miller [?] and offers a set of
operators that can be used to compare, integrate, and summarize multiple CUBE data sets.
The algebra allows the combination of multiple CUBE data sets into a single one that can
be displayed and examined like the original ones.

In addition to the information provided by plain CUBE files a statistics file can be provided,
enabling the display of additional statistical information of severity values. Furthermore,
a statistics file can also contain information about the most severe instances of certain
performance patterns – globally as well as with respect to specific call paths. If a trace file
of the program being analyzed is available, the user can connect to a trace browser (i.e.
Vampir) and then use CUBE to zoom their timelines to the most severe instances of the
performance patterns for a more detailed examination of the cause of these performance
patterns.

The following sections explain how to use the CUBE display, how to create CUBE files, and
how to use the algebra and other tools.

2.3 Command line options

To invoke GUI for CUBE profile exploration one uses command:

cube [options] filename

4

2.4 Environment variables

A list of main options:

-disable-plugins start cube with all plugins disabled

-docpath=<path>\ path to the html documentation

-presentation opens cube in presentation mode, which shows a mouse icon next to the
cursor

-single disable parallel execution of cube

-start <plugin> [args] start context free plugin with the name <plugin>

-verbose print detailed information

-h|-help Display list of command line options

A list of developer options:

-disable-calculation disable automatic calculation of tree items

-expert start cube in expert mode which shows e.g. ghost metrics or additional analyses
in Advisor plugin

-memory=<strategy> uses given memory strategy. If the option is omitted, CubeGUI
reads the data from the .cubex file at the first access. "preload" reads all data into
memory during the initialization phase. "lastN" keeps the last N data rows in memory.
N is set via environment CUBE_NUMBER_ROWS.

2.4 Environment variables

CUBE provides the option of displaying an online description for entries in the metric-tree
via a context menu. By default, it will search for the given HTML description file on all
the mirror URLs specified in the CUBE file. In case there is no Internet connection, the
Qt-based CUBE GUI can be configured to also search in a list of local directories for
documentation files. These additional search paths can be specified via the environment
variable CUBE_DOCPATH as a colon-separated list of local directories, e.g.,

CUBE_DOCPATH=/opt/software/doc:/usr/local/share/doc

Note that this feature is only available in the Qt-based GUI and not in the older wxWidgets-
based one.

To prevent CUBE from trying to load the HTML documentation via HTTP or HTTPS mirror
URLs (e.g., in restricted environments were outbound connections are blocked by a firewall
and the timeout is taking very long), the environment variable CUBE_DISABLE_HTTP_DOCS
can be set to either 1, yes or true.

Cube searches for plugins in the directory "cube-plugins/" below the installation directory.
This is the place where the predefined plugins are installed. With the environment variable
CUBE_PLUGIN_DIR one can specify a user defined place where third-party plugins are
installed. If CUBE_PLUGIN_DIR contains a colon or semicolon separated list of paths, these

5

2 Cube User Guide

paths are prepended to the default search path.

There are environment variables comming from the CubeLib library. Hence the will have
an effect also for the CubeLib tools.

These are two variables, CUBE_TMP and CUBE_DATA_LOADING.

During runtime CubeLib creates some temporary files, which usually are saved into the
TMP directory. However, some systems put a quota on file size and on file numbers on the
temporary directory. One wants to overcome this limitation by using another places.

Variable CUBE_TMP (following are aliases CUBE_TEMP, CUBE_TMPDIR, SCALASCA_TMP, SCALASCA_TEMP,
SCALASCA_TMPDIR, SCOREP_TMP, SCOREP_TEMP, SCOREP_TMPDIR, TMP, TEMP, (TMPDIR win32
only)) informs CubeLib wich directory to use for the temporary files.

CUBE C++ library allows to control the way it loads the data using the environment
variable CUBE_DATA_LOADING. Following values are possible:

1. keepall - data is loaded on demand and kept in memory to the end of lyfecycle of the
Cube object.

2. preload - all data is loaded during the metric initialization and kept in memory to the
end of lyfecycle of the Cube object.

3. manual - Application should request and drop the data sets explicitly. No correctness
check is performed. Therefore one has to use this strategy with care.

4. lastn - Only N last used data rows are kept in memory. N is specified via environment
variable CUBE_NUMBER_ROWS

2.5 Using the Display

This section explains how to use the CUBE-QT display component. After installation, the
executable "cube" can be found in the specified directory of executables (specifiable by the
“prefix'' argument of configure, see the CUBE Installation Manual). The program supports
as an optional command-line argument the name of a cube file that will be opened upon
program start.

After a brief description of the basic principles, different components of the GUI will be
described in detail.

2.5.1 Basic Principles

The CUBE-QT display has three tree browsers, each of them representing a dimension of
the performance space (figure 2.1). Per default, the left tree displays the metric dimension,
the middle tree displays the program dimension, and the right tree displays the system
dimension. The nodes in the metric tree represent metrics. The nodes in the program
dimension can have different semantics depending on the particular view that has been
selected. In Figure2.1, they represent call paths forming a call-tree. The nodes in the
system dimension represent machines, nodes, processes, or threads from top to bottom.

Each node is associated with a value, which is called the severity and is displayed simul-
taneously using a numerical value as well as a colored square. Colors enable the easy

6

2.5 Using the Display

Figure 2.1: CUBE display window

Figure 2.2: CUBE display window with expanded metric node ''Execution''

identification of nodes of interest even in a large tree, whereas the numerical values enable
the precise comparison of individual values. The sign of a value is visually distinguished by
the relief of the colored square. A raised relief indicates a positive sign, a sunken relief
indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing a
node. In the metric-tree in figure 2.1, the metric Execution is selected. Selecting a node
in a tree causes the other trees on its right to display values for that selection. For the
example of figure 2.1, the metric-tree displays the total metric values over all call-tree
and system nodes, the call-tree displays values for the Execution metric over all system
entities, and the system-tree for the Execution metric and the adi call-tree node. Briefly, a
tree is always an aggregation over all selected nodes of its neighboring trees to the left.

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded nodes
with a visible subtree by a [-] sign. You can expand/collapse a node by left-clicking on the
corresponding [+]/[-] signs. Collapsed nodes have inclusive values, i.e., their severity is
the sum of the severities over the whole collapsed subtree. For the example of Figure2.1,
the Execution metric value 3496.10 is the total time for all executions. On the other hand,
the displayed values of expanded nodes are their exclusive values. E.g., the expanded
Execution metric node in Figure 2.2 shows that the program needed 2839.54 seconds for
execution other than MPI.

Note that expanding/collapsing a selected node causes the change of the current values

7

2 Cube User Guide

in the trees on its right-hand side. As explained above, in our example in Figure 2.1
the call-tree displays values for the Execution metric over all system entities. Since the
Execution node is collapsed, the call-tree severities are computed for the whole Execution
metric's subtree. When expanding the selected Execution node, as shown in Figure 2.2,
the call-tree displays values for the Execution metric without the MPI metric.

8

2.5 Using the Display

2.5.2 GUI Components

The GUI consists (from top to bottom) of

• a menu bar,

• three value mode combo boxes,

• three resizable panes each containing some tabs,

• three selected value information widgets,

• a color legend, and

• a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane.
You can switch between the different tabs of a pane by left-clicking on the desired tab at
the top of the pane. Note that the order of the panes can be changed (see the description
of the menu item Display⇒ Dimension order in Section 2.5.2.1).

The metric pane provides only the metric-tree browser. The call pane offers a call-tree
browser and a flat call profile. If OpenMP tasks have been instrumented, an additional
task-tree is inserted. The system pane has a system-tree browser. Tree browsers also
provide a context menu.

2.5.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a plugin menu and a
help menu. Some menu functions also have a keyboard shortcut, which is written besides
the menu item's name in the menu. E.g., you can open a file with Ctrl+O without going
into the menu. A short description of the menu items is visible in the status bar if you stay
for a short while with the mouse above a menu item.

1. File: The file menu offers the following functions:

a) Open (Ctrl+O): Offers a selection dialog to open a CUBE file. In case of an
already opened file, it will be closed before a new file gets opened. If a file got
opened successfully, it gets added to the top of the recent files list (see below). If
it was already in the list, it is moved to the top.

b) Open URL: Opens a remote file dialog (see section 2.6)

c) Save as (Ctrl+S): Offers a selection dialog to save a copy of a CUBE file. Opened
CUBE file stays loaded in cube.

d) Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file is
opened.

e) Open external: Opens a file for the external percentage value mode (see section
2.5.2.2).

f) Close external: Closes the current external file and removes all corresponding
data. Disabled if no external file is opened.

g) Settings: Offers saving, loading, and deletion of global settings. Global settings
don't depend on the loaded cube file and are saved in a system specific format.
These settings e.g. store the appearance of the application like the widget sizes,

9

2 Cube User Guide

color and precision settings, the order of panes, etc.

"Restore last state" depends on a loaded cube file. If it is activated, the state of
the cube file, e.g. selected and expanded items, is saved before the cube file is
closed and restored after loading.

h) Screenshot: The function offers you to save a screen snapshot in a PNG file. Un-
fortunately the outer frame of the main window is not saved, only the application
itself.

i) Quit (Ctrl+Q): Closes the application.

j) Recent files: The last 5 opened files are offered for re-opening, the top-most
being the most recently opened one. A full path to the file is visible in the status
bar if you move the mouse above one of the recent file items in the menu.

2. Display: The display menu offers the following functions:

a) Dimension order: As explained above, CUBE has three resizable panes. Initially
the metric pane is on the left, the call pane is in the middle, and the system
pane is on the right-hand side. However, sometimes you may be interested in
other orders, and that is what this menu item is about. It offers all possible pane
orderings. For example, assume you would like to see the metric and call values
for a certain thread. In this case, you could place the system pane on the left,
the metric pane in the middle, and the call pane on the right, as shown in Figure
2.3. Note that in panes to the left of the metric pane no meaningful valuescan be
presented, since they miss a reference metric; in this case values are specified
to be undefined, denoted by a “-'' (minus) sign.

Figure 2.3: Modified pane order via the menu ''Display => Dimension order''

b) Choose/Edit colormap: Allows for selection of color maps and changing of
color settings in a new dialog. In the configuration dialog, the Ok button applies
the settings to the display and closes the dialog, the Apply button applies the
settings to the display, and Cancel cancels all changes since the dialog was
opened (even if "Apply" was pressed in between) and closes the dialog.

The configuration dialog in Figure 2.4 shows the default color map for Cube.
Other colormaps may be added using plugins, see for example the Advanced
Colormap Plugin (2.7.3). At the top of the dialog you see a color legend with

10

2.5 Using the Display

Figure 2.4: Configuration dialog of the default colormap which opened via the menu ''Dis-
play => Edit colormap''

some vertical black lines, showing the position of the color scale start, the colors
cyan, green, and yellow, and the color scale end. These lines can be dragged
with the left mouse button, or their position can also be changed by typing in
some values between 0.0 (left end) and 1.0 (right end) below the color legend in
the corresponding spins.

The different coloring methods offer different functions to interpolate the colors
at positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a threshold
percentage value between 0.0 and 100.0, below which colors are lightened. The
nearer to the left end of the color scale, the stronger the lightening (with linear
increase).

With the spin at the bottom of the dialog you can define a threshold percentage
value between 0.0 and 100.0 , below which values should be colored white.

c) Set font size: Opens a dialog to set the font size. The size can also be changed
with Control+<mouse-wheel> or Control+<->/<+>

d) Customize style sheets Opens a dialog to define 139 to change e.g. the fonts
and sizes of GUI elements.

e) Configure value view: This menu item opens a dialog in which the icon and the
textual value representation of the tree items can be configured. Depending on
the data type of the selected metric, additional options and additional value view
plugins may be available. For metrics that consist of more than one value, e.g.
tau metrics (see figure 2.5), the user can select which value should be used for
the icon and which values for the following text.

11

2 Cube User Guide

Figure 2.5: Value view config dialog for tau metrics

f) Precision: Activating this menu item opens a dialog for precision settings (see
Figure 2.6). Besides Ok and Cancel, the dialog offers an Apply button, that
applies the current dialog settings to the display. Pressing Cancel undoes all
changes due to the dialog, even if you already pressed Apply previously, and
closes the dialog. Ok applies the settings and closes the dialog.

It consists of two parts: precision settings for the tree displays, and precision
settings for the selected value info widgets and the topology displays. For both
formats, three values can be defined:

i. Number of digits after the decimal point: As the name suggests, you
can specify the precision for the fraction part of the values. E.g., the number
1.234 is displayed as 1.2 if you set this precision to 1, as 1.234 if you set it
to 3, and as 1.2340 if you set it to 4.

ii. Exponent representation above 10x with x: Here you can define above
which threshold scientific notation should be used. E.g., the value 1000 is
displayed as 1000 if this value is larger then 3 and as 1e3 otherwise.

iii. Display zero values below 10−x with x: Due to inexact floating point
representation, it often happens that users wish to round down values very
near by zero to zero. Here you can define the threshold below which this
rounding should take place. E.g., the value 0.0001 is displayed as 0.0001 if
this value is larger than 3 and as zero otherwise.

iv. Use human readable units for bytes and occ: If enabled, units will be
displayed in a human readable format, e.g. MB or GB.

g) Trees: This menu offers options to change the contents and the appearance of
the items of all trees.

i. Configure Tree Item Marker In this dialog, you can change the appear-
ance of defined tree item markers. You may choose if the items should be
marked with a special background color or with an icon (see 3).

ii. Demangle Function Names (only call trees) If this option is enabled (de-
fault), cube tries to demangle function names.

iii. Shorten Function Names (only call trees) This menu item opens a dialog
in which you can hide parts of long function names. You may hide argument

12

2.5 Using the Display

Figure 2.6: Display => Precision

lists and return values of C++ functions. You may also hide namespaces,
class and templates from C++ function names. For Fortran subroutines,
module names can be hidden.

iv. Append rank to system tree items If this option is enabled, the MPI rank
is appended to all system tree leafs. This is useful, if the MPI level is hidden
or if there is a large amount of threads.

h) Optimize width: Under this menu item CUBE offers widget rescaling such that
the amount of information shown is maximized, i.e., CUBE optimally distributes
the available space between its components. You can chose if you would like to
stick to the current main window size, or if you allow to resize it.

i) Show synchronization toolbar The synchronization of several cube instances
is described in 2.8.4.

j) Show bookmark toolbar Shows a toolbar which allows you to save the current
state of a loaded cube file along with a name and a textual description. The state
implies e.g. the currenly selected items, the value mode of the trees, the active
tabs and the state of the plugins. These states are saved next to the opened cube
file in cubebasename.ini.

k) Enable presentation mode If the presentation mode is enable, a mouse icon
is shown next to the cursor

l) Enable QWebEngine QWebEngine is used for the HTML-rendering of the
documentation, if the module is available. On some systems, problems with the
graphics driver or OpenGL cause QWebEngine to display a blank window. For
that reason it's possible to disable QWebEngine (Display⇒ QWebEngine) and to
show the documentation in a basic layout instead. This option is also saved as
setting and used for the next start of CubeGUI.

13

2 Cube User Guide

3. Plugins: The plugin menu allows the user to define which plugins are laoded. For
each loaded plugin, a submenu is added. The submenu contains a menu item to
enable or disable the plugin and the plugin may add additional menu items.

a) Initial activation settings: Opens a dialog to define which plugins should be
loaded.

b) Activate/deactivate plugins: Allows to activate or deactive a plugin for the
current session.

4. Help: The help menu provides help on usage and gives some information about
CUBE.

a) Getting started: Opens a dialog with some basic information on the usage of
CUBE.

b) Mouse and keyboard control: Lists mouse and keyboard controls as given in
Section 2.7.7.1.

c) What's this?: Here you can get more specific information on parts of the CUBE
GUI. If you activate this menu item, you switch to the “What's this?'' mode. If
you now click on a widget, an appropriate help text is shown. The mode is left
when help is given or when you press Esc.

Another way to ask the question is to move the focus to the relevant widget and
press Shift+F1.

d) About: Opens a dialog with release information.

e) Plugin info Shows information about the plugin version, a short description and
its location in the file system

f) Plugin documentation shows the plugin documentation in a browser window

g) Selected metric description: Opens a new window showing the description of
the currently selected metric, equivalent to Documentation in the metric-tree
context menu. Disabled if online documentation is unavailable.

h) Selected region description: Opens a new window showing the description
of the currently selected region, equivalent to Documentation in the call-tree
context menu. Disabled if online documentation is unavailable.

2.5.2.2 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree, where
it is possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below, the
severity values from the CUBE file are displayed. However, sometimes these values may be
hard to interpret, and in such cases other value modes can be applied. Basically, there are
three categories of additional value modes.

• The first category presents all severities in the tree as percentage of a reference
value. The reference value can be the absolute value of a selected or a root node
from the same tree or in one of the trees on the left-hand side. For example, in the
Own root percent value mode the severity values are presented as percentage of

14

2.5 Using the Display

the own root's (inclusive) severity value. This way you can see how the severities are
distributed within the tree. All the value modes (2 – 8) fall into this category.

All nodes of trees on the left-hand side of the metric-tree have undefined values.
(Basically, we could compute values for them, but it would sum up the severities
over all metrics, that have different meanings and usually even different units, and
thus those values would not have much expressiveness.) Since we cannot compute
percentage values based on undefined reference values, such value modes are not
supported. For example, if the call-tree is on the left-hand side, and the metric-tree is
in the middle, then the metric-tree does not offer the Call root percent mode.

• The second category is available for system-trees only, and shows the distribution
of the values within hierarchy levels. E.g., the Peer percent value mode displays
the severities as percentage of the maximal value on the same hierarchy depth. The
value modes (9 – 10) fall into this category.

• Finally, the External percent value mode relates the severity values to severities
from another external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be available:

1. Absolute (default): Available for all trees. The displayed values are the severity
value as read from the cube file, in units of measurement (e.g., seconds). Note that
these values can be negative, too, i.e., the expression “absolute'' in not used in its
mathematical sense here.

2. Own root percent:Available for all trees. The displayed node values are the percent-
age of their absolute values with respect to the absolute value of their root node in
collapsed state.

3. Metric root percent: Available for trees on the right-hand side of the metric-tree.
The displayed node values are the percentage of their absolute values with respect to
the absolute value of the collapsed metric root node. If there are several metric roots,
the root of the selected metric node is taken. Note, that multiple selection in the
metric-tree is possible within one root's subtree only, thus there is always a unique
metric root for this mode.

4. Metric selection percent: Available for trees on the right-hand side of the metric-
tree. The displayed node values are the percentage of their absolute values with
respect to the selected metric node's absolute value in its current collapsed/expanded
state. In case of multiple selection, the sum of the selected metrics' values for the
percentage computation is taken.

5. Call root percent: Available for trees on the right-hand side of the call-tree. Similar
to the metric root percent, but the call-tree root instead of the metric-tree root is
considered. In case of multiple selection with different call roots, the sum of those
root values is considered.

6. Call selection percent: Available for trees on the right-hand side of the call-tree.
Similar to the metric selection percent, percentage is computed with respect to the
selected call node's value in its current collapsed/expanded state. In case of multiple
selections, the sum of the selected call values is considered.

7. System root percent: Available for trees on the right-hand side of the system-tree.
Similar to the call root percent, the sum of the inclusive values of all roots of selected
system nodes are considered for percentage computation.

15

2 Cube User Guide

8. System selection percent:Available for trees on the right-hand side of the system-
tree. Similar to the call selection percent, percentage is computed with respect to the
selected system node(s) in its current collapsed/expanded state.

9. Peer percent:For the system-tree only. The peer percentage mode shows the percent-
age of the nodes' inclusive absolute values relative to the largest inclusive absolute
peer value, i.e., to the largest inclusive value between all entities on the current
hierarchy depth. For example, if there are 3 threads with inclusive absolute values
100, 120, and 200, then they have the peer percent values 50, 60, and 100.

10. Peer distribution:For the system-tree only. The peer distribution mode shows the
percentage of the system nodes' inclusive absolute values on the scale between
the minimum and the maximum of peer inclusive absolute values. For example, if
there are 3 threads with absolute values 100, 120 and 200, then they have the peer
distribution values 0, 20 and 100.

11. External percent: Available for all trees, if the metric tree is the left-most widget.
To facilitate the comparison of different experiments, users can choose the external
percentage mode to display percentages relative to another data set. The external
percentage mode is basically like the metric root percentage mode except that the
value equal to 100% is determined by another data set.

Note that in all modes, only the leaf nodes in the system hierarchy (i.e., processes or
threads) have associated severity values. All other hierarchy levels (i.e., machines, nodes
and eventually processes) are only used to structure the hierarchy. This means that their
severity is undefined—denoted by a “-'' (minus) sign—when they are expanded.

2.5.2.3 System resource subsets

By default, all system resources (typically threads) are included when determining boxplot
statistics. Other defined subsets can be chosen from the combobox below the boxplot,
such as “Visited'' threads which are only those threads that visited the currently selected
callpath. The current subset is retained until another is explicitly chosen or a new subset is
defined.

Additional subsets are defined from the system-tree with the Define subset context menu
using the currently selected threads via multiple selection (Ctrl+<left-mouse click>) or
with the Find Items context menu selection option.

2.5.2.4 Tree browsers

A tree browser displays different hierarchical data structures in form of trees. Currently
supported tree types are metric-trees, call-trees and their flat call profiles, and system-trees.
The structure of the displayed data is common in all trees: The indentation of the tree
nodes reflects the hierarchical structure. Expandable nodes, i.e., nodes with non-hidden
children, are equipped with a [+]/[-] sign ([+] for collapsed and [-] for expanded nodes).
Furthermore, all nodes have a color icon, a value, and a label.

The value of a node is computed, as explained earlier, basing on the current selections
in the trees on the left-hand side and on the current value mode. The precision of the
value display in trees can be modified, see the menu item Display⇒ Precision in Section

16

2.5 Using the Display

2.5.2.1. The color icon reflects the position of the node's value between 0.0 and a maximal
value. These maximal value is the maximal value in the tree for the absolute value mode,
or 100.0 otherwise. See the menu item Display⇒ Choose colormap in Section 2.5.2.1 and
the context menu item Min/max values in the context menu description below for color
settings.

A label in the metric-tree shows the metric's name. A label in the call-tree shows the last
callee of a particular call path. If you want to know the complete call path, you must read
all labels from the root down to the particular node you are interested in. After switching
to the flat profile view (see below), labels in the flat call profile denote methods or program
regions. A label in the system-tree shows the name of the system resource it represents,
such as a node name or a machine name. Processes and threads are usually identified by a
rank number, but it is possible to give them specific names when creating a CUBE file. The
thread level of single-threaded applications is hidden. Multiple root nodes are supported.

After opening a data set, the middle panel shows the call-tree of the program. However,
a user might wish to know which fraction of a metric can be attributed to a particular
region (e.g., method) regardless of from where it was called. In this case, you can switch
from the call-tree view (default) to the flat-profile view (Figure 2.7). In the flat-profile
view, the call-tree hierarchy is replaced with a source-code hierarchy consisting of two
levels: regions and their subroutines. Any subroutines are displayed as a single child node
labeled Subroutines. A subroutine node represents all regions directly called from the
region above. In this way, you are able to see which fraction of a metric is associated with
a region exclusively, that is, without its regions called from there.

When tasks are encountered while reading the Cube file, a third tab next to call-tree is
provided to display them separately. In general terms, tasks are pieces of code scheduled
and executed by a runtime asynchronously. Due to their asynchronous nature and their
ability to be suspended and continued at a potentially different position in the call-tree
handling them inside the call-tree itself may lead to inconsistent results. For OpenMP,
the call-tree therefore contains only stub nodes with visit and time metric values at those
execution points, while the executions and their task local call-trees will be displayed in a
separate tasks tab. Currently, only OpenMP tasks are generated by Score-P, however the
paradigm attribute of those task instances allows handling of tasks of different paradigms.

If tasks are involved, the values of the trees on the left (default: metric tree) depend on the
active call tab. The task-tree only contains the task related paths. The call-tree contains all
paths except for the task-local trees, which are replaced by stub nodes at their execution
points. The flat-tree on the other hand, still contains all execution paths. There may be
items of the flat-tree, that cannot be calculated for exclusive metrics. These items consist
of paths from the task tree and of paths from the call-tree. Their exact contributions cannot
be determined. These values are marked with a dash and a warning message is displayed
on the status line.

Tree displays are controlled by the left and right mouse buttons and some keyboard keys.
The left mouse button is used to select or expand/collapse a node: You can expand/collapse
a node by left-clicking on the attached [+]/[-] sign, and select it by left-clicking elsewhere
in the node's line. To select multiple items, Ctrl+<left-mouse click> can be used. Selection
without the Ctrl key deselects all previously selected nodes and selects the clicked node.
In single-selection mode you can also use the up/down arrows to move the selection one
node up/down. The right mouse button is used to pop up a context menu with node-specific
information, such as online documentation (see the description of the context menu below).

17

2 Cube User Guide

Figure 2.7: CUBE flat profile

Each tree has its own context menu which can be activated by a right mouse click within
the tree's window. If you right-click on one of the tree's nodes, this node gets framed, and
serves as a reference node for some of the menu items. If you click outside of tree items,
there is no refernce node, and some menu items are disabled.

The context menu consists, depending on the type of the tree, of some of the following
items. If you move the mouse over a context menu item, the status bar displays some
explanation of the functionality of that item.

1. Collapse all: Collapses all nodes in the tree.

2. Collapse subtree: Enabled only if there is a reference node. It collapses all nodes in
the subtree of the reference node (including the reference node).

3. Expand all: Expands all nodes in the tree.

4. Expand subtree: Enabled only if there is a reference node. Expands all nodes in the
subtree of the reference node (including the reference node).

5. Expand largest: Enabled only if there is a reference node. Starting at the reference
node, expands its child with the largest inclusive value, and continues recursively
with that child until it finds a leaf.

6. Expand marked: Shows all marked nodes by expanding their parents (see 3).

7. Expand current level: For system-trees only. Shows all nodes that are on the same
hierarchy level as the chosen one by expanding their parents.

8. Dynamic hiding: Not available for metric-trees. This menu item activates dynamic
hiding. All currently hidden nodes get shown. You are asked to define a percentage
threshold between 0.0 and 100.0. All nodes whose color position on the color scale (in
percent) is below this threshold get hidden. As default value, the color percentage
position of the reference node is suggested, if you right-clicked over a node. If not, the
default value is the last threshold. The hiding is called dynamic, because upon value
changes (caused for example by changing the node selection) hiding is re-computed
for the new values. In other words, value changes may change the visibility of the
nodes.

18

2.5 Using the Display

a) Redefine threshold: This menu item is enabled if dynamic hiding is already
activated. This function allows to re-define the dynamic hiding threshold as
described above.

During dynamic hiding, for expanded nodes with some hidden children and for nodes
with all of its children hidden, their displayed (exclusive) value includes the hidden
children's inclusive value. The percentage of the hidden children is shown in brackets
next to this aggregate value.

9. Static hiding: Not available for metric-trees. This menu item activates static hiding.
All currently hidden nodes stay hidden. Additionally, you can hide and show nodes
using the now enabled sub-items:

a) Static hiding of minor values: Enabled only in the static hiding mode. As
described under dynamic hiding, you are asked for a hiding threshold. All nodes
whose current color position on the color scale is below this percentage threshold
get hidden. However, in contrast to dynamic hiding, these hidings are static:
Even if after some value changes the color position of a hidden node gets above
the threshold, the node stays hidden.

b) Hide this: Enabled only in the static hiding mode if there is a reference node.
Hides the reference node.

c) Show children of this: Enabled only in the static hiding mode if there is a
reference node. Shows all hidden children of the reference node, if any.

Like for dynamic hiding, for expanded nodes with some hidden children and for nodes
with all of its children hidden, their displayed (exclusive) value includes the hidden
children's inclusive value. The percentage of the hidden children is shown in brackets
next to this aggregate value.

10. No hiding: Not available for metric-trees. This menu item deactivates any hiding,
and shows all hidden nodes.

11. Find items: For all trees. Opens a text input widget below the corresponding tree to
enter a regular expression to search for. If the user called the context menu over an
item, the default text is the name of the reference node. All non-hidden nodes whose
names contain the given expression are marked with a yellow background, and all
collapsed nodes whose subtree contains such a non-hidden node by a light yellow
background.

The button expand all expands all found items.

The button select all selects all found items. The selected items may still be collapsed.

The arrow buttons select the next or the previous found item. The shortcuts for these
actions are F3 and Shift+F3.

12. Clear found items: For all trees. Removes the background markings of the preced-
ing "find items" action.

13. Define subset: Only for system-tree. Uses the currently selected system resources
(e.g., from a preceding Find items) to create a new subset of all system resources
(typically threads) with the provided name. This is added to the combobox at the
bottom of the system-tree and boxplot statistics panes, and becomes the currently

19

2 Cube User Guide

active subset for which statistics are calculated.

14. Info/Documentation: For metric and call-trees Shows combined information about
the selected metric an call-tree items in a new tab. For the selected metric, informa-
tion about display, unique name, data type, unit of measurements and kind of metric
is shown. If the metric is derived, the CubePL expression is shown.

For the selected call path, information about call path id (to use it with command line
tools like cube_dump), region begining line, region ending line, region module, url
with the online help and finally description of the region is shown.

If online documentation for the reference node is available, it is shown in a html
widget below the informataion panels. For example, metrics might point to an online
documentation explaining their semantics, or regions representing library functions
might point to the corresponding library documentation.

QWebEngine is used for the HTML-rendering of the documentation, if the module
is available. On some systems, problems with the graphics driver or OpenGL cause
QWebEngine to display a blank window. For that reason it's possible to disable
QWebEngine (Display ⇒ QWebEngine) and to show the documentation in a basic
layout instead. This option is also saved as setting and used for the next start of
CubeGUI.

Disabled, if not clicked over metric or call path item.

Figure 2.8: The item main_loop with 1000 iteration is marked as a loop. The aggregated
view on the right is the result of selecting ''Hide iterations''.

15. Hide iterations: Only visible for calltree items that are recognized or manually
defined as loop (see "Set as loop" below). By activating, all children of the loop are
hidden. The grandchildren are shown and its values for the different iterations are
aggregated (see Figure2.8).

16. Call site: For call-trees only. Enabled only if there is a reference node. Offers
information about the caller of the reference node.

a) Location: Displays information about the module and position within the module
(line numbers) of the caller of the reference node.

b) Set as loop: Marks the selected tree item as loop. All subitems are treated as
iterations. An additional context menu item "Hide iterations" appears.

17. Called region: For call-trees only. Enabled only if there is a reference node. Offers

20

2.5 Using the Display

information about the reference node.

a) Info: Gives some short information about the reference node.

b) Documentation: Shows some (usually more extensive) online description for
the reference node. Disabled if no online documentation is available.

c) Location: Displays information about the module and position within the module
(line numbers) where the callee method of the reference node is defined.

18. Min/max values: Not for metric-trees. Here you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes, i.e.,
the values corresponding to the left and right end of the color legend. If you activate
user-defined values for the color extremes, you are asked to define two values that
should correspond to the minimal and to the maximal colors. All values outside of this
interval will get the color gray. Note that canceling any of the input windows causes
no changes in the coloring method. If user-defined min/max values are activated,
the selected value information widget (see Section 2.5.2.5) displays a (u)'' foruser-
defined'' behind the minimal and maximal color values.

19. Statistics: Only available if a statistics file for the current CUBE file is provided.
Displays statistical information about the instances of the selected metric in the form
of a box plot. For an in-depth explanation of this feature see subsection 2.8.2.

20. Max severity in trace browser: Only available for metric and call-trees and only
if a statistics file providing information about the most severe instance(s) of the
selected metric is present. If CUBE is already connected to a trace browser (via File
⇒ Connect to trace browser), the timeline display of the trace browser is zoomed to
the position of the occurrence of the most severe pattern so that the cause for the
pattern can be examined further. For a more detailed explanation of this feature see
subsection 2.8.3.

21. Cut call tree/Cut selected call tree items This context menu is enabled, if the
right mouse button is pressed on a call tree item. If the mouse button is pressed
and the item below the mouse pointer is part of a group of selected items, the action
affects all selected items. Otherwise, only the item below the mouse item will be
modified. The menu offers different modification possibilities:

a) Set as root: Removes all call paths above the selected items and sets selected
call paths as a root nodes.

b) Prune element: Removes the selected items and all their children. Their
inclusive value will be added then to the exclusive value of their parents.

c) Set as leaf: Removes all children of the elements and shows the inclusive values.

d) Undo Undo last operation.

22. Sort by inclusive/exclusive value (descending): Sorts the nodes by their current
values in descending order. The items will be automatically sorted, if the values
change. If "Apply now" is selected, the values are only sorted once.

23. Sort by name (ascending): Sorts the nodes alphabetically by name in ascending
order.

24. Sort by name and trailing number (ascending): For system tree only. Sorts the
nodes alphabetically by name and the trailing rank in ascending order.

21

2 Cube User Guide

25. Sort by order of definition: Restores the original order.

2.5.2.5 Selected value info

Below each pane there is a selected value information widget. If no data is loaded, the
widget is empty. Otherwise, the widget displays more extensive and precise information
about the selected values in the tree above. This information widget and the topologies
may have different precision settings than the trees, such that there is the possibility to
display more precise information here than in the trees (see Section 2.5.2.1, menu Display
⇒ Precision).

The widget has a 3-line display. The first line displays at most 4 numbers. The left-most
number shows the smallest value in the tree (or 0.0 in any percentage value mode for trees,
or the user-defined minimal value for coloring if activated), and the right-most number
shows the largest value in the tree (or 100.0 in any percentage value mode in trees, or
the user-defined maximal value for coloring if activated). Between these two numbers the
current value of the selected node is displayed, if it is defined. Additionally, in the absolute
value mode it is followed by the percentage of the selected value on the scale between
the minimal and maximal values, shown in brackets. Note that the values of expanded
non-leaf system nodes and of nodes of trees on the left-hand side of the metric-tree are not
defined. If the value mode is not the absolute value mode, then in the second line similar
information is displayed for the absolute values in a light gray color.

In case of multiple selection, the information refers to the sum of all selected values. In
case of multiple selection in system trees in the peer distribution and in the peer percent
modes, this sum does not state any valuable information, but is displayed for consistency
reasons.

If the widget width is not large enough to display all numbers in the given precision, then a
part of the number displays get cut down and a “ . . . '' indicates that not all digits could be
displayed.

Below these numbers, in the third line, a small color bar shows the position of the color of
the selected node in the color legend. In case of undefined values, the legend is filled with
a gray grid.

2.5.2.6 Color legend

By default, the colors are taken from a spectrum ranging from blue over cyan, green, and
yellow to red, representing the whole range of possible values. You can change the color
settings in the menu,Display ⇒ Choose colormap, see Section 2.5.2.1. Exact zero values
are represented by the color white (in topologies you can decide whether you would like to
use white or the minimal color, see Section 2.7.12, menu Topology).

2.5.2.7 Status Bar

The status bar displays some status information, like state of execution for longer proce-
dures, hints for menus the mouse pointing at etc.

22

2.6 Client-Server

The status bar shows the most recent log message. By clicking on it, the complete log
becomes visible.

2.6 Client-Server

2.6.1 Cube Server

cube_server is part of the cubelib installation.

cube_server [-p N] Bind socket on port N (default port: 3300)

Many hosts don't allow ports to be accessed from the outside. You may use SSH tunneling
(also referred to as SSH port forwarding) to route the local network traffic throught SSH to
the remote host.
In the following example, cube_server is started with the default port 3300 on the remote
server server.example.com. The traffic, which is sent to localhost:3000, will be forwarded
to server.example.com on the same port.

[client]$ ssh -L 3300:server.example.com:3300 server.example.com
[server.example.com]$ cube_server
Cube Server: CubeLib-4.6.0 (external) [POSIX]
cube_server[5247] Waiting for connections on port 3300.

2.6.2 Cube Client

CubeGUI can also be used to open a cube file on a remote host which runs cube_server (see
Figure 2.9). After selecting "Open Url..." a remote file dialog appears (see Figure 2.10) .
The first line contains the URL to the remote cube server 2.6.1. After having changed this

line, the reload-Button on the right has to be pushed to reconnect to the server.

2.7 Cube GUI Plugins

The features of cube can be extended using plugins. There is a set of predefined plugins
which are described in the following sections. Before a cube file is loaded, the Plugin
menu only contains the menu items "Configure plugin search path" and "Initial activation
settings".

By Selecting the second item, a dialog is created which lists all available plugins (see
Figure 2.12).

You may enable or disable all plugins, or select individual plugins that will be activated or
deactivated. After loading a cube file, all suitable plugins are activated. Each plugin may
add a submenu (see Figure 2.11) to the Plugins menu.

23

2 Cube User Guide

Figure 2.9: File menu

Cube searches for plugins in the directory "cube-plugins/" below the installation directory.
This is the place where the predefined plugins are installed. If the environment variable
CUBE_PLUGIN_DIR contains a colon or semicolon separated list of paths, these paths are
prepended to the default search path.

Selecting "Configure plugin search path" of the plugin menu shows a dialog (see Figure
2.13), which allows to prepend additional search paths. The directory icon on the right
opens a file browser whose selection is added to the input line on top and which is added
to the path with the "add" button.

2.7.1 Detach Plugin Tabs

By clicking with the right mouse button on a plugin tab, the contents of the tab are moved
to a separate window (see Figure 2.14). If the window is closed, the contents are moved to
the tab widget again.

2.7.2 Context free plugins

Context free plugins are available via menu "File -> Start" as long no Cube is loaded in
Cube GUI. Is one Cube file is loaded, one should close it using "File -> Close".

2.7.2.1 Plugin "Diff"

This plugin allows to perform algebra operation "difference" on two selected cubes and
displays result in Gui.

24

2.7 Cube GUI Plugins

Figure 2.10: Remote file dialog

2.7.2.2 Plugin "Mean"

This plugin allows to perform algebra operation "mean" on selected cubes and displays
result in Gui.

2.7.2.3 Plugin "Merge"

This plugin allows to perform algebra operation "merge" on selected cubes and displays
result in Gui.

2.7.2.4 Plugin "Scaling"

This plugin allows user to do a simple scaling analysis. One selects a directory with the
series of measurements. "Scaling" plugin creates a scaling profile, where metric and
call-trees are identical (merged) with the input measurements, and the system-tree is an
artificial scaling tree. Every entry in it corresponds to a singe measurement. In couple with
the "Jenga Fett" plugin (third party, www.scalasca.org) result is displayed as a series of
stacked bars and allows the user to analysis the scaling behavior of the application.

2.7.2.5 Plugin "Tau2Cube"

This plugin allows user to open TAU Profile Directory using Cube Gui and explore it in
casual way.

25

2 Cube User Guide

Figure 2.11: plugin menu

Figure 2.12: plugin settings dialog

2.7.3 Advanced Color Map Plugin

Advanced Color Map Plugin provides additional color maps. The configuration dialogs are
presented in Figure 2.16. For every color map, the plot allows for change of data accepted
by color map and one can do that using left and right marker, by dragging the marker or
providing exact position through a double click near the marker value (new dialog will
appear). The default color for values out of range is grey.
One can change colors of scheme (for some color maps) and color for values out of range.
Double mouse click on proper part of the plot opens a dialog with selection of RGB color.
Additionally, one can adjust the plot marker or reset to default values through the context
menu.

Currently the plugin adds four different sets of color maps:

1. Sequential: Scheme is defined by starting and ending color with linear or exponential
interpolation between them. Predefined schemes provide simple interpolation from
one color to pure white. Middle marker allows for subtle change of interpolation.

26

2.7 Cube GUI Plugins

Figure 2.13: plugin search path dialog

Figure 2.14: Boxplot plugin tab is detached

2. Divergent: This scheme is defined by an interpolation from starting to ending color,
but with a critical value between them, depicted with the pure white. The position of
critical point can be set with the middle marker.

3. Cubehelix: Scheme designed primarily for display of astronomical intensity images.
The coloring is based on distribution from black to white, with R, G and B helixes
giving additional deviations. Cubehelix is defined by four parameters:
Start colour - starting value for color, floating-point number between 0.0 and 3.0. R =
1, G = 2, B = 0
Rotations - floating-point number of R -> G -> B rotations from the start to the end.
Negative value corresponds to negative direction of rotation.
Hue - non-negative value which controls saturation of the scheme, with pure greyscale
for hue equal to 0.
Gamma factor - non-negative value which configures intensity of colours. Values
below one emphasizes low intensity values and creates brighter color scheme. Values
above one emphasizes high intensity values and generates darker color map.
Reference: Green, D. A., 2011, ‘A colour scheme for the display of astronomical
intensity images', Bulletin of the Astronomical Society of India, 39, 289.

4. Improved rainbow colormap: Set of color maps based on original jet (rainbow)
scheme, but with different lightness distribution. The goal behind these schemes is
to provide map with more balanced perception, which is poor for original jet, mainly

27

2 Cube User Guide

Figure 2.15: Plugin Diff

Figure 2.16: The examples of configuration for Advanced Color Maps. Upper row, starting
from left: sequential, divergent; lower row, starting from left: cubehelix,
improved rainbow.

because of sharp changes in lightness. These maps doesn't provide any possibility for
configuration.
Reference: Perceptually improved colormaps, MATLAB Central

2.7.4 Metric Editor Plugin

The metric editor plugin allows to create derived metrics as root or child metrics. To
create or edit such a metric, use the right mouse button to show the context menu of
the metric-tree. Then select the menu item "Edit metric->Create derived metric". If the
context menu is called on a tree item, the new metric may also be inserted as a child".

For detailed documentation of CubePL please see [?].

Some details about the fields in the dialog:

1. Select metric from collection: Provides a list of predefined derived metric, which
might be helpful for the analysis. A new metric may be added to the collection with

28

2.7 Cube GUI Plugins

Figure 2.17: Create derived metric

the plus button, existing user defined metrics may be updated that way.

2. Derived metric type: Selects the type of the derived metrics. Available are :
Postderived metric, Prederived exclusive metric and Prederived inclusive
metric.

3. Display name: Sets the display name of the metric in the metric-tree.

4. Unique name: Sets the unique name of the metric. There is no check done if another
metric is present with the same unique name.

5. Data type : For derived metrics it is preselected and is always DOUBLE.

6. Unit of measurement: Selects a unit of measurement. It is a user defined string.

7. URL: Selects a URL with the documentation about this metric.

8. Description: Describes a metric.

9. Calculation: Field where one enters the CubePL expression for the derived metric.
Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

10. Calculation Init: Field where one enters the initialisation CubePL expression for
the derived metric,which is executed only once after metric creation.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

11. Aggregaton "+":Prederived metrics can specify an expression for the operator "+"

29

2 Cube User Guide

in the aggregation formula. In this field one can redefine it.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

12. Calculation "-": Prederived inclusive metric can specify an expression for the opera-
tor "-" in the aggregation formula. In this field one can redefine it.

Automatic syntax check is done. If there is a syntax error, dialog highlights the place
of the error and gives an error message.

13. Create metric - This button is only enabled, if all required fields are set, the metric
identifier is unique and the syntax is valid. First, the new metric is checked for
undefined references. Other metrics, which are referenced by the new metric and
which are part of the collection are inserted automatically. These automatically
inserted metrics are hidden. If all references are resolved, the dialog is closed and a
new metric with the given values is created.

14. Cancel - closes dialog without creating any metric.

15. Share this metric with SCALASCA group - Offers you to sent the metric definition
via email to the SCALASCA group, so it might be included into the library of derived
metrics in the future releases. Enabled only if definition of metric is valid.

To simplify the creation of a derived metric a little bit there is a way to fill the fields of this
dialog automatically.

If one prepares a file with the following syntax one can select it and open "drop" on dialog
via drag'n'drop, or copy its content into clipboard and paste in the dialog.

Example of a syntax of this file:

metric type: postderived
display name: Average execution time
unique name: kenobi
uom:sec
url: https://scalasca.org/documentation.html#kenobi
description:Calculates an average execution time
#
Here is the Kenobi metric
#
cubepl expression: metric::time(i)/metric::visits(e)

cubepl init expression:

cubepl plus expression: arg1 + arg2

cubepl minus expression: arg1 - arg2

metric type can have values: postderived, prederived_exclusive or prederived_inclusive.

1. Remove metric Removes metric from the metric-tree, if it is not used by other
metrics.

2. Edit metric It offers a dialog to edit expressions (standard, initialisation, aggregation)
of a derived metric. Enabled if selected metric is a derived metric. Window for editing
is same like in "Create derived metric" case.

30

2.7 Cube GUI Plugins

2.7.5 Metric Identification Plugin

Cube displays relatively many metrics in its "Metric" pane. These metrics have different
origin or purpose. They can be generated by Score-P, Scalasca, Cube remapper or be
hardware counters. On order to support user to identify which metric origins from which
tool, serves which purpose, Cube provides "Metric Identification Plugin" (see Figure 2.18)

Figure 2.18: Metric identification

Tooltip displays help to every used environment variable with its possible values.

2.7.6 Score-P Configuration Plugin

This plugin (see Figure 2.19) presents the file "scorep.cfg", if found, in tabullar way.
Tooltip displays help to every used environment variable with its possible values.

Figure 2.19: Score-P Configuration

31

2 Cube User Guide

2.7.7 Source Code Viewer

The Source code viewer plugin (see figure 2.20) displays the source code of the selected
call-tree item. The file is opened in read-only mode per default. If you wish to edit the
text, please uncheck the Read only box in the plugin menu. The menu item "Set external
editor" allows to open the source file with an external editor.

Figure 2.20: Source code viewer plugin

If CUBE doesn't find the file at its original location, a button to open a file dialog is displayed.
The new location of the source files is saved in the global settings.

The context menu (right mouse button) shows following options:

1. Copy copies the selection to the clipboard

2. Select All selects the whole source file

3. Show call site/function definition if call site information is available, this item
allows to switch between the call site and the function definition

4. Find adds an additional widget at the bottom ot the viewer to search inside the source
code

5. Open in external editor opens an external editor, after it is configured

6. Reset user defined path allows to select another path for the source code look-up
(removes previous selection)

General options can be set in the plugin menu (Plugins->SourceCodeViewer).

1. Set font Change the default viewer font

2. Read only The default viewer mode is read only. You can enable editing here.

3. Set external editor This options allows to select one of the predefined external
editors or define a new one.

2.7.7.1 Source Code Viewer Keyboard control

Control in read only mode:

32

2.7 Cube GUI Plugins

Up Arrow Move one line up
Down Arrow Move one line down
Left Arrow Scroll one character to the left (if

horizontally scrollable)
Right Arrow Scroll one character to the right (if

horizontally scrollable)
Page Up Move one (viewport) page up
PageDown Move one (viewport) page down
Home Move to the beginning of the text
End Move to the end of the text
< scroll mouse-wheel > Scroll the page vertically
Alt+< scroll mouse-wheel > Scroll the page horizontally (if horizontally

scrollable)
Ctrl+F Find text
Ctrl+< scroll mouse-wheel > Zoom the text
Ctrl+A Select all text

Additionally for the read and write mode:

Left Arrow Move one character to the left
Right Arrow Move one character to the right
Backspace Delete the character to the left of the

cursor
Delete Delete the character to the right of the

cursor
Ctrl+C Copy the selected text to the clipboard
Ctrl+Insert Copy the selected text to the clipboard
Ctrl+K Delete to the end of the line
Ctrl+V Paste the clipboard text into text edit
Shift+Insert Paste the clipboard text into text edit
Ctrl+X Delete the selected text and copy it to the

clipboard
Shift+Delete Delete the selected text and copy it to the

clipboard
Ctrl+Z Undo the last operation
Ctrl+Y Redo the last operation
Ctrl+Left arrow Move the cursor one word to the left
Ctrl+Right arrow Move the cursor one word to the right
Ctrl+Home Move the cursor to the beginning of the

text
Ctrl+End Move the cursor to the end of the text
Hold Shift + some movement (e.g., Right
arrow)

Select region

2.7.8 System Barplot Plugin

BARPLOT plugin is a CUBE plugin that plots vertical bar graph for the CUBE file which
has iterations. Horizontal axis shows different iterations being compared and on vertical
axis, several operations can be used to represent the value. The User can apply different
metrics and call paths on the bar graph.

33

2 Cube User Guide

2.7.8.1 Basic Principles

As a start point, it should be mentioned that BARPLOT works only on a CUBE file that has
iterations. For those files which have not, user would face the warning on the terminal :
"No iterations for Barplot" and the plugin will not be shown.

By loading the plugin, on system dimension, the corresponding tab, Barplot, will be added.
In the Barplot tab, the user can select different operations and assign desired color to them.
Figure 2.21 displays a view of it.

Figure 2.21: BARPLOT display window

User can select different metrics such as Visits and Time, by clicking on them in metric
dimension. In addition, it is possible to get a BARPLOT for different call paths of iterations,
via clicking on them. However, for call paths that are not located in iterations, like input_in
in figure 2.22, no bar graph is displayed and user face the message "No data to display"
on the window.

Figure 2.22: No data to display

Furthermore, the values on BARPLOT, can be evaluated in Inclusive and Exclusive manner.
Therefore, user can easily collapse the tree on call path and click on the desired path to
get the exclusive value of it.

34

2.7 Cube GUI Plugins

Additionally, the exact calculated values can be seen by clicking left button of mouse on
the desired position on the graph, a tooltip would display a value corresponding to the
iteration.

In a situation that user needs to store the graph, it is just needed to do right click on a
graph, and select "Save as image", then the Save dialog will be opened to specifying the
path and name of the PNG file.

2.7.8.2 Toolbar

On the top of the Barplot space, there is a toolbar that allows user to specify the kind of an
operation and its color(Figure 2.23).

Figure 2.23: BARPLOT toolbar

By operation item, the user can select different operations, Minimum, Maximum, Average,
Median, 1st Quartile and 3rd Quartile or the combination of Maximum, Minimum and
Average. This provides the situation for the user to have different values for comparing
at one time. These operations are done on all threads in each iterations. For instance, by
Minimum operation, the minimum value among the existing threads for each iteration, is
calculated and plotted. They are kind of statistical measurements.

Color item offers a color for an operation, however for each operation, a default color is
assigned automatically. By changing the operation, corresponding color will be shown on
color combo box. In a situation that different bar graphs are overlaid on each other, each
graph will be shown by different color in order to distinguish various graphs.

In addition to above items, two buttons are also designed to manage the order of the bar
graphs.

Keep on Stack: It is possible that user intents to compare different graphs by laying them
on each other. For this matter, a push-button keep on stack is defined. Generally, by
clicking on each call path or metric, a responding graph is replaced the previous one in the
stack. In a situation, that the user intends to compare the next graph by the existing one,
at one time, it is needed to click on the button keep on the stack, then the next graph will
be added over the previous one, or in another words, it is overlaid on the last graph. If its
values are less than the previous graph, user can see two graphs by different colors that
help him/her in comparing, and in a situation that new values are greater than previous
one, the new one will cover the previous with fresh color. Therefore, for keeping the top
row of the stack, the user should click on the keep the stack button, otherwise the coming
values will replace the last one.

Clean Stack: By clicking this button, all displayed graphs, are erased and the stack will be
empty.

35

2 Cube User Guide

2.7.8.3 Menu Bar

Plugin menu offers the general function to enable or disable a plugin, and specific functions
for each plugin. Barplot plugin provides the following functions in two areas, Measurement
Customization and Threads Ruler Customization(Figure 2.24).

Figure 2.24: BARPLOT menu

Ruler Customization: User can modify the number of major and minor ticks of the ruler
on vertical axis. For adjusting the major vertical ticks, user can set the drawing intervals or
the number of ticks. By specifying the number of major ticks, the length of the vertical axis
will be divided to the specified number and major ticks are drawn by length longer than
minor ticks. Then in each divided length, if there is enough space, the specified number
of minor ticks will be displayed. It is possible that the user set major ticks by interval.
In order to do that, select the major ticks by interval option, and set the interval value.
Therefore, after each interval, one major tick will be drawn.

Top Notch Value: The value of the top notch on a vertical axis can be altered by user as
well as automatically. Therefore, due to scale issue, it can affect on the drawing of the
graph.

Button Notch Value: The value of the button notch on a vertical axis can be altered by
user as well as automatically. Therefore, due to scale issue,it can affect on the drawing of
the graph.

Iterations Ruler Customization: User can modify the number of major and minor ticks
of the ruler on horizontal axis. For adjusting the major horizontal ticks, user can set the

36

2.7 Cube GUI Plugins

drawing intervals or the number of ticks. By specifying the number of major ticks, the
width of the horizontal axis will be divided to the specified number and major ticks are
drawn by length longer than minor ticks. Then in each divided length, if there is enough
space, the specified number of minor ticks will be displayed. It is possible that the user set
major ticks by interval of iterations. In order to do that, select the major ticks by interval
option, and set the interval. Therefore, after each specified number of iterations, one major
tick will be drawn.

2.7.9 System Heatmap Plugin

HEATMAP plugin is a CUBE plugin that represents the value of the thread in each iteration,
as colors. The User can apply different metrics and call paths on heatmap graph.

2.7.9.1 Basic Principles

As a start point, it should be mentioned that HEATMAP works only on CUBE file that has
iterations. For those files which have not, user would face the warning on the terminal :
"No iterations for Heatmap" and the plugin will not be shown.

By loading the plugin, on system dimension, the corresponding tab, Heatmap, will be added.
Figure 2.25 displays a view of it.

Figure 2.25: HEATMAP display window

User can select different metrics such as Visits and Time, by clicking on them in metric
dimension. In addition, it is possible to get a HEATMAP for different call paths of iterations,
via clicking on them. However, for call paths that are not located in iterations, like
input_in figure 2.26, no heatmap graph is displayed and user face the message "No data
to display" on a window.

Furthermore, the values on HEATMAP, can be evaluated in Inclusive and Exclusive manner.
Therefore, user can easily collapse the tree on call path and click on the desired path to
get the exclusive value of it.

Additionally, the exact calculated values can be seen by clicking left button of mouse on

37

2 Cube User Guide

Figure 2.26: No data to display

the desired position on the graph, a tooltip would display a value corresponding to the
iteration.

In a situation that user needs to store the graph, it is just needed to do right click on a
graph, and select "Save as image", then the Save dialog will be opened to specifying the
path and name of the PNG file.

2.7.9.2 Menu Heatmap

Plugin menu offers the general function to enable or disable a plugin, and specific functions
for each plugin. Heatmap plugin provides the following functions in two areas, horizontal
tick and vertical ticks(Figure 2.27).

Horizontal ticks: For adjusting the major horizontal ticks, user can set the drawing
intervals or the number of ticks. By specifying the number of major ticks, the width of the
horizontal axis will be divided to the specified number and major ticks are drawn by length
longer than minor ticks. Then in each divided length, if there is enough space, the specified
number of minor ticks will be displayed.

Also, it is possible that the user set major ticks by interval of iterations. In order to do
that, select the major ticks by interval option, and set the interval. Therefore, after each
specified number of iterations, one major tick will be drawn.

Vertical ticks: For adjusting the major vertical ticks, user can set the drawing intervals or
the number of ticks. By specifying the number of major ticks, the length of the vertical axis
will be divided to the specified number and major ticks are drawn by length longer than
minor ticks. Then in each divided length, if there is enough space, the specified number of
minor ticks will be displayed.

Also, it is possible that the user set major ticks by interval of threads. In order to do
that, select the major ticks by interval option, and set the interval. Therefore, after each
specified number of threads, one major tick will be drawn.

38

2.7 Cube GUI Plugins

Figure 2.27: 'HEATMAP menu'

2.7.10 System Statistics Plugin

This plugin adds a statistics display tab next to the system-tree tab. It shows the value
distribution either in a box plot or in a violin plot.

The box plot shows a box-and-whisker distribution of metric severity values for the currently
active subset of system resources (typically threads). The active subset is changed via the
combobox menu at the bottom of the pane, and the y-axis scale is adjusted via the display
mode combobox at the top of the pane.

The vertical whisker ranges from the smallest value (minimum) and to the largest value
(maximum), while the bottom and top of the box mark the lower quartile (Q1) and upper
quartile (Q3). Within the box, the bold horizontal line represents the median (Q2) and the
dashed line the mean value.

The violin plot is an alternative method of plotting statistical data, which additionally shows
the distribution of the data. It is a box plot with a rotated kernel density plot on each side.
The violin plot shows a thick black line for the median of the data, a dotted line for the
mean, and red lines for quartiles.

To see the statistics as numeric values in a separate window, use <left-mouse click> inside
the chart or use <right-mouse click> to show them in a tooltip. With <left-mouse drag>,
an area is selected and the number of elements within this area is shown.

39

2 Cube User Guide

Figure 2.28: Statistical data shown in a box plot on the left side and violin plot on the right
side

2.7.11 System Sunburst Plugin

This plugin adds a sunburst chart display tab to the system pane. The sunburst chart uses
a radial tree to visualize the system-tree in a more compact form than the system-tree.

The sunburst chart and the system-tree are coupled, allowing the user to expand and
collapse tree nodes in either widget with the changed state showing in the other widget.
The arcs of the sunburst chart can be expanded and collapsed by <left-mouse click> on
the outer edge of the arc. The edge is highlighted as shown in Figure 2.30 when hovering
over it with the mouse cursor.

When expanded, the accumulated width of the child arcs is bounded by the width of their
parent arc. To adjust the width of an arc, the user can expand its area by using Ctrl+<left-
mouse drag> while clicking close to the side edge of the respective arc, as shown in Figure
2.31. The width of sibling arcs is adjusted automatically.

The standard interaction, next to expanding and collapsing arcs, is to rotate the sunburst
chart, which is done via simple <left-mouse drag>. The user can zoom into and out of parts
of the sunburst chart using the mouse wheel. The zoom behavior can be customized using
the context menu. Furthermore, the user can move the visible canvas width Shift+<left-
mouse drag>.

The user experience can be customized through flags set in the context menu via <right-

40

2.7 Cube GUI Plugins

Figure 2.29: Expanded sunburst chart

Figure 2.30: Arc edge highlighted when hovering over it

mouse click>. Furthermore, the context menu allows to reset specific or all interactions
(e.g., rotation, arc width) with the chart to their default value.

The following table lists all available mouse interactions:

<left-mouse click> On arc:Select arc
On arc edge:Expand/collapse arc

<right-mouse click> Context menu
<left-mouse drag> Rotate chart
Ctrl+<left-mouse drag> Change arc width
Shift+<left-mouse drag> Move chart on canvas
< scroll mouse-wheel > Zoom in/out

41

2 Cube User Guide

Figure 2.31: Adjusting the arc width using Ctrl+<left-mouse drag>

The following table lists all setting available via context menu:

Frame coloring Adjust the frame color of arcs
Selection coloring Adjust the frame color of selected arcs
Mark 0 degrees Draw a line where the widget start the fan

of arcs
Hide info tooltip Do not show arc info in top left corner

when hovering over a arc
Hide frame of small arcs Avoid visual clutter by not drawing frames

around thin arcshal
Zoom towards the cursor Instead of zooming into the chart origin,

zoom towards the cursor
Invert zoom Invert zoom direction when using the

mouse wheel of track pad
Reset Reset selected or all interactions (e.g., arc

width, rotation,...) to default state

2.7.12 System Topology Plugin

In many parallel applications, each process (or thread) communicates only with a limited
number of processes. The parallel algorithm divides the application domain into smaller
chunks known as sub-domains. A process usually communicates with processes owning
sub-domains adjacent to its own. The mapping of data onto processes and the neighborhood
relationship resulting from this mapping is called virtual topology. Many applications use
one or more virtual topologies specified as multi-dimensional Cartesian grids.

Another sort of topologies are physical topologies reflecting the hardware structure on
which the application was run. A typical three-dimensional physical topology is given by
the (hardware) nodes in the first dimension, and the arrangement of cores/processors on
nodes in further two dimensions.

The CUBE display supports multi-dimensional Cartesian grids, where grids with high
dimensionality can be sliced or folded down to two or three dimensions for presentation.
If the currently opened cube file defines one or more such topologies, separate tabs are
available for each using the topology name when one is provided. The topology display

42

2.7 Cube GUI Plugins

shows performance data mapped onto the Cartesian topology of the application. The
corresponding grid is specified by the number of dimensions and the size of each dimension.
Threads/processes are attached to the grid elements, as specified by the CUBE file. Not
all system items have to be attached to a grid element, and not every grid element has a
system item attached. An example of a two-dimensional topology is shown on Figure 2.32.
Note that the topology toolbar is enabled when a topology is available to be displayed.

Figure 2.32: Topology Displays

The Cartesian grid is presented by planes stacked on top of each other in a three dimen-
sional projection. The number of planes depends on the number of dimensions in the grid.
Each plane is divided into tiles (typically shown as rombi). The number of tiles depends
on the dimension size. Each tile represents a system resource (e.g., a process) of the
application and has a coordinate associated with it.

The current value of each grid element (with respect to the selections on the left-hand
side and to the current value mode) is represented by coloring the grid element. Coloring
is based on a value scale from 0.0 to 100.0. Grid elements without having a system item
attached to it are colored gray. See Section 2.5.2.1 (menu Topology) for further topology-
specific coloring settings. For example, the upper topology in Figure 2.32 is drawn wit
black lines, the 2D topology in Figure 2.33 is drawn without lines.

If the selected system item occurs in the topology, it is marked by an additional frame
and by additional lines at the side of the plane which contains the corresponding grid
point, such that the selected item's position is also visible if the corresponding plane is not
completely visible.

If zooming into planes is enabled, the plane containing the recently selected item is selected
and the plane distance is adjusted to show this plane complely.

Selecting a collapsed tree in the system-tree selects all its children in the topology view.

Besides the functions offered by the topology toolbar (see 2.23), the following functionality
is supported:

1. Item selection: You can change the current system selection by left-clicking on a
grid element which has a system item assigned to it (resulting in the selection of that
system item). Multiple items may be selected or deselected by holding down the Ctrl

43

2 Cube User Guide

Figure 2.33: Topology Displays

key while clicking on an item.

2. Info: By right-clicking on a grid element, an information widget appears with infor-
mation about the system item assigned to it. The information contains

• the coordinate of the grid point in each topology dimension,

• the hardware node to which the attached system item belongs to,

• the system item's name,

• its MPI rank,

• its identifier,

• and its value, followed by the percentage of this value on the scale between the
minimal and maximal topology values.

3. Rotation about the x and y axes: can be done with left-mouse drag (click and hold
the left-mouse button while moving the mouse).

4. Increasing/decreasing the distance between the planes: with Ctrl+<left-mouse
drag>

5. Moving the whole topology up/down/left/right: with Shift+<left-mouse drag>

2.7.12.1 Topology mapping panel

If the number of topology dimensions is larger than three, the first three dimensions are
shown and an additional control panel appears below the displayed topology. This panel
allows rearranging topology dimensions on the x, y and z axes, as well as slicing or folding
of higher dimensionality topologies for presentation in three or fewer dimensions.

Rearranging topology dimensions is achieved simply by dragging the topology dimension
labels to the desired axis. When dragged on top of an existing topology dimension label,
the two are exchanged.

When slicing, select up to three of the dimensions to display completely and choose
one element of each of the remaining dimensions. The example in Figure2.34 shows a

44

2.7 Cube GUI Plugins

topology with 4 dimensions (32x16x32x4) labelled X, Y, Z and T. The first element of the
4th dimension (T) is automatically selected. By clicking on the button above the T, an index
in this dimension from 0 to 3 can be chosen. If the index is set to all, the selection becomes
invalid until an index of another dimension is selected.

Figure 2.34: 4-dimensional example

Alternatively, the folding mode can be activated by clicking on the fold button. This mode
is available for topologies with four to six dimensions and allows to display all elements by
folding two dimensions into one. Every dimension appears in a box, with can be dragged
into one of the three container boxes for the displayed dimensions x, y and z. In folding
mode, the color of the inner borders is changed into gray. The black bordered rectangles
show the element borders of each of the three displayed dimensions.

The right image in Figure2.34 shows the folding of dimension Z with dimension T. One
element with index (0,0,1,3) has been selected by clicking with the right mouse button into
it. All elements inside the black rectancle around the selection belong to Z index one. The
gray lines devide the rectangle into four elements which correspond to the elements of
dimension T with index 0 to 3.

2.7.12.2 Topology plugin menu

• Topology: The topology menu offers the following functions related to the topology
display described in Section 2.32 :

1. Item coloring: Offers a choice how zero-valued system nodes should be colored
in the topology display. The two offered options are either to use white or to use
white only if all system leaf values are zero and use the minimal color otherwise.

2. Line coloring: Allows to define the color of the lines in topology painting.
Available colors are black, gray, white, or no lines.

3. Toolbar: This menu item allows to specify if the topology toolbar buttons should
be labeled by icons, by a text description, or if the toolbar should be hidden. For
more information about the toolbar see Section 2.23 .

45

2 Cube User Guide

4. Show also unused hardware in topology: If not checked, unused topology
planes, i.e., planes whose grid elements don't have any processes/threads as-
signed to, are hidden. Unused plane elements, if not hidden, are colored gray.

5. Topology antialiasing: If checked, anti-aliasing is used when drawing lines in
the topologies.

6. Zoom into current plane: If checked, the plane containing the recently se-
lected item is shown completely. It is never covered by a neighbor plane.

2.7.12.3 Toolbar

The system pane may contain topology displays if corresponding data is specified in the
CUBE file. Basically, a topology display draws a two- or three-dimensional grid, in the form
of some planes placed one above the other. Each plane consists of a two-dimensional grid
of processes or threads.

The toolbar is enabled only if the system pane shows a topology display, and it offers
functions to manipulate the display of the above grid planes. The toolbar can be labeled by
icons, by text, or it can be hidden, see menu Topology⇒ Toolbar in Section 2.5.2.1. The
toolbar buttons have tool tips, i.e., a short description pops up if the toolbar is enabled and
you move the mouse above a button.

The functions are the following, listed from the left to the right in the topology toolbar:

Move left Moves the whole topology to the left.

Move right Moves the whole topology to the right.

Move up Moves the whole topology upwards.

Move down Moves the whole topology downwards.

Increase plane distance Increase the distance between the planes of the topology.

Decrease plane distance Decrease the distance between the planes of the topology.

Zoom in Enlarge the topology.

Zoom out Scale down the topology.

Reset Reset the display. It scales the topology such that it fits into the visible rectangle,
and transforms it into a default position.

Scale into window It scales the topology such that it fits into the visible rectangle,
without transformations.

Set minimum/maximum values for coloring Similarly to the functions offered in the
context menu of trees (see Section 2.5.2.4), you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes, i.e.,
the values corresponding to the left and right end of the color legend. If you activate
user-defined values for the color extremes, you are asked to define two values that
should correspond to the minimal and to the maximal colors. All values outside of this
interval will get the color gray. Note that canceling any of the input windows causes
no changes in the coloring method. If user-defined min/max values are activated,
the selected value information widget displays a (u)'' foruser-defined'' behind the
minimal and maximal color values.

46

2.7 Cube GUI Plugins

x-rotation Rotate the topology cube about the x-axis with the defined angle.

y-rotation Rotate the topology cube about the y-axis with the defined angle.

topolygy Allows to choose a topology from the list of defined topologies. If the topology
is shown in the tab bar (default at startup), the corresponding tab will be selected. If
the topology widget is detached, the widget will be shown on top of the main widget.

Using the grip at the left of the toolbar, it can be dragged to another position or detached
entirely from the main window. The toolbar can also be closed after a right-click in the
grip.

2.7.12.4 Topology keyboard and mouse control

<left-mouse click> select item
<right-mouse click> context information
Ctrl+<left-mouse drag> increase plane distance
Shift+<left-mouse drag> move topology
< scroll mouse-wheel > zoom in/out
<left-mouse drag> rotate topology
Up arrow scroll one unit up
Down arrow scroll one unit down
Page up scroll one page up
Page down scroll one page down

2.7.13 Tree Item Marker Plugin

This Plugin marks related items in the call, task and system tree. It shows the correlation
between a location group and its creator. If an accelerator item is selected, this item and
the related creator item are marked with a chain icon.

Figure 2.35: Related tree items

This plugins also adds an element to the context menu which allows to mark tree items
manually. This is helpful to relocate the item after other selections have been done. The
marked items are stored into the experiment specific settings.

47

2 Cube User Guide

2.8 Other Features

2.8.1 Features enabled through statistic files

In this section we will explain two features – namely the display of statistical information
about performance patterns which represent performance problems and the display of the
most severe instances of these patterns in a trace browser – which both are only available if
a statistic file for the currently opened CUBE file is present. Currently, such a statistic file
can be generated by the SCOUT analyzer [?]. The file format of statistic files is described
in the Appendix 140.1.

For CUBE to recognize the statistic file, it must be placed in the same directory as the
CUBE file. The basename of the statistic file should be identical to that of the CUBE file,
but with the suffix .stat. For example, when the CUBE file is called trace.cubex, the
corresponding statistic file is called trace.stat.

2.8.2 Statistical information about performance patterns

If a statistic file is provided, you can view statistical information about one or multiple
patterns (for example in order to compare them). This is done by selecting the desired
metrics in the metric-tree and then selecting the Statistics menu item in the context menu.
This brings up the box plot window as shown in Figure 2.36.

The box plot shows a graphical representation of the statistical data of the selected patterns.
The slender black lines on the top and the bottom designate the maximum and the minimum
measured severity of the pattern, respectively. The lower and the upper borders of the
white box indicate the values of the 25% and 75% quantile. The thick line inside the box
represents the median of the values, while the dashed line indicates the mean.

There are two ways of interacting with the box plot. You can zoom to a certain interval on
the y-axis by clicking on a position with the height of the desired maximal or minimal value
and by consecutively dragging the mouse to a position with the height of the corresponding
other extreme value. You can reset the view (i.e., to undo all zooming) by clicking the
middle mouse button somewhere on the box plot.

If you are interested in more precise values for the severity statistics of a certain metric, you
can click with the left mouse button somewhere in the column of the desired metric, which
will yield a small window (as shown in the top right corner of Figure 2.36) displaying the
exact values of the statistics. Clicking with the right mouse button shows the information
in a tooltip.

2.8.3 Display of most severe pattern instances using a trace
browser

If a statistic file also contains information about the most severe instances of certain
patterns, CUBE can be connected to a trace browser (currently only Vampir [? ?] is
supported) in order to view the state of the program being analyzed at the time this most
severe pattern instance occurred. For collective operations, the most severe instance is
the one with the largest sum of the waiting times of all processes, which is not necessarily

48

2.8 Other Features

Figure 2.36: Screenshot of a box plot as shown by CUBE displaying statistical information
about the selected patterns. The tooltip shows the exact values of the statistics.

the one with the largest maximal waiting time of each individual process.

To use this feature, you first have to connect to a trace browser by using the Connect to
menu item of the Vampir Plugin submenu of the Plugin menu. This will open one of the two
dialog windows shown below.

For Vampir, you have to specify the host name and port of the Vampir server you
want to connect to and the path of the trace file you want to load. This will launch
the Vampir client (if it is correctly configured) and load the specified trace file. To
configure Vampir so that it can be started automatically by CUBE, a service file
com.gwt.vampir.service, describing the path to your Vampir client executable must be
placed under (/usr/share/dbus-1/service) or ${HOME}/.local/share/dbus-1/services.
This service file must be exactly as shown below, with the exception that Exec should point
to your Vampir client executable.

[D-BUS Service]
Name=com.gwt.vampir
Exec=/private/utils/bin/vng

49

2 Cube User Guide

Figure 2.37: The dialog windows for a connection to a trace browser e.g. Vampir

An example of the com.gwt.vampir.service file

Once CUBE is connected to a trace browser you can select the Max severity in trace
browser menu item of the metric-tree so that all connected trace browsers are zoomed to
the (globally) most severe instance of the selected pattern.

A more sophisticated feature of CUBE is the ability to zoom to the most severe instance of
a pattern in a selected call path. This can be done by selecting a metric in the metric-tree
which will highlight the most severe call paths in the call-tree. You can then use the context
menu of the call tree to select the Max severity in trace browser menu item which will then
zoom all connected trace browsers to the most severe instance of the selected pattern with
respect to the chosen call path (see Figure 2.38).

Figure 2.38: Context menu called on the metric "Wait at Barrier", showing the maximum
severity in trace browser, which results in the location of the worst instance
shown in the timeline display of Vampir.

50

2.8 Other Features

2.8.3.1 Troubleshooting

1. In some D-BUS configurations Vampir does not start automatically. In this case it
might solve the problem to have Vampir already running (with explicitly enabled
D-BUS subsystem)

user@host: vampir --dbus&

2. On some HPC system it might be helpful to extend your environment. Add to your
.bashrc file following code snippet:

test for an existing bus daemon, just to be safe
if test -z "$DBUS_SESSION_BUS_ADDRESS" ; then

if not found, launch a new one
eval ‘dbus-launch --sh-syntax‘
echo "D-Bus per-session daemon address is: $DBUS_SESSION_BUS_ADDRESS"

fi

51

2 Cube User Guide

2.8.4 Synchronization of several cube instances

The current state of a cube instance (selections, expanded tree items, ...) can be synchro-
nized with other cube instances on the same or on different machines. The synchronization
function uses the clipboard to exchange data, so no network protocol is required. Synchro-
nization can be useful e.g. for following tasks:

• Comparation of several runs of the same program with different number of processes
or threads.

• Examination of different metrics at the same time.

Figure 2.39: Enable Synchronization
To enable Synchronization, the corresponding toolbar has to be enabled (Figure 2.39). Press
the toolbar button with the red outgoing arrow to enable sending of status information.
The current state is sent when the button is activated and after every change while the
button is checked. To receive status information press the button with the white incoming
arrow. If activated, cube listens for changed status information.
Tree items are identified by their label, not by the position in the tree. This might lead to
unexpected selections, if a tree item has multiple children with the same label.

With the "Synchronize state" menu, you can select the information that is sent and received.
By default, this is the state of the trees. If you want to show different metrics in each
cube instance, but synchronize the selected callpath and system-tree, you have to disable
"Metric tree" (Figure 2.40).

Figure 2.40: Synchronization toolbar

52

2.9 Keyboard and mouse control

2.9 Keyboard and mouse control

53

2 Cube User Guide

Shift+F1 Help: What's this?
Ctrl+O Shortcut for menu File ⇒ Open
Ctrl+W Shortcut for menu File ⇒ Close
Ctrl+Q Shortcut for menu File ⇒ Quit
<left-mouse click> over menu/tool bar: activate

menu/function
over value mode combo: select value
mode
over tab: switch to tab
in tree: select/deselect/expand/collapse
items

<right-mouse click> in tree: context menu
Ctrl+<left-mouse click> in tree: multiple selection/deselection
<left-mouse drag> over scroll bar: scroll
Up arrow in tree: move selection one item up

(+Shift: multiple selection)
Down arrow in tree: move selection one item down

(+Shift: multiple selection)
Left arrow in scroll area: scroll to the left
Right arrow in scroll area: scroll to the right
Ctrl+F find tree item
F3 move to next search result
Shift+F3 move to previous search result

For keyboard shortcuts in different plugins, see the corresponding sections:

• 2.7.7

• 2.7.12.4

54

3 Tree Item Marker

A plugin may define one or more tree item marker to tag items of interest.

Tree items are marked in different ways:

• Items with a colored background show that a plugin has set a marker

• Items with a colored frame indicate that a collapsed child has been marked.

• Items with a black frame indicate that there are several collapsed children with
different marker.

• Items with a dotted frame show a dependency. A marked item of the right neighbor
tree depends on

• Items can be grayed out. These items are either marked as unimportant by a plugin,
or the user has choosen to gray out all items, for which no marker is set. this item.
The dependent item is only marked, if the dotted item is selected.

Figure 3.1: Tree item marker

The figure 3.1 shows two plugins which define marker. The Statistic Plugin marks all items
with information about the most severe instances with a blue background and an icon. The
Launch Plugin uses green marker and does not define an icon. Both of them use marker
for items of the system-tree and for items of the call-tree that depend on items of the
system-tree.

The Tree Item Marker dialog (see figure 2.11) allows the user to change the color of each
marker, to disable the drawing of colors or icons and to emphasize the marked items by
graying out the other items.

55

4 Cube Advisor Plugin

Advisor is a standard plugin and is available as long as the measurement contains a Time
metric. The main goal of the Advisor plugin is to provide a user a fast access to the various
performance evaluations of the performance of their HPC application.

4.1 Getting Started with Advisor

If measurement contains metric Time, CubeGUI will enable the Advisor plugin in the
"General" tab in the plugins section.

Some 4.2 can be disabled due to missing performance properties, e.g. missing PAPI
counters. In such cases one potential solution is to merge original measurement with
measurement which includes missing properties and run analysis again. Measurement
merging can be done with one of the context-free plugins 2.7.2.3 or 2.7.2.2.

Moreover, some assessments are hidden (e.g. 4.2.2 and 4.2.5) and can be available in
"expert" mode (see 2.3).

4.2 Supported Assessments

Advisor supports various performance assessments, such as

• 4.2.1

• 4.2.2

• 4.2.3

• 4.2.4

• 4.2.5

• 4.2.6

• 4.2.7.

4.2.1 Only-MPI Assessment

Attempting to optimize the performance of a parallel code can be a daunting task, and often
it is difficult to know where to start. For example, we might ask if the way computational
work is divided is a problem? Or perhaps the chosen communication scheme is inefficient?
Or does something else impact performance? To help address this issue, POP has defined
a methodology for analysis of parallel codes to provide a quantitative way of measuring
relative impact of the different factors inherent in parallelization. This article introduces
these metrics, explains their meaning, and provides insight into the thinking behind them.

57

4 Cube Advisor Plugin

A feature of the methodology is, that it uses a hierarchy of 4.2.1, each metric reflecting a
common cause of inefficiency in parallel programs. These metrics then allow a comparison
of the parallel performance (e.g. over a range of thread/process counts, across different
machines, or at different stages of optimization and tuning) to identify which characteristics
of the code contribute to the inefficiency.

The first step to calculating these metrics is to use a suitable tool (e.g. Score-P or Extrae) to
generate trace data whilst the code is executed. The traces contain information about the
state of the code at a particular time, e.g. it is in a communication routine or doing useful
computation, and also contains values from processor hardware counters, e.g. number of
instructions executed, number of cycles.

The 4.2.1 are then calculated as efficiencies between 0 and 1, with higher numbers being
better. In general, we regard efficiencies above 0.8 as acceptable, whereas lower values
indicate performance issues that need to be explored in detail. The ultimate goal then
for POP is rectifying these underlying issues by the user. Please note, that 4.2.1 can be
computed only for inclusive callpaths, as they are less meaningful for exclusive callpaths.
Furthermore, 4.2.1 are not available in "Flat view" mode.

The approach outlined here is applicable to various parallelism paradigms, however for
simplicity the 4.2.1 presented here are formulated in terms of a distributed-memory
message-passing environment, e.g., MPI. For this the following values are calculated for
each process from the trace data: time doing useful computation, time in communication,
number of instructions & cycles during useful computation. Useful computation excludes
time within the overhead of parallel paradigms (118.1).

At the top of the hierarchy is Global Efficiency (GE), which we use to judge overall quality
of parallelization. Typically, inefficiencies in parallel code have two main sources:

• Overhead imposed by the parallel nature of a code

• Poor scaling of computation with increasing numbers of processes

and to reflect this we define two sub-metrics to measure these two inefficiencies. These are
the Parallel Efficiency and the Computation Efficiency, and our top-level GE metric is
the product of these two sub-metrics:

GE = 103.1 · 120.1

Note:
Computation Efficiency can be computed only at scale with multiple measurements
and currently is not supported by Advisor.

We sincerely hope this methodology will be adopted by our users and others and will form
part of the project's legacy. If you would like to know more about the POP metrics and the
tools used to generate them please check out the rest of the Learning Material on our
website, especially the document on POP Metrics

4.2.2 Multiplicative Hybrid Assessment

58

4.2 Supported Assessments

Note:
4.2.2 is available only in "expert" mode (see 2.3).

This is one approach to extend POP metrics for hybrid (MPI+OpenMP) applications. In this
approach 5.1 split into two components:

• 7.1 shows the inefficiencies on MPI level, and can be broken down into 9.1 and 11.1

• 17.1 shows the inefficiencies on OpenMP level, and can be broken down into 19.1 and
20.1

In this analysis Parallel Efficiency (PE) can be computed as a product of these two
sub-metrics:

PE = 7.1 · 17.1

4.2.3 Additive Hybrid Assessment

This is one approach to extend POP metrics for hybrid (MPI+OpenMP) applications. In this
approach 30.1 split into two components:

• 32.1 shows the inefficiencies on MPI level, and can be broken down into 40.1 and
34.1.

• 42.1 shows the inefficiencies on OpenMP level, and can be broken down into 44.1 and
45.1

In this analysis Parallel Efficiency (PE) an be computed directly or as a sum of these two
sub-metrics minus one:

PE = 32.1 + 42.1 - 1

This scheme has two advantages: each hybrid efficiency measures absolute cost of the
issue(s) under consideration, i.e. relative to the runtime; additive method gives more
freedom in defining child metrics.

4.2.4 BSC Hybrid Assessment

This is one approach to extend POP metrics for hybrid (MPI+OpenMP) applications. It
provides three types of efficiencies, i.e.:

• 55.1 reveals the inefficiency in processes and threads utilization and can be broken
down into 57.1 and 59.1

• 61.1 reveals the inefficiency in MPI processes and can be broken down into 63.1 and
65.1

• 67.1 reveals the inefficiency in OpenMP threads and can be broken down into 69.1
and 71.1

4.2.5 JSC Hybrid Assessment

59

4 Cube Advisor Plugin

Note:
4.2.5 is available only in "expert" mode (see 2.3).

This is JSC spin-off of POP metrics for hybrid (MPI+OpenMP) applications. In this approach
there are two sets of metrics, i.e.:

• metrics describing inefficiencies in MPI: 81.1 and 83.1

• metrics describing inefficiencies in OpenMP: 89.1 and 91.1 and 93.1

There are two peculiarities for this model

• this model considers only MPI and OpenMP and doesn't evaluate parallel behaviour
in general

• additionally to a single metric user can explore statistics over metrics (for some
metrics), i.e. MIN/AVG/MAX values, which can help to identity execution anomalies

4.2.6 KNL Vectorization analysis

We investigate loops with regard to their degree of vectorization and offer suggestions
for optimization candidates. This required hardware counter measurements, obtained in
multiple runs, due to the limited num ber of available counter registers. In the context of
counter measurements this is not unusual for the Score-P work-flow. The suggestion of
specific optimization candidates on the other hand is a deviation from the standard Score-P
metric semantics.

The Score-P metric concept operates on the actual value of a metric (in absolute or relative
terms) and analysis sometimes requires implicit information, e.g. if a higher value is worse
than a small value. This approach leaves the decision about the rel- evance of a metric
value of a certain call-path to the user. They need to judge the severity of an issue based on
the knowledge of the hardware architecture, the source code, the input data, the use case,
or even external parameters. Providing a generic set of thresholds, deciding if a metric
value is problematic, is a hard problem in general, as too many parameters are involved,
some outside the scope of the perfor- mance analysis tool.

In the case of vectorization assistance we used the cooperation with Intel R to investigate
the use of explicit knowledge about the architecture for providing such thresholds in that
limited context. In the following we describe the metrics we focused on and the challenges
they pose for the Score-P work-flow and analysis.

4.2.7 KNL Memory usage analysis

With Score-P, we measure the bandwidth values per code-region outside of OpenMP parallel
regions, due the given uncore counter restrictions. Depending on the application, there
might be a lot of code regions that show a high band- width value. To find the most
bandwidth sensitive candidates among these regions, we need to sort them by their last-
level cache-misses (LLC). This gives us the MCDRAM candidate metric per code region,
as shown in Figure 4. We derive the MCDRAM candidate metric, i.e., we sort the high
bandwith callpaths by their last- level cache misses, in the Cube plugin KNL advisor (see
also 5.2). As input we use the PAPI-measured access counts for each DDR4 memory channel
and the PAPI-SCIPHI Score-P and Cube extensions for Intel Phi measured LLC counts. We
take care of measuring the memory accesses only per- process while running exclusively

60

4.2 Supported Assessments

on a single KNL node. As Score-P and Cube purely work on code regions, the MCDRAM
candidates are also code regions. As a drawback, if a candidate code region accesses
several data structures, we cannot point to the most bandwidth sensitive structure. Vtune
[1], HPCToolkit [3][12] or ScaAnalyzer [13] might provide more detailed insight. In addition
to this drawback, the above approach is not generally applicable for tools as accessing
counters from the uncore requires priviledged access to a ma- chine, either by setting the
paranoia flag or by providing a special kernel module. On production machines, this access
is, for security reasons, often not granted. This does not only apply to memory accesses,
but to all uncore counters.

61

5 AdvisorPOPHybridTestsParallel_efficiency

5.1 Parallel Efficiency

Parallel Efficiency (PE) reveals the inefficiency in processes and threads utilization.
These are measured with Process Efficiency and Thread Efficiency, and PE can be
computed directly or as a product of these two sub-metrics:

PE =
avg(comp)

max(runtime)

= 7.1 · 17.1

63

6 AdvisorPOPHybridTestsMissing_parallel_efficiency

6.1 Missing Parallel Efficiency?

5.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

65

7 AdvisorPOPHybridTestsProcess_efficiency

7.1 Process Efficiency

Process Efficiency completely ignores thread behavior, and evaluates process utilization
via two components:

• Workload across processes

• Communication across processes

These two can be measured with Computation Load Balance and Communication
Efficiency respectively. Process Efficiency can be computed directly or as a product of
these two sub-metrics:

PE =
avg(time in OpenMP) + avg(serial computation)

max(runtime)

= 9.1 · 11.1.

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

67

8 AdvisorPOPHybridTestsMissing_process_efficiency

8.1 Missing Process Efficiency?

7.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

69

9 AdvisorPOPHybridTestsLoad_balance

9.1 Computation Load Balance

Computation Load Balance can be evaluated directly by following formula:

Computation Load Balance =
avg(time in OpenMP) + avg(serial computation)

max(time in OpenMP + serial computation time)

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

71

10 AdvisorPOPHybridTestsMissing_load_balance

10.1 Missing Computation Load Balance?

9.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

73

11 AdvisorPOPHybridTestsCommunication_efficiency

11.1 MPI Communication Efficiency

MPI Communication Efficiency (CommE) can be evaluated directly by following for-
mula:

CommE =
max(time in OpenMP + serial computation time)

max(runtime)

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. CommE is composed of two
additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using 13.1 and 15.1. Combination of these two sub-metrics gives us
Communication Efficiency:

CommE = 13.1 · 15.1

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

75

12 AdvisorPOPHybridTestsMissing_communication_efficiency

12.1 Missing Communication Efficiency?

11.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

77

13 AdvisorPOPHybridTestsSerialisation_efficiency

13.1 Serialisation Efficiency

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communi-
cations, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

79

14 AdvisorPOPHybridTestsMissing_serialisation_efficiency

14.1 Missing Serialisation Efficiency?

13.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

81

15 AdvisorPOPHybridTestsTransfer_efficiency

15.1 Transfer Efficiency

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE = maximum across processes(
total runtime on ideal network

maximum across processes(total measured runtime)
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

83

16 AdvisorPOPHybridTestsMissing_transfer_efficiency

16.1 Missing Transfer Efficiency?

15.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

85

17 AdvisorPOPHybridTestsThread_efficiency

17.1 Thread Efficiency

Thread Efficiency considers two sources of inefficiency:

• Serial computation on the master outside OpenMP, i.e. reflects Amdahl's law

• Inefficiencies within threads, e.g. serialisation across threads

These two can be measured with Amdahl's Efficeincy and OpenMP region Efficiency
respectively. Thread Efficeincy can be computed directly or as a product of these two
sub-metrics:

Thread Efficiency =
avg(computation time)

avg(time in OpenMP) + avg(serial computation)

= 19.1 · 20.1

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

87

18 AdvisorPOPHybridTestsMissing_thread_efficiency

18.1 Missing Thread Efficiency?

17.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

18.2 Missing Amdahl's Efficiency?

19.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

89

19 AdvisorPOPHybridTestsAmdahl_efficiency

19.1 Amdahl's Efficiency

Amdahl's Efficiency indicates serial computation and can be computed as follows:

Amdahl′s Efficiency =
avg(computation time)

avg(time in useful computation within OpenMP) + avg(serial computation)

Where average serial computation computed as weighted arithmetic mean. If number of
threads is equal across processes average serial computation can be computed as ordinary
arithmetic mean.

91

20 AdvisorPOPHybridTestsOmpRegion_efficiency

20.1 OpenMP Region Efficiency

OpenMP Region Efficiency indicates inefficiencies within threads, and can be computed
as follows:

OpenMP Region Efficiency =
avg(time in useful computation within OpenMP) + avg(serial computation)

avg(time in OpenMP) + avg(serial computation)

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

93

21 AdvisorPOPHybridTestsMissing_omp_region_efficiency

21.1 Missing OpenMP Region Efficiency?

20.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

95

22 AdvisorPOPHybridTestsIpc

22.1 IPC (only computation)

IPC indicates number of instructions executed by CPU per clock cycle. The higher the
value the better the CPU performance. It is computed as the ratio of total instructions in
user code to total cycles spent in user code.

• If PAPI counters are available, use PAPI_TOT_INS / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use instructions / cycles.

97

23 AdvisorPOPHybridTestsMissing_ipc

23.1 Missing IPC?

22.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_TOT_INS and PAPI_TOT_CYC,

• or the Perf counters instructions and cycles.

How to do it see Score-P manual

99

24 AdvisorPOPHybridTestsStalled_resources

24.1 Stalled resources (only computation)

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources.

• If PAPI counters are available, use PAPI_RES_STL / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use one of

– (stalled-cycles-backend+stalled-cycles-frontend) / cycles,

– stalled-cycles-backend / cycles,

– stalled-cycles-frontend / cycles,

depending on what is available.

101

25 AdvisorPOPHybridTestsMissing_stalled_resources

25.1 Missing "Resource stall cycles"?

24.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_RES_STL and PAPI_TOT_CYC,

• or the Perf counter cycles and at least one of stalled-cycles-backend, stalled-
cycles-frontend .

How to do it see Score-P manual

103

26 AdvisorPOPHybridTestsNoWaitINS_efficiency

26.1 Instructions (only computation)

Instructions (only computation) indicates the number of CPU instructions executed in
the computation code, which contributes to the 28.1.

• If PAPI counters are available, use PAPI_TOT_INS.

• Otherwise, if Perf counters are available, use instructions.

105

27 AdvisorPOPHybridTestsMissingNoWaitINS_efficiency

27.1 Missing Instructions (only computation)?

26.1 metric is available only, if the measurement has collected

• either the PAPI counter PAPI_TOT_INS,

• or the Perf counter instructions.

How to do it see Score-P manual

107

28 AdvisorPOPHybridTestsComputationTime

28.1 Computation time

Computation time indicated total time spend in the computation call path without MPI,
OpenMP, POSIX threads, std::threads, CUDA, OpenCL, OpenACC, SHMEM. With another
words, it is the user code.

109

29 AdvisorPOPHybridTestsMissingComputationTime

29.1 Missing Computation time?

28.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another than Score-P/Scalasca, it might have missing
metric Time.

111

30 AdvisorPOPHybridAddTestsParallel_efficiency

30.1 Parallel Efficiency

Parallel Efficiency (PE) reveals the inefficiency in processes and threads utilization.
These are measured with Process Efficiency and Thread Efficiency, and PE can be
computed directly or as a sum of these two sub-metrics minus one:

PE =
avg(computation time)

max(runtime)

= 32.1 + 42.1 - 1

113

31 AdvisorPOPHybridAddTestsMissing_parallel_efficiency

31.1 Missing Parallel Efficiency?

30.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

115

32 AdvisorPOPHybridAddTestsProcess_efficiency

32.1 Process Efficiency

Process Efficiency completely ignores thread behavior, and evaluates process utilization
via two components:

• Workload across processes

• Communication across processes

These two can be measured with Computation Load Balance and Communication
Efficiency respectively. Process Efficiency can be computed directly or as a sum of these
two sub-metrics minus one:

Process Efficiency =
avg(time in OpenMP) + avg(serial computation)

max(runtime)

= 40.1 + 34.1 - 1

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

117

33 AdvisorPOPHybridAddTestsMissing_process_efficiency

33.1 Missing Process Efficiency?

32.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

119

34 AdvisorPOPHybridAddTestsCommunication_efficiency

34.1 MPI Communication Efficiency

MPI Communication Efficiency (CommE) can be evaluated directly by following for-
mula:

CommE =
max(time in OpenMP + serial computation time)

max(runtime)

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. CommE is composed of two
additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using 36.1 and 38.1. Combination of these two sub-metrics gives us
Communication Efficiency:

CommE = 36.1 · 38.1

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

121

35 AdvisorPOPHybridAddTestsMissing_communication_efficiency

35.1 Missing Communication Efficiency?

34.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

123

36 AdvisorPOPHybridAddTestsSerialisation_efficiency

36.1 Serialisation Efficiency

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communi-
cations, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

125

37 AdvisorPOPHybridAddTestsMissing_serialisation_efficiency

37.1 Missing Serialisation Efficiency?

36.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

127

38 AdvisorPOPHybridAddTestsTransfer_efficiency

38.1 Transfer Efficiency

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured time)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

129

39 AdvisorPOPHybridAddTestsMissing_transfer_efficiency

39.1 Missing Transfer Efficiency?

38.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

131

40 AdvisorPOPHybridAddTestsLoad_balance

40.1 Computation Load Balance

Computation Load Balance can be evaluated directly by following formula:

Computation Load Balance =
max(runtime)−max(time in OpenMP + serial computation time) + avg(time in OpenMP) + avg(time in serial computation)

max(runtime)

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

133

41 AdvisorPOPHybridAddTestsMissing_load_balance

41.1 Missing Computation Load Balance?

40.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

135

42 AdvisorPOPHybridAddTestsThread_efficiency

42.1 Thread Efficiency

Thread Efficiency considers two sources of inefficiency:

• Serial computation on the master outside OpenMP, i.e. reflects Amdahl's law

• Inefficiencies within threads, e.g. serialisation across threads

These two can be measured with Amdahl's Efficeincy and OpenMP region Efficiency
respectively. Thread Efficeincy can be computed directly or as a sum of these two
sub-metrics minus one:

Thread Efficiency =
max(runtime)− avg(time in OpenMP) + avg(time in useful computation within OpenMP)− avg(idling time of OpenMP threads)

max(runtime)

= 44.1 + 45.1 - 1

Where average idling time of OpenMP threads considers that threads are idling if only
master thread is working and can be computed by following formula

average idling time of OpenMP threads =

num of processes∑
process=0

serial computation · (number of threads per process− 1)

number of all available threads

Moreover, average time in OpenMP computed as weighted arithmetic mean. If number
of threads is equal across processes average time in OpenMP can be computed as ordinary
arithmetic mean.

137

43 AdvisorPOPHybridAddTestsMissing_thread_efficiency

43.1 Missing Thread Efficiency?

42.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

43.2 Missing Amdahl's Efficiency?

44.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

139

44 AdvisorPOPHybridAddTestsAmdahl_efficiency

44.1 Amdahl's Efficiency

Amdahl's Efficiency indicates serial computation and can be computed as follows:

Amdahl′s Efficiency =
max(runtime)− avg(idling time of OpenMP threads)

max(runtime)

where average idling time of OpenMP threads considers that threads are idling if only
master thread is working and can be computed by following formula

average idling time of OpenMP threads =

num of processes∑
process=0

serial computation · (number of threads per process− 1)

number of all available threads

141

45 AdvisorPOPHybridAddTestsOmpRegion_efficiency

45.1 OpenMP Region Efficiency

OpenMP Region Efficiency indicates inefficiencies within threads, and can be computed
as follows:

OpenMP Region Efficiency =
max(runtime)− avg(time in OpenMP) + avg(time in useful computation within OpenMP)

max(runtime)

Where average time in OpenMP is computed as weighted arithmetic mean. If number of
threads is equal across processes average time in OpenMP can be computed as ordinary
arithmetic mean.

143

46 AdvisorPOPHybridAddTestsMissing_omp_region_efficiency

46.1 Missing OpenMP Region Efficiency?

45.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

145

47 AdvisorPOPHybridAddTestsIpc

47.1 IPC (only computation)

IPC indicates number of instructions executed by CPU per clock cycle. The higher the
value the better the CPU performance. It is computed as the ratio of total instructions in
user code to total cycles spent in user code.

• If PAPI counters are available, use PAPI_TOT_INS / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use instructions / cycles.

147

48 AdvisorPOPHybridAddTestsMissing_ipc

48.1 Missing IPC?

47.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_TOT_INS and PAPI_TOT_CYC,

• or the Perf counters instructions and cycles.

How to do it see Score-P manual

149

49 AdvisorPOPHybridAddTestsStalled_resources

49.1 Stalled resources (only computation)

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources.

• If PAPI counters are available, use PAPI_RES_STL / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use one of

– (stalled-cycles-backend+stalled-cycles-frontend) / cycles,

– stalled-cycles-backend / cycles,

– stalled-cycles-frontend / cycles,

depending on what is available.

151

50 AdvisorPOPHybridAddTestsMissing_stalled_resources

50.1 Missing Stalled resources?

49.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_RES_STL and PAPI_TOT_CYC,

• or the Perf counter cycles and at least one of stalled-cycles-backend, stalled-
cycles-frontend .

How to do it see Score-P manual

153

51 AdvisorPOPHybridAddTestsNoWaitINS_efficiency

51.1 Instructions (only computation)

Instructions (only computation) indicates the number of CPU instructions executed in
the computation code, which contributes to the 53.1.

• If PAPI counters are available, use PAPI_TOT_INS.

• Otherwise, if Perf counters are available, use instructions.

155

52 AdvisorPOPHybridAddTestsMissingNoWaitINS_efficiency

52.1 Missing Instructions (only computation)?

51.1 metric is available only, if the measurement has collected

• either the PAPI counter PAPI_TOT_INS,

• or the Perf counter instructions.

How to do it see Score-P manual

157

53 AdvisorPOPHybridAddTestsComputationTime

53.1 Computation time

Computation time indicated total time spend in the computation call path without MPI,
OpenMP, POSIX threads, std::threads, CUDA, OpenCL, OpenACC, SHMEM. With another
words, it is the user code.

159

54 AdvisorPOPHybridAddTestsMissingComputationTime

54.1 Missing Computation time?

53.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another than Score-P/Scalasca, it might have missing
metric Time.

161

55 AdvisorBSPOPHybridTestsParallel_efficiency

55.1 Hybrid Parallel Efficiency

Hybrid Parallel Efficiency (HPE) reveals the inefficiency in processes and threads
utilization. These are measured with Hybrid Load Balance Efficiency and Hybrid
Communication Efficiency, and HPE can be computed directly or as a product of these
two sub-metrics:

HPE =
avg(computation time)

max(runtime)

= 57.1 · 59.1

163

56 AdvisorBSPOPHybridTestsMissing_parallel_efficiency

56.1 Missing Hybrid Parallel Efficiency?

55.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

165

57 AdvisorBSPOPHybridTestsLoadBalance_efficiency

57.1 Hybrid Load Balance Efficiency

Hybrid Load Balance Efficiency can be computed as follows:

Hybrid Load Balance Efficiency =
avg(computation time)

max(computation time)

167

58 AdvisorBSPOPHybridTestsMissing_loadbalance_efficiency

58.1 Missing Hybrid Load Balance Efficiency?

57.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

169

59 AdvisorBSPOPHybridTestsCommunication_efficiency

59.1 Hybrid Communication Efficiency

Hybrid Communication Efficiency can be evaluated directly by following formula:

Hybrid Communication Efficiency =
max(computation time)

max(runtime)

This metric identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations.

171

60 AdvisorBSPOPHybridTestsMissing_communication_efficiency

60.1 Missing Hybrid Communication Efficiency?

59.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

173

61 AdvisorBSPOPHybridTestsMPIParallel_efficiency

61.1 MPI Parallel Efficiency

MPI Parallel Efficiency (MPE) reveals the inefficiency in MPI processes. MPE can be
computed directly or as a product of 63.1 and 65.1 :

MPE =
avg(time outside of MPI)

max(runtime)

= 63.1 · 65.1

175

62 AdvisorBSPOPHybridTestsMissing_MPIparallel_efficiency

62.1 Missing MPI Parallel Efficiency?

61.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

177

63 AdvisorBSPOPHybridTestsMPILoad_balance_efficiency

63.1 MPI Load Balance Efficiency

MPI Load Balance Efficiency can be computed as follows:

MPI Load Balance Efficiency =
avg(time outside of MPI)

max(time outside of MPI)

179

64 AdvisorBSPOPHybridTestsMissing_MPIload_balance_efficiency

64.1 Missing MPI Load Balance Efficiency?

63.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

181

65 AdvisorBSPOPHybridTestsMPICommunication_efficiency

65.1 MPI Communication Efficiency

MPI Communication Efficiency can be evaluated directly by following formula:

MPI Communication Efficiency =
max(time outside of MPI)

max(runtime)

This metric identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations.

183

66 AdvisorBSPOPHybridTestsMissing_MPIcommunication_efficiency

66.1 Missing MPI Communication Efficiency?

65.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

185

67 AdvisorBSPOPHybridTestsOMPParallel_efficiency

67.1 OpenMP Parallel Efficiency

OpenMP Parallel Efficiency (OMPE) reveals the inefficiency in OpenMP threads. OMPE
can be computed directly or as a division 55.1 by 61.1 :

OMPE =
avg(computation time)

avg(time outside of MPI)

= 55.1 / 61.1

187

68 AdvisorBSPOPHybridTestsMissing_OMPparallel_efficiency

68.1 Missing OpenMP Parallel Efficiency?

67.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

189

69 AdvisorBSPOPHybridTestsOMPLoadBalance_efficiency

69.1 OpenMP Load Balance Efficiency

OpenMP Load Balance Efficiency can be computed as follows:

OpenMP Load Balance Efficiency = 57.1 / 63.1

191

70 AdvisorBSPOPHybridTestsMissing_OMPloadbalance_efficiency

70.1 Missing OpenMP Load Balance Efficiency?

69.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

193

71 AdvisorBSPOPHybridTestsOMPCommunication_efficiency

71.1 OpenMP Communication Efficiency

OpenMP Communication Efficiency can be evaluated directly by following formula:

OpenMP Communication Efficiency =
max(computation time)

max(time outside of MPI)

= 59.1 / 65.1

195

72 AdvisorBSPOPHybridTestsMissing_OMPcommunication_efficiency

72.1 Missing OpenMP Communication Efficiency?

71.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

197

73 AdvisorBSPOPHybridTestsIpc

73.1 IPC (only computation)

IPC indicates number of instructions executed by CPU per clock cycle. The higher the
value the better the CPU performance. It is computed as the ratio of total instructions in
user code to total cycles spent in user code.

• If PAPI counters are available, use PAPI_TOT_INS / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use instructions / cycles.

199

74 AdvisorBSPOPHybridTestsMissing_ipc

74.1 Missing IPC?

73.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_TOT_INS and PAPI_TOT_CYC,

• or the Perf counters instructions and cycles.

How to do it see Score-P manual

201

75 AdvisorBSPOPHybridTestsStalled_resources

75.1 Stalled resources (only computation)

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources.

• If PAPI counters are available, use PAPI_RES_STL / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use one of

– (stalled-cycles-backend+stalled-cycles-frontend) / cycles,

– stalled-cycles-backend / cycles,

– stalled-cycles-frontend / cycles,

depending on what is available.

203

76 AdvisorBSPOPHybridTestsMissing_stalled_resources

76.1 Missing Stalled resources?

75.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_RES_STL and PAPI_TOT_CYC,

• or the Perf counter cycles and at least one of stalled-cycles-backend, stalled-
cycles-frontend .

How to do it see Score-P manual

205

77 AdvisorBSPOPHybridTestsNoWaitINS_efficiency

77.1 Instructions (only computation)

Instructions (only computation) indicates the number of CPU instructions executed in
the computation code, which contributes to the 79.1.

• If PAPI counters are available, use PAPI_TOT_INS.

• Otherwise, if Perf counters are available, use instructions.

207

78 AdvisorBSPOPHybridTestsMissingNoWaitINS_efficiency

78.1 Missing Instructions (only computation)?

77.1 metric is available only, if the measurement has collected

• either the PAPI counter PAPI_TOT_INS,

• or the Perf counter instructions.

How to do it see Score-P manual

209

79 AdvisorBSPOPHybridTestsComputationTime

79.1 Computation time

Computation time indicated total time spend in the computation call path without MPI,
OpenMP, POSIX threads, std::threads, CUDA, OpenCL, OpenACC, SHMEM. With another
words, it is the user code.

211

80 AdvisorBSPOPHybridTestsMissingComputationTime

80.1 Missing Computation time?

79.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another than Score-P/Scalasca, it might have missing
metric Time.

213

81 AdvisorJSCTestsLoad_balance

81.1 MPI computation Load Balance

MPI computation Load Balance can be evaluated directly by following formula:

MPI Computation Load Balance =
avg(computation time)

max(runtime)

215

82 AdvisorJSCTestsMissing_load_balance

82.1 Missing MPI computation Load Balance?

81.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

217

83 AdvisorJSCTestsCommunication_efficiency

83.1 MPI communication Efficiency

MPI communication Efficiency (MPI CommE) can be evaluated directly by following
formula:

MPICommE =
max(computation time)

max(runtime)

MPI CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. MPI CommE is composed of
two additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using 85.1 and 87.1. Combination of these two sub-metrics gives us
Communication Efficiency:

CommE = 85.1 · 87.1

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

219

84 AdvisorJSCTestsMissing_communication_efficiency

84.1 Missing MPI communication Efficiency?

83.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

221

85 AdvisorJSCTestsSerialisation_efficiency

85.1 Serialisation Efficiency

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communi-
cations, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

223

86 AdvisorJSCTestsMissing_serialisation_efficiency

86.1 Missing Serialisation Efficiency?

85.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

225

87 AdvisorJSCTestsTransfer_efficiency

87.1 Transfer Efficiency

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

227

88 AdvisorJSCTestsMissing_transfer_efficiency

88.1 Missing Transfer Efficiency?

87.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

229

89 AdvisorJSCTestsAmdahl_efficiency

89.1 OpenMP Amdahl's Efficiency

OpenMP Amdahl's Efficiency indicates serial computation and can be computed as
follows:

Amdahl′s Efficiency =
parallel execution time

total runtime

where parallel execution time is a time spent in OpenMP parallel regions. Amdahl's
Efficiency computed per MPI rank, significant difference between MAX and MIN values
indicate that some process have bigger serialisation part than others.

231

90 AdvisorJSCTestsMissingAmdahl_efficiency

90.1 Missing OpenMP Amdahl's Efficiency?

89.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another than Score-P/Scalasca, it might have missing
metric Time.

233

91 AdvisorJSCTestsOmpLoad_balance

91.1 OpenMP Load Balance Efficiency

OpenMP Load Balance Efficiency reveals the inefficiency in OpenMP parallel regions
caused by imbalance and can be computed as follows:

OpenMP Load Balance Efficiency =
avg(computation time in OpenMP)

max(computation time in OpenMP)

This metric computed per MPI rank and average across MPIs is shown. Moreover, MIN
and MAX values are also available by click on metric bar. Statistics shows if there is
considerable difference in workload across MPI ranks.

235

92 AdvisorJSCTestsMissing_omp_load_balance

92.1 Missing OpenMP Load Balance Efficiency?

91.1 metric is enabled if application has OpenMP part.

237

93 AdvisorJSCTestsOmpSerialisation_efficiency

93.1 OpenMP Serialisation Efficiency

OpenMP Serialisation Efficiency indicates serialisation within OpenMP regions across
MPI ranks (e.g. time in barriers, critical sections, atomics, etc.) and can be computed as
follows:

OpenMP Serialisation Efficiency =
max(runtime in OpenMP without serialisation)

max(runtime in OpenMP without management overhead)

If management overhead is not known due to missing Scalasca analysis, total runtime
without management overhead is equal to total runtime. OpenMP Serialisation Ef-
ficiency computed per MPI rank and average across MPIs is shown. Moreover, MIN
and MAX values are also available by click on metric bar. Statistics shows if there is
considerable difference in serialisation across MPI ranks.

239

94 AdvisorJSCTestsMissing_omp_serialisation_efficiency

94.1 Missing OpenMP Serialisation Efficiency?

93.1 metric is enabled if application has OpenMP part.

241

95 AdvisorJSCTestsIpc

95.1 IPC (only computation)

IPC indicates number of instructions executed by CPU per clock cycle. The higher the
value the better the CPU performance. It is computed as the ratio of total instructions in
user code to total cycles spent in user code.

• If PAPI counters are available, use PAPI_TOT_INS / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use instructions / cycles.

243

96 AdvisorJSCTestsMissing_ipc

96.1 Missing IPC?

95.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_TOT_INS and PAPI_TOT_CYC,

• or the Perf counters instructions and cycles.

How to do it see Score-P manual

245

97 AdvisorJSCTestsStalled_resources

97.1 Stalled resources (only computation)

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources.

• If PAPI counters are available, use PAPI_RES_STL / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use one of

– (stalled-cycles-backend+stalled-cycles-frontend) / cycles,

– stalled-cycles-backend / cycles,

– stalled-cycles-frontend / cycles,

depending on what is available.

247

98 AdvisorJSCTestsMissing_stalled_resources

98.1 Missing Stalled resources?

97.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_RES_STL and PAPI_TOT_CYC,

• or the Perf counter cycles and at least one of stalled-cycles-backend, stalled-
cycles-frontend .

How to do it see Score-P manual

249

99 AdvisorJSCTestsNoWaitINS_efficiency

99.1 Instructions (only computation)

Instructions (only computation) indicates the number of CPU instructions executed in
the computation code, which contributes to the 101.1.

• If PAPI counters are available, use PAPI_TOT_INS.

• Otherwise, if Perf counters are available, use instructions.

251

100 AdvisorJSCTestsMissingNoWaitINS_efficiency

100.1 Missing Instructions (only computation)?

99.1 metric is available only, if the measurement has collected

• either the PAPI counter PAPI_TOT_INS,

• or the Perf counter instructions.

How to do it see Score-P manual

253

101 AdvisorJSCTestsComputationTime

101.1 Computation time

Computation time indicated total time spend in the computation call path without MPI,
OpenMP, POSIX threads, std::threads, CUDA, OpenCL, OpenACC, SHMEM. With another
words, it is the user code.

255

102 AdvisorJSCTestsMissingComputationTime

102.1 Missing Computation time?

101.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measure-
ment. If Cube Report was produced by another than Score-P/Scalasca, it might have
missing metric Time.

257

103 AdvisorPOPTestsParallel_efficiency

103.1 Parallel Efficiency

Parallel Efficiency (PE) reveals the inefficiency in splitting computation over processes
and then communicating data between processes. As with GE, PE is a compound metric
whose components reflects two important factors in achieving good parallel performance
in code:

• Ensuring even distribution of computational work across processes

• Minimizing time communicating data between processes

These are measured with Load Balance Efficiency and Communication Efficiency, and
PE is defined as the product of these two sub-metrics:

PE = 105.1 · 107.1

259

104 AdvisorPOPTestsMissing_parallel_efficiency

104.1 Missing Parallel Efficiency?

103.1 metric is a basic POP metric and is available for every Score-P/Scalasca measure-
ment.If Cube Report was produced by another tool than Score-P/Scalasca, it might have
missing metric Time. In this case POP analysis is not possible.

261

105 AdvisorPOPTestsLoad_balance

105.1 Load Balance

Load Balance (LB) is computed as the ratio between average useful computation time
(across all processes) and maximum useful computation time (also across all processes):

LB =
avg(computation time)

max(computation time)

Thus it shows how big is a difference between average and maximal computation.

263

106 AdvisorPOPTestsMissing_load_balance

106.1 Missing Load Balance?

105.1 metric is a basic POP metric and is available for every Score-P/Scalasca measure-
ment.If Cube Report was produced by another tool than Score-P/Scalasca, it might have
missing metric Time. In this case POP analysis is not possible.

265

107 AdvisorPOPTestsCommunication_efficiency

107.1 Communication Efficiency

Communication Efficiency (CommE) is the maximum across all processes of the ratio
between useful computation time and total run-time:

CommE = maximum across processes(
computation time

total runtime
)

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. CommE is composed of two
additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using 109.1 and 111.1. Combination of these two sub-metrics gives us
Communication Efficiency:

CommE = 109.1 · 111.1

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

267

108 AdvisorPOPTestsMissing_communication_efficiency

108.1 Missing Communication Efficiency?

107.1 metric is a basic POP metric and is available for every Score-P/Scalasca measurement.
If Cube Report was produced by another tool than Score-P/Scalasca, it might have missing
metric Time. In this case POP analysis is not possible.

269

109 AdvisorPOPTestsSerialisation_efficiency

109.1 Serialisation Efficiency

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communi-
cations, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

271

110 AdvisorPOPTestsMissing_serialisation_efficiency

110.1 Missing Serialisation Efficiency?

109.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

273

111 AdvisorPOPTestsTransfer_efficiency

111.1 Transfer Efficiency

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

275

112 AdvisorPOPTestsMissing_transfer_efficiency

112.1 Missing Transfer Efficiency?

111.1 metric is available only, if MPI wait states have been detected and measured. Hence it
is only available for trace analysis results of Scalasca such as scout.cubex or trace.cubex

277

113 AdvisorPOPTestsIpc

113.1 IPC (only computation)

IPC indicates number of instructions executed by CPU per clock cycle. The higher the
value the better the CPU performance. It is computed as the ratio of total instructions in
user code to total cycles spent in user code.

• If PAPI counters are available, use PAPI_TOT_INS / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use instructions / cycles.

279

114 AdvisorPOPTestsStalled_resources

114.1 Stalled resources (only computation)

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources.

• If PAPI counters are available, use PAPI_RES_STL / PAPI_TOT_CYC.

• Otherwise, if Perf counters are available, use one of

– (stalled-cycles-backend+stalled-cycles-frontend) / cycles,

– stalled-cycles-backend / cycles,

– stalled-cycles-frontend / cycles,

depending on what is available.

281

115 AdvisorPOPTestsMissing_stalled_resources

115.1 Missing Stalled resources?

114.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_RES_STL and PAPI_TOT_CYC,

• or the Perf counter cycles and at least one of stalled-cycles-backend, stalled-
cycles-frontend .

How to do it see Score-P manual

283

116 AdvisorPOPTestsNoWaitINS_efficiency

116.1 Instructions (only computation)

Instructions (only computation) indicates the number of CPU instructions executed in
the computation code, which contributes to the 118.1.

• If PAPI counters are available, use PAPI_TOT_INS.

• Otherwise, if Perf counters are available, use instructions.

285

117 AdvisorPOPTestsMissingNoWaitINS_efficiency

117.1 Missing Instructions (only computation)?

116.1 metric is available only, if the measurement has collected

• either the PAPI counter PAPI_TOT_INS,

• or the Perf counter instructions.

How to do it see Score-P manual

287

118 AdvisorPOPTestsComputationTime

118.1 Computation time

Computation time indicated total time spend in the computation call path without MPI,
OpenMP, POSIX threads, std::threads, CUDA, OpenCL, OpenACC, SHMEM. With another
words, it is the user code.

289

119 AdvisorPOPTestsMissingComputationTime

119.1 Missing Computation time?

118.1 metric is a basic Cube metric and is available for every Score-P/Scalasca measure-
ment. If Cube Report was produced by another than Score-P/Scalasca, it might have
missing metric Time.

291

120 AdvisorPOPComputation_efficiency

120.1 Computation Efficiency

Computation Efficiency is a ratio of total time in useful computation summed over all
processes. For strong scaling (i.e. problem size is constant) it is the ratio of total time in
useful computation for a reference case (e.g. on 1 process or 1 compute node) to the total
time as the number of processes (or nodes) is increased. For Computation Efficiency to
have a value of 1 this time must remain constant regardless of the number of processes.

Insight into possible causes of poor computation scaling can be investigated using metrics
devised from processor hardware counter data. Two causes of poor computational scaling
are:

• Dividing work over additional processes increases the total computation required

• Using additional processes leads to contention for shared resources

and we investigate these using 121.1 and 122.1.

293

121 AdvisorPOPInstruction_efficiency

121.1 Instruction Efficiency

Instruction Efficiency is the ratio of total number of useful instructions for a reference
case (e.g. 1 processor) compared to values when increasing the numbers of processes.
A decrease in Instruction Efficiency corresponds to an increase in the total number of
instructions required to solve a computational problem.

295

122 AdvisorPOPTestsIpc_efficiency

122.1 IPC Efficiency

IPC Efficiency compares IPC to the reference, where lower values indicate that rate of
computation has slowed. Typical causes for this include decreasing cache hit rate and
exhaustion of memory bandwidth, these can leave processes stalled and waiting for data.

297

123 AdvisorPOPTestsMissing_ipc

123.1 Missing IPC?

122.1 metric is available only, if the measurement has collected

• either the PAPI counters PAPI_TOT_INS and PAPI_TOT_CYC,

• or the Perf counters instructions and cycles.

How to do it see Score-P manual

299

124 KNL Vectorization metrics

124.1 KNL Vectorization metrics

We focus on the three metrics. The first metric calculates the computational density, i.e.
the number of operations performed on average for each piece of loaded data. The L1
compute to data access ratio can be used to judge how suitable an application is to run
on the KNL architecture. Ideally, operations should be vectorized and each datum fetched
from L1 cache should be used for multiple operations.

Similar to this, the L2 compute to data access ratio is calculated as the number of
vector operations against the loads that initially miss the L1 cache. While the L1 metric is
critical in esti- mating a codes general suitability, the L2 metric is an indicator whether the
code is operating efficiently.

The thresholds are considered the limits where an investigation into the code section?s
vectorization would be useful. These limits are based on recommendations of Intel R [?]
for the KNL architecture and while these hold true for most applications running on KNL,
they are only guide- lines and should be applied with care.

An additional metric, the VPU intensity, offers a rule of thumb on how well a loop is
vectorized, calculating the proportion of vectorized operations on total arithmetic opera-
tions. This metric should be applied only to small pieces of code and certain non-arithmetic
operations, such as mask manipulation instructions, are counted as vector operations,
which can skew this ratio. One defines the metrics as ratios of hardware counters provided
by the KNL architecture. These can be accessed in Score-P through the PAPI metrics
interface

1. Metric: L1 Compute to data access ratio
Threshold: < 1

UOPS RETIRED.PACKED SIMD/ MEM UOPS RETIRED.ALL LOADS

2. Metric: L2 Compute to data access ratio
Threshold: < 100? L1 Compute to data access ratio

UOPS RETIRED.PACKED SIMD/ MEM UOPS RETIRED.L1 MISS LOADS

3. Metric: VPU intensity
Threshold: < 0.5

UOPS RETIRED.PACKED SIMD/ (UOPS RETIRED.PACKED SIMD + UOPS RETIRED.SCALAR SIMD)

301

124 KNL Vectorization metrics

and can measured at a call-path level on each thread. To calculate all derived metrics,
multiple native hardware counters have to be recorded. Since the KNL architecture
provides only two general purpose counters per thread, multiple measurements have to be
used to obtain the full set of counters required.

302

125 Memory analysis for KNL

In order to analyse quality of the computational code Advisor requires that at least the
following metrics are collected:

1. LLC_MISSES

2. knl_unc_imc0::UNC_M_CAS_COUNT:ALL:cpu=0,

3. knl_unc_imc1::UNC_M_CAS_COUNT:ALL:cpu=0,

4. knl_unc_imc2::UNC_M_CAS_COUNT:ALL:cpu=0,

5. knl_unc_imc3::UNC_M_CAS_COUNT:ALL:cpu=0,

6. knl_unc_imc4::UNC_M_CAS_COUNT:ALL:cpu=0 and

7. knl_unc_imc5::UNC_M_CAS_COUNT:ALL:cpu=0

How to do it see Score-P manual

303

126 Vectorization analysis for KNL

In order to analyse quality of the computational code Advisor requires that at least following
metrics are collected:

1. MEM_UOPS_RETIRED:L1_MISS_LOADS,

2. MEM_UOPS_RETIRED:L2_MISS_LOADS

3. UOPS_RETIRED:PACKED_SIMD,

4. UOPS_RETIRED:SCALAR_SIMD

How to do it see Score-P manual

For more details, see 124.

305

127 Memory transfer

Number of transferred bytes.

307

128 Missing Memory transfer?

127 metric is available only, if one has collected knl_unc_imc0::UNC_M_CAS_COUNT:ALL:cpu=0,
knl_unc_imc1::UNC_M_CAS_COUNT:ALL:cpu=0, knl_unc_imc2::UNC_M_CAS_COUNT:ALL:cpu=0,
knl_unc_imc3::UNC_M_CAS_COUNT:ALL:cpu=0, knl_unc_imc4::UNC_M_CAS_COUNT:ALL:cpu=0
and knl_unc_imc5::UNC_M_CAS_COUNT:ALL:cpu=0 counters while measurement.
How to do it see Score-P manual

309

129 Memory bandwidth

Number of transferred bytes per runtime of the call path.

311

130 Missing Memory bandwidth?

129 metric is available only, if one has collected knl_unc_imc0::UNC_M_CAS_COUNT:ALL:cpu=0,
knl_unc_imc1::UNC_M_CAS_COUNT:ALL:cpu=0, knl_unc_imc2::UNC_M_CAS_COUNT:ALL:cpu=0,
knl_unc_imc3::UNC_M_CAS_COUNT:ALL:cpu=0, knl_unc_imc4::UNC_M_CAS_COUNT:ALL:cpu=0
and knl_unc_imc5::UNC_M_CAS_COUNT:ALL:cpu=0 counters while measurement.
How to do it see Score-P manual

313

131 LLC Miss metric

Displays number of misses in last level cache.

315

132 Missing LLC Miss metric?

131 metric is available only, if one has collected LLC_MISSES counters while measurement.
How to do it see Score-P manual

317

133 VPU Intensity

VPU intensity offers a rule of thumb on how well a loop is vectorized, calculating the
proportion of vectorized operations on total arithmetic operations. This metric should be
applied only to small pieces of code and certain non-arithmetic operations, such as mask
manipulation instructions, are counted as vector operations, which can skew this ratio.

UOPS RETIRED.PACKED SIMD/ (UOPS RETIRED.PACKED SIMD + UOPS RETIRED.SCALAR SIMD)

For more details, see 124.

319

134 Missing VPU Intensity?

133 metric is available only, if one has collected UOPS_RETIRED.PACKED_SIMD,
UOPS_RETIRED.SCALAR_SIMD counters while measurement. How to do it see Score-P
manual

For more details, see 124.

321

135 L1 to Computation ratio

The L1 compute to data access ratio can be used to judge how suitable an application
is to run on the KNL architecture. Ideally, operations should be vectorized and each datum
fetched from L1 cache should be used for multiple operations.

For more details, see 124.

323

136 Missing L1 to Computation ratio

135 metric is available only, if one has collected UOPS_RETIRED.PACKED_SIMD,
MEM_UOPS_RETIRED.ALL_LOADS counters while measurement. How to do it see
Score-P manual

For more details, see 124.

325

137 L2 to L1 ratio

Similar to this, the L2 compute to data access ratio is calculated as the number of
vector operations against the loads that initially miss the L1 cache. While the L1 metric is
critical in esti- mating a codes general suitability, the L2 metric is an indicator whether the
code is operating efficiently.

For more details, see 124.

327

138 Missing L2 to L1

137 metric is available only, if one has collected UOPS_RETIRED.PACKED_SIMD,
MEM_UOPS_RETIRED.L1_MISS_LOADS counters while measurement. How to do it
see Score-P manual

For more details, see 124.

329

139 Customization with Qt
Stylesheets

Style Sheet Editor

Qt Style Sheets allow the user to customize the appearance of widgets. Qt Style Sheets
are similar to HTML Cascading Style Sheets (CSS) but adapted to widgets. To define style
sheets, open the Editor with Display⇒ Customize style sheet.

Figure 139.1: start style sheet editor

The following example customizes the appearance of the three tree views. The tree items
are drawn in black, selected tree items in red. The background color of the tree items is
set to lightgray, the background color of selected items to green. To draw the tree items,
the font family "Bitstream Charter" with 10 point size is used.

QTreeView {
color: black;
background-color: lightgray;
selection-color:red;
selection-background-color:lightgreen;
font-family: Bitstream Charter;
font-size: 10pt

}

For further information, refer to the Qt style sheet reference:

• List of widgets which can be customized

• List of properties

• Style sheet syntax

331

140 Appendix

140.1 File format of statistics files

Statistic files (for an example see 140.1) are simply text files which contain the necessary
data. The first line is always ignored but should look similar to that in the example as it
simplifies the understanding for the human reader. All values in a statistic file are simply
separated by an arbitrary number of spaces. For each pattern there is a line which contains

PatternName MetricID Count Mean Median Minimum Maximum Sum Variance Quartil25 Quartil75
LateBroadcast 6 4 0.010 0.000031 0.000004 0.042856 0.042 0.000459
- cnode: 5 enter: 0.245877 exit: 0.256608 duration: 0.042856

WaitAtBarrier 18 20 0.018 0.006477 0.000002 0.065293 0.369 0.000698 0.000040 0.047409
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000100
- cnode: 12 enter: 0.326120 exit: 0.335651 duration: 0.065293

BarrierCompletion 17 20 0.000 0.000005 0.000002 0.000018 0.000 0.000000 0.000003 0.000009
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000009
- cnode: 12 enter: 0.159321 exit: 0.165005 duration: 0.000018

WaitAtIBarrier 27 144 0.001 0.000027 0.000001 0.028451 0.212 0.000028 0.000002 0.000437
- cnode: 11 enter: 0.297292 exit: 0.297316 duration: 0.000057
- cnode: 10 enter: 0.322577 exit: 0.332093 duration: 0.028451

Figure 140.1: An example of a statistic file

at least the pattern name (as plain text without spaces), its corresponding metric id in the
CUBE file (integer as text) and the count – i.e., how many instances of the pattern exist
(also as integer). If more values are provided, there have to be the mean value, median,
minimum and maximum as well as the sum (all as floating point numbers in arbitrary
format). If one of these values is provided, all have to. The next optional value is the
variance (also as a floating point number). The last two optional values of which both or
none have to be provided are the 25% and the 75% quantile, also as floating point numbers.

If any of these values is omitted, all following values have to be omitted, too. If for example
the variance is not provided, the lower and the upper quartile must not be provided either.

In the subsequent lines (there can be an arbitrary number), the information of the most
severe instances is provided. Each of these lines has to begin with a minus sign (-). Then
the text cnode:, followed by the cnode id of this instance in the CUBE file (integer as text)
is provided. The same holds for enter, exit and duration (floats as text).

The begin of the next pattern is indicated by a blank line.

333

www.scalasca.org

	Copyright
	Cube User Guide
	Abstract
	Introduction
	Command line options
	Environment variables
	Using the Display
	Basic Principles
	GUI Components
	Menu Bar
	Value modes
	System resource subsets
	Tree browsers
	Selected value info
	Color legend
	Status Bar

	Client-Server
	Cube Server
	Cube Client

	Cube GUI Plugins
	Detach Plugin Tabs
	Context free plugins
	Plugin `¨Diff`¨
	Plugin `¨Mean`¨
	Plugin `¨Merge`¨
	Plugin `¨Scaling`¨
	Plugin `¨Tau2Cube`¨

	Advanced Color Map Plugin
	Metric Editor Plugin
	Metric Identification Plugin
	Score-P Configuration Plugin
	Source Code Viewer
	Source Code Viewer Keyboard control

	System Barplot Plugin
	Basic Principles
	Toolbar
	Menu Bar

	System Heatmap Plugin
	Basic Principles
	Menu Heatmap

	System Statistics Plugin
	System Sunburst Plugin
	System Topology Plugin
	Topology mapping panel
	Topology plugin menu
	Toolbar
	Topology keyboard and mouse control

	Tree Item Marker Plugin

	Other Features
	Features enabled through statistic files
	Statistical information about performance patterns
	Display of most severe pattern instances using a trace browser
	Troubleshooting

	Synchronization of several cube instances

	Keyboard and mouse control

	Tree Item Marker
	Cube Advisor Plugin
	Getting Started with Advisor
	Supported Assessments
	Only-MPI Assessment
	Multiplicative Hybrid Assessment
	Additive Hybrid Assessment
	BSC Hybrid Assessment
	JSC Hybrid Assessment
	KNL Vectorization analysis
	KNL Memory usage analysis

	AdvisorPOPHybridTestsParallel_efficiency
	Parallel Efficiency

	AdvisorPOPHybridTestsMissing_parallel_efficiency
	Missing Parallel Efficiency?

	AdvisorPOPHybridTestsProcess_efficiency
	Process Efficiency

	AdvisorPOPHybridTestsMissing_process_efficiency
	Missing Process Efficiency?

	AdvisorPOPHybridTestsLoad_balance
	Computation Load Balance

	AdvisorPOPHybridTestsMissing_load_balance
	Missing Computation Load Balance?

	AdvisorPOPHybridTestsCommunication_efficiency
	MPI Communication Efficiency

	AdvisorPOPHybridTestsMissing_communication_efficiency
	Missing Communication Efficiency?

	AdvisorPOPHybridTestsSerialisation_efficiency
	Serialisation Efficiency

	AdvisorPOPHybridTestsMissing_serialisation_efficiency
	Missing Serialisation Efficiency?

	AdvisorPOPHybridTestsTransfer_efficiency
	Transfer Efficiency

	AdvisorPOPHybridTestsMissing_transfer_efficiency
	Missing Transfer Efficiency?

	AdvisorPOPHybridTestsThread_efficiency
	Thread Efficiency

	AdvisorPOPHybridTestsMissing_thread_efficiency
	Missing Thread Efficiency?
	Missing Amdahl's Efficiency?

	AdvisorPOPHybridTestsAmdahl_efficiency
	Amdahl's Efficiency

	AdvisorPOPHybridTestsOmpRegion_efficiency
	OpenMP Region Efficiency

	AdvisorPOPHybridTestsMissing_omp_region_efficiency
	Missing OpenMP Region Efficiency?

	AdvisorPOPHybridTestsIpc
	IPC (only computation)

	AdvisorPOPHybridTestsMissing_ipc
	Missing IPC?

	AdvisorPOPHybridTestsStalled_resources
	Stalled resources (only computation)

	AdvisorPOPHybridTestsMissing_stalled_resources
	Missing `¨Resource stall cycles`¨?

	AdvisorPOPHybridTestsNoWaitINS_efficiency
	Instructions (only computation)

	AdvisorPOPHybridTestsMissingNoWaitINS_efficiency
	Missing Instructions (only computation)?

	AdvisorPOPHybridTestsComputationTime
	Computation time

	AdvisorPOPHybridTestsMissingComputationTime
	Missing Computation time?

	AdvisorPOPHybridAddTestsParallel_efficiency
	Parallel Efficiency

	AdvisorPOPHybridAddTestsMissing_parallel_efficiency
	Missing Parallel Efficiency?

	AdvisorPOPHybridAddTestsProcess_efficiency
	Process Efficiency

	AdvisorPOPHybridAddTestsMissing_process_efficiency
	Missing Process Efficiency?

	AdvisorPOPHybridAddTestsCommunication_efficiency
	MPI Communication Efficiency

	AdvisorPOPHybridAddTestsMissing_communication_efficiency
	Missing Communication Efficiency?

	AdvisorPOPHybridAddTestsSerialisation_efficiency
	Serialisation Efficiency

	AdvisorPOPHybridAddTestsMissing_serialisation_efficiency
	Missing Serialisation Efficiency?

	AdvisorPOPHybridAddTestsTransfer_efficiency
	Transfer Efficiency

	AdvisorPOPHybridAddTestsMissing_transfer_efficiency
	Missing Transfer Efficiency?

	AdvisorPOPHybridAddTestsLoad_balance
	Computation Load Balance

	AdvisorPOPHybridAddTestsMissing_load_balance
	Missing Computation Load Balance?

	AdvisorPOPHybridAddTestsThread_efficiency
	Thread Efficiency

	AdvisorPOPHybridAddTestsMissing_thread_efficiency
	Missing Thread Efficiency?
	Missing Amdahl's Efficiency?

	AdvisorPOPHybridAddTestsAmdahl_efficiency
	Amdahl's Efficiency

	AdvisorPOPHybridAddTestsOmpRegion_efficiency
	OpenMP Region Efficiency

	AdvisorPOPHybridAddTestsMissing_omp_region_efficiency
	Missing OpenMP Region Efficiency?

	AdvisorPOPHybridAddTestsIpc
	IPC (only computation)

	AdvisorPOPHybridAddTestsMissing_ipc
	Missing IPC?

	AdvisorPOPHybridAddTestsStalled_resources
	Stalled resources (only computation)

	AdvisorPOPHybridAddTestsMissing_stalled_resources
	Missing Stalled resources?

	AdvisorPOPHybridAddTestsNoWaitINS_efficiency
	Instructions (only computation)

	AdvisorPOPHybridAddTestsMissingNoWaitINS_efficiency
	Missing Instructions (only computation)?

	AdvisorPOPHybridAddTestsComputationTime
	Computation time

	AdvisorPOPHybridAddTestsMissingComputationTime
	Missing Computation time?

	AdvisorBSPOPHybridTestsParallel_efficiency
	Hybrid Parallel Efficiency

	AdvisorBSPOPHybridTestsMissing_parallel_efficiency
	Missing Hybrid Parallel Efficiency?

	AdvisorBSPOPHybridTestsLoadBalance_efficiency
	Hybrid Load Balance Efficiency

	AdvisorBSPOPHybridTestsMissing_loadbalance_efficiency
	Missing Hybrid Load Balance Efficiency?

	AdvisorBSPOPHybridTestsCommunication_efficiency
	Hybrid Communication Efficiency

	AdvisorBSPOPHybridTestsMissing_communication_efficiency
	Missing Hybrid Communication Efficiency?

	AdvisorBSPOPHybridTestsMPIParallel_efficiency
	MPI Parallel Efficiency

	AdvisorBSPOPHybridTestsMissing_MPIparallel_efficiency
	Missing MPI Parallel Efficiency?

	AdvisorBSPOPHybridTestsMPILoad_balance_efficiency
	MPI Load Balance Efficiency

	AdvisorBSPOPHybridTestsMissing_MPIload_balance_efficiency
	Missing MPI Load Balance Efficiency?

	AdvisorBSPOPHybridTestsMPICommunication_efficiency
	MPI Communication Efficiency

	AdvisorBSPOPHybridTestsMissing_MPIcommunication_efficiency
	Missing MPI Communication Efficiency?

	AdvisorBSPOPHybridTestsOMPParallel_efficiency
	OpenMP Parallel Efficiency

	AdvisorBSPOPHybridTestsMissing_OMPparallel_efficiency
	Missing OpenMP Parallel Efficiency?

	AdvisorBSPOPHybridTestsOMPLoadBalance_efficiency
	OpenMP Load Balance Efficiency

	AdvisorBSPOPHybridTestsMissing_OMPloadbalance_efficiency
	Missing OpenMP Load Balance Efficiency?

	AdvisorBSPOPHybridTestsOMPCommunication_efficiency
	OpenMP Communication Efficiency

	AdvisorBSPOPHybridTestsMissing_OMPcommunication_efficiency
	Missing OpenMP Communication Efficiency?

	AdvisorBSPOPHybridTestsIpc
	IPC (only computation)

	AdvisorBSPOPHybridTestsMissing_ipc
	Missing IPC?

	AdvisorBSPOPHybridTestsStalled_resources
	Stalled resources (only computation)

	AdvisorBSPOPHybridTestsMissing_stalled_resources
	Missing Stalled resources?

	AdvisorBSPOPHybridTestsNoWaitINS_efficiency
	Instructions (only computation)

	AdvisorBSPOPHybridTestsMissingNoWaitINS_efficiency
	Missing Instructions (only computation)?

	AdvisorBSPOPHybridTestsComputationTime
	Computation time

	AdvisorBSPOPHybridTestsMissingComputationTime
	Missing Computation time?

	AdvisorJSCTestsLoad_balance
	MPI computation Load Balance

	AdvisorJSCTestsMissing_load_balance
	Missing MPI computation Load Balance?

	AdvisorJSCTestsCommunication_efficiency
	MPI communication Efficiency

	AdvisorJSCTestsMissing_communication_efficiency
	Missing MPI communication Efficiency?

	AdvisorJSCTestsSerialisation_efficiency
	Serialisation Efficiency

	AdvisorJSCTestsMissing_serialisation_efficiency
	Missing Serialisation Efficiency?

	AdvisorJSCTestsTransfer_efficiency
	Transfer Efficiency

	AdvisorJSCTestsMissing_transfer_efficiency
	Missing Transfer Efficiency?

	AdvisorJSCTestsAmdahl_efficiency
	OpenMP Amdahl's Efficiency

	AdvisorJSCTestsMissingAmdahl_efficiency
	Missing OpenMP Amdahl's Efficiency?

	AdvisorJSCTestsOmpLoad_balance
	OpenMP Load Balance Efficiency

	AdvisorJSCTestsMissing_omp_load_balance
	Missing OpenMP Load Balance Efficiency?

	AdvisorJSCTestsOmpSerialisation_efficiency
	OpenMP Serialisation Efficiency

	AdvisorJSCTestsMissing_omp_serialisation_efficiency
	Missing OpenMP Serialisation Efficiency?

	AdvisorJSCTestsIpc
	IPC (only computation)

	AdvisorJSCTestsMissing_ipc
	Missing IPC?

	AdvisorJSCTestsStalled_resources
	Stalled resources (only computation)

	AdvisorJSCTestsMissing_stalled_resources
	Missing Stalled resources?

	AdvisorJSCTestsNoWaitINS_efficiency
	Instructions (only computation)

	AdvisorJSCTestsMissingNoWaitINS_efficiency
	Missing Instructions (only computation)?

	AdvisorJSCTestsComputationTime
	Computation time

	AdvisorJSCTestsMissingComputationTime
	Missing Computation time?

	AdvisorPOPTestsParallel_efficiency
	Parallel Efficiency

	AdvisorPOPTestsMissing_parallel_efficiency
	Missing Parallel Efficiency?

	AdvisorPOPTestsLoad_balance
	Load Balance

	AdvisorPOPTestsMissing_load_balance
	Missing Load Balance?

	AdvisorPOPTestsCommunication_efficiency
	Communication Efficiency

	AdvisorPOPTestsMissing_communication_efficiency
	Missing Communication Efficiency?

	AdvisorPOPTestsSerialisation_efficiency
	Serialisation Efficiency

	AdvisorPOPTestsMissing_serialisation_efficiency
	Missing Serialisation Efficiency?

	AdvisorPOPTestsTransfer_efficiency
	Transfer Efficiency

	AdvisorPOPTestsMissing_transfer_efficiency
	Missing Transfer Efficiency?

	AdvisorPOPTestsIpc
	IPC (only computation)

	AdvisorPOPTestsStalled_resources
	Stalled resources (only computation)

	AdvisorPOPTestsMissing_stalled_resources
	Missing Stalled resources?

	AdvisorPOPTestsNoWaitINS_efficiency
	Instructions (only computation)

	AdvisorPOPTestsMissingNoWaitINS_efficiency
	Missing Instructions (only computation)?

	AdvisorPOPTestsComputationTime
	Computation time

	AdvisorPOPTestsMissingComputationTime
	Missing Computation time?

	AdvisorPOPComputation_efficiency
	Computation Efficiency

	AdvisorPOPInstruction_efficiency
	Instruction Efficiency

	AdvisorPOPTestsIpc_efficiency
	IPC Efficiency

	AdvisorPOPTestsMissing_ipc
	Missing IPC?

	KNL Vectorization metrics
	KNL Vectorization metrics

	Memory analysis for KNL
	Vectorization analysis for KNL
	Memory transfer
	Missing Memory transfer?
	Memory bandwidth
	Missing Memory bandwidth?
	LLC Miss metric
	Missing LLC Miss metric?
	VPU Intensity
	Missing VPU Intensity?
	L1 to Computation ratio
	Missing L1 to Computation ratio
	L2 to L1 ratio
	Missing L2 to L1
	Customization with Qt Stylesheets
	Appendix
	File format of statistics files

	Bibliography

