
CubeLib 4.4 Tools Guide
Description of Cube Command Line Tools

May 2018
The Scalasca Development Team
scalasca@fz-juelich.de

Attention

The Cube Tool Developer Guide is currently being rewritten and still incom-
plete. However, it should already contain enough information to get you
started and avoid the most common pitfalls.

ii

Contents

1 Cube Command Line Tools 3
1.1 Abstract . 3
1.2 Performance Algebra and Tools . 3

1.2.1 Difference . 3
1.2.2 Merge . 4
1.2.3 Mean . 5
1.2.4 Compare . 6
1.2.5 Clean . 6
1.2.6 Reroot, Prune . 7
1.2.7 Remap (version 2) . 7
1.2.8 Statistics . 8
1.2.9 from TAU to CUBE . 9
1.2.10Common Calltree . 10
1.2.11Topology Assistant . 11
1.2.12Dump . 13

Bibliography 21

iii

Contents

Copyright © 1998–2017 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

1 Cube Command Line Tools

1.1 Abstract

CUBE provides a set of various command line tools for different purposes.

1.2 Performance Algebra and Tools

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE offers a mechanism called
performance algebra that can be used to merge, subtract, and average the data from
different experiments and view the results in the form of a single “derived'' experiment.
Using the same representation for derived experiments and original experiments provides
access to the derived behavior based on familiar metaphors and tools in addition to an
arbitrary and easy composition of operations. The algebra is an ideal tool to verify and
locate performance improvements and degradations likewise. The algebra includes three
operators—diff, merge, and mean—provided as command-line utilities which take two or
more CUBE files as input and generate another CUBE file as output. The operations are
closed in the sense that the operators can be applied to the results of previous operations.
Note that although all operators are defined for any valid CUBE data sets, not all possible
operations make actually sense. For example, whereas it can be very helpful to compare two
versions of the same code, computing the difference between entirely different programs
is unlikely to yield any useful results.

1.2.1 Difference

Changing a program can alter its performance behavior. Altering the performance behavior
means that different results are achieved for different metrics. Some might increase
while others might decrease. Some might rise in certain parts of the program only, while
they drop off in other parts. Finding the reason for a gain or loss in overall performance
often requires considering the performance change as a multidimensional structure. With
CUBE's difference operator, a user can view this structure by computing the difference
between two experiments and rendering the derived result experiment like an original
one. The difference operator takes two experiments and computes a derived experiment
whose severity function reflects the difference between the minuend's severity and the
subtrahend's severity.

The possible output is presented below.

user@host: cube_diff scout.cube remapped.cube -o result.cube

3

Chapter 1. Cube Command Line Tools

Reading scout.cube ... done.
Reading remapped.cube ... done.
++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies...

Topology retained in experiment.
done.

INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully ++++++++++++++++
Writing result.cube ... done.

Usage: cube_diff [-o output] [-c] [-C] [-h] minuend subtrahend

-o Name of the output file (default: diff.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

1.2.2 Merge

The merge operator's purpose is the integration of performance data from different sources.
Often a certain combination of performance metrics cannot be measured during a single run.
For example, certain combinations of hardware events cannot be counted simultaneously
due to hardware resource limits. Or the combination of performance metrics requires
using different monitoring tools that cannot be deployed during the same run. The merge
operator takes an arbitrary number of CUBE experiments with a different or overlapping
set of metrics and yields a derived CUBE experiment with a joint set of metrics.

The possible output is presented below.

user@host: cube_merge scout.cube remapped.cube -o result.cube
++++++++++++ Merge operation begins ++++++++++++++++++++++++++
Reading scout.cube ... done.
Reading remapped.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Merge operation...

Topology retained in experiment.

Topology retained in experiment.
done.

++++++++++++ Merge operation ends successfully ++++++++++++++++
Writing result.cube ... done.

4

1.2. Performance Algebra and Tools

Usage: cube_merge [-o output] [-c] [-C] [-h] cube ...

-o Name of the output file (default: merge.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

1.2.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by
unrelated system activity during an experiment or to summarize across a range of execution
parameters. You can conduct several experiments and create a single average experiment
from the whole series. The mean operator takes an arbitrary number of arguments.

The possible output is presented below.

user@host: cube_mean scout1.cube scout2.cube scout3.cube scout4.cube -o mean.cube
++++++++++++ Mean operation begins ++++++++++++++++++++++++++
Reading scout1.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout2.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout3.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout4.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
++++++++++++ Mean operation ends successfully ++++++++++++++++
Writing mean.cube ... done.

Usage: cube_mean [-o output] [-c] [-C] [-h cube ...

5

Chapter 1. Cube Command Line Tools

-o Name of the output file (default: mean.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

1.2.4 Compare

Compares two experiments and prints out if they are equal or not. Two experiments are
equal if they have same dimensions hierarchy and the equal values of the severieties.

An example of the output is below.

user@host: cube_cmp remapped.cube scout1.cube
Reading remapped.cube ... done.
Reading scout1.cube ... done.
++++++++++++ Compare operation begins ++++++++++++++++++++++++++
Experiments are not equal.
+++++++++++++ Compare operation ends successfully ++++++++++++++++

Usage: cube_cmp [-h] cube1 cube2

-h Help; Output a brief help message.

1.2.5 Clean

CUBE files may contain more data in the definition part than absolutely necessary. The
cube_clean utility creates a new CUBE file with an identical structure as the input experi-
ment, but with the definition part cleaned up.

An example of the output is presented below.

user@host: cube_clean remapped.cube -o cleaned.cube
++++++++++++ Clean operation begins ++++++++++++++++++++++++++
Reading remapped.cube ... done.

Topology retained in experiment.
++++++++++++ Clean operation ends successfully ++++++++++++++++
Writing cleaned.cube ... done.

Usage: cube_clean [-o output] [-h cube

-o Name of the output file (default: clean.cube|.gz)

-h Help; Output a brief help message.

6

1.2. Performance Algebra and Tools

1.2.6 Reroot, Prune

For the detailed study of some part of the execution, the CUBE file can be modified based
on a given call-tree node. Two different operations are possible:

• The call tree may be re-rooted, i.e., only sub-trees with the given call-tree node as
root are retained in the experiment.

• An entire sub-tree may be pruned, i.e., removed from the experiment. In this case,
all metric values for that sub-tree will be attributed to it's parent call-tree node (=
“inlined'').

An example of the output is presented below.

user@host: cube_cut -r inner_auto_ -p flux_err_ -o cutted.cube remapped.cube
Reading remapped.cube ... done.
++++++++++++ Cut operation begins ++++++++++++++++++++++++++

Topology retained in experiment.
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cutted.cube ... done.

Usage: cube_cut [-h] [-r nodename] [-p nodename] [-o output cube

-o Name of the output file (default: cut.cube|.gz)

-r Re-root call tree at named node

-p Prune call tree from named node (= ''inline'')

-h Help; Output a brief help message.

1.2.7 Remap (version 2)

A more flixible implementation of the tool cube_remap is the cube_remap2.

This tool takes a remapping specification file as a command line argument and perform
recalculation of the metric values according to the specified rules, expressed in CubePL
syntax.

This tool can be used to convert all derived metrics into usual metrics, which are holding
data (notice, that POSTDERIVED metrics became invalid while this conversion).

CUBE provides examplees of remapping specification files for SCOUT and Score-P. They
are stored in the directory [prefix]/share/doc/cube/examples

Usage: ./cube_remap2 -r <remap specification file> [-o output] [-d] [-s] [-h] <cube
experiment>

-r Name of the remapping specification file. By omitting this option the specification file
from the cube experiment is taken if present.

-c Create output file with the same structure as an input file. It overrides option "-r"

-o Name of the output file (default: remap)

7

Chapter 1. Cube Command Line Tools

-d Convert all prederived metrics into usual metrics, calculate and store their values as a
data.

-s Add hardcoded SCALSCA metrics "Idle threads" and "Limited parallelizm"

-h Help; Output a brief help message.

1.2.8 Statistics

Extracts statistical information from the CUBE files.

user@host: ./cube_stat -m time,mpi -p remapped.cube -%
MetricRoutine Count Sum Mean Variance Minimum ... Maximum
time INCL(MAIN__) 4 143.199101 35.799775 0.001783 35.759769 ... 35.839160
time EXCL(MAIN__) 4 0.078037 0.019509 0.000441 0.001156 ... 0.037711
time task_init_ 4 0.568882 0.142221 0.001802 0.102174 ... 0.181852
time read_input_ 4 0.101781 0.025445 0.000622 0.000703 ... 0.051980
time decomp_ 4 0.000005 0.000001 0.000000 0.000001 ... 0.000002
time inner_auto_ 4 142.361593 35.590398 0.000609 35.566589 ... 35.612125
time task_end_ 4 0.088803 0.022201 0.000473 0.000468 ... 0.043699

mpi INCL(MAIN__) 4 62.530811 15.632703 2.190396 13.607989 ... 17.162466
mpi EXCL(MAIN__) 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
mpi task_init_ 4 0.304931 0.076233 0.001438 0.040472 ... 0.113223
mpi read_input_ 4 0.101017 0.025254 0.000633 0.000034 ... 0.051952
mpi decomp_ 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
pi inner_auto_ 4 62.037503 15.509376 2.194255 13.478049 ... 17.031288
mpi task_end_ 4 0.087360 0.021840 0.000473 0.000108 ... 0.043333

user@host: ./cube_stat -t33 remapped.cube -p -m time,mpi,visits
Region NumberOfCalls ExclusiveTime InclusiveTime time mpi visits
sweep_ 48 76.438435 130.972847 76.438435 0.000000 48
MPI_Recv 39936 36.632249 36.632249 36.632249 36.632249 39936
MPI_Send 39936 17.684986 17.684986 17.684986 17.684986 39936
MPI_Allreduce 128 7.383530 7.383530 7.383530 7.383530 128
source_ 48 3.059890 3.059890 3.059890 0.000000 48
MPI_Barrier 12 0.382902 0.382902 0.382902 0.382902 12
flux_err_ 48 0.380047 1.754759 0.380047 0.000000 48
TRACING 8 0.251017 0.251017 0.251017 0.000000 8
MPI_Bcast 16 0.189381 0.189381 0.189381 0.189381 16
MPI_Init 4 0.170402 0.419989 0.170402 0.170402 4
snd_real_ 39936 0.139266 17.824251 0.139266 0.000000 39936
MPI_Finalize 4 0.087360 0.088790 0.087360 0.087360 4
initialize_ 4 0.084858 0.168192 0.084858 0.000000 4
initxs_ 4 0.083242 0.083242 0.083242 0.000000 4
MAIN__ 4 0.078037 143.199101 0.078037 0.000000 4
rcv_real_ 39936 0.077341 36.709590 0.077341 0.000000 39936
inner_ 4 0.034985 142.337220 0.034985 0.000000 4
inner_auto_ 4 0.024373 142.361593 0.024373 0.000000 4
task_init_ 4 0.014327 0.568882 0.014327 0.000000 4
read_input_ 4 0.000716 0.101781 0.000716 0.000000 4

8

1.2. Performance Algebra and Tools

octant_ 416 0.000581 0.000581 0.000581 0.000000 416
global_real_max_ 48 0.000441 1.374712 0.000441 0.000000 48
global_int_sum_ 48 0.000298 5.978850 0.000298 0.000000 48
global_real_sum_ 32 0.000108 0.030815 0.000108 0.000000 32
barrier_sync_ 12 0.000105 0.383007 0.000105 0.000000 12
bcast_int_ 12 0.000068 0.189395 0.000068 0.000000 12
timers 2 0.000044 0.000044 0.000044 0.000000 2
initgeom_ 4 0.000042 0.000042 0.000042 0.000000 4
initsnc_ 4 0.000038 0.000050 0.000038 0.000000 4
task_end_ 4 0.000013 0.088803 0.000013 0.000000 4
bcast_real_ 4 0.000010 0.000065 0.000010 0.000000 4
decomp_ 4 0.000005 0.000005 0.000005 0.000000 4
timers_ 2 0.000004 0.000048 0.000004 0.000000 2

Usage: cube_stat [-h] [-p] [-m metric[,metric...] -%] [-r routine[,routine...] cubefile

OR

cube_stat -h] [-p] [-m metric[,metric...] -t topN cubefile

-h Display this help message

-p Pretty-print statistics (instead of CSV output)

-% Provide statistics about process/thread metric values

-m List of metrics (default: time)

-r List of routines (default: main)

-t Number for topN regions flat profile

1.2.9 from TAU to CUBE

Converts a profile generated by the TAU Performance System into the CUBE format.
Currently, only 1-level, 2-level and full call-path profiles are supported.

An example of the output is presented below.

user@host: ./tau2cube3 tau2 -o b.cube
Parsing TAU profile...
tau2/profile.0.0.2
tau2/profile.1.0.0
Parsing TAU profile... done.
Creating CUBE profile...
Number of call paths : 5
Childmain int (int, char **)
Number of call paths : 5
ChildsomeA void (void)
Number of call paths : 5
ChildsomeB void (void)
Number of call paths : 5
ChildsomeC void (void)
Number of call paths : 5
ChildsomeD void (void)

9

Chapter 1. Cube Command Line Tools

Path to Parents : 5
Path to Child : 1
Number of roots : 5
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
value time :: 8.0151
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 8.01506
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 5.00815
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0.000287
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0
value ncalls :: 0
value time :: 9.00879
value ncalls :: 1
done.

Usage: tau2cube [tau-profile-dir][-o cube]

1.2.10 Common Calltree

Common Calltree is a tool to reduce call trees of a set of cube files to the common part.

Usage: cube_commoncalltree cubefile1 cubefile2 ... cubefileN

The tool cube_commoncalltree takes set of input cubefiles

(cubefile1 cubefile2 ... cubefileN)

and creates corresponding set of cube files

(cubefile1_commoncalltree cubefile2_commoncalltree ... cubefileN_commoncalltree).

Output cube files cubefileX_commoncalltree do have the equal system and metric dimen-
sions like corresponding cubefileX file.

Call trees among cubefileX_commoncalltree files are reduced to the maximal (up to a
special case in region naming scheme) common part. Inclusive value of the "missing" part
is added as a exclusive value to its parent (which is a part of common part of call tree)

This tool is particulary useful for comparison of exprerimens with the different recursion

10

1.2. Performance Algebra and Tools

depth or with the additional sub call trees depending on some loop iteration index.

1.2.11 Topology Assistant

Topology assistant is a tool to handle topologies in cube files. It is able to add or edit a
topology.

Usage: cube_topoassist {OPTION} cubefile

The current available options are:

• To create a new topology in an existing cube file,

• To [re]name an existing virtual topology, and

• To [re]name the dimensions of a virtual topology.

The command-line switches for this utility are:

-c: creates a new topology in a given cube file.

-n: displays a numbered list of the existing topologies in the given cube file, and lets the
user choose one to be named or renamed.

-d: displays the existing topologies, and lets the user name the dimensions of one of them.

The resulting CUBE file is named topo.cube[.gz], in the current directory.

As mentioned abot, when using the -d or -n command-line options, a numbered list of the
current topologies will appear, showing the topology names, its dimension names (when
existing), and the number of coordinates in each dimension, as well as the total number of
threads. This is an example of the usage:

$ cube_topoassist topo.cube.gz -n
Reading topo.cube.gz . Please wait... Done.
Processes are ordered by rank. For more information about this file,
use cube_info -S <cube experiment>

This CUBE has 3 topologie(s).
0. <Unnamed topology>, 3 dimensions: x: 3, y: 1, z: 4. Total = 12 threads.
1. Test topology, 1 dimensions: dim_x: 12. Total = 12 threads.
2. <Unnamed topology>, 3 dimensions: 3, 1, 4. Total = 12 threads. <Dimensions are not named>

Topology to [re]name?
1
New name:
Hardware topology
Topology successfully [re]named.

Writing topo.cube.gz ... done.

The process is similar for [re]naming dimensions within a topology. One characteristic is
that either all dimensions are named, or none.

11

Chapter 1. Cube Command Line Tools

One could easily create a script to generate the coordinates according to some algo-
rithm/equation, and feed this to the assistant as an input. The only requirement is to
answer the questions in the order they appear, and after that, feed the coordinates. Coordi-
nates are asked for in rank order, and inside every rank, in thread order.

The sequence of questions made by the assistant when creating a new topology (the -c
switch) is:

• New topology's name

• Number of dimensions

• Will the above dimensions be named? (Y/N)

• If yes, asks the name. Empty is not valid.

• Number of coordinates in that dimension

• Asks if this dimension is either periodic or not (Y/N)

• Repeat the previous three steps for every dimension

• After that, it expects the coordinates for each thread in this topology, separated by
spaces, in the order described above.

This is a sample session of the assistant:

$ cube_topoassist -c experiment.cube.gz
Reading experiment.cube.gz. Please wait... Done.
Processes are ordered by rank. For more information about this file, use cube_info -S <cube experiment>

So far, only cartesian topologies are accepted.
Name for new topology?
Test topology
Number of Dimensions?
3
Do you want to name the dimensions (axis) of this topology? (Y/N)
y
Name for dimension 0
torque
Number of elements for dimension 0
2000
Is dimension 0 periodic?
y
Name for dimension 1
rotation
Number of elements for dimension 1
1500
Is dimension 1 periodic?
n
Name for dimension 2
period
Number of elements for dimension 2
50
Is dimension 2 periodic?
n
Alert: The number of possible coordinates (150000000) is bigger than the number of threads
on the specified cube file (12). Some positions will stay empty.

Topology on THREAD level.

12

1.2. Performance Algebra and Tools

Thread 0’s (rank 0) coordinates in 3 dimensions, separated by spaces
0 0 0
0 0 1
0 0 2
...
...
...
Writing topo.cube.gz ... done.
$

So, a possible input file for this cube experiment could be:

Test topology
3
y
torque
2000
y
rotation
1500
n
period
50
n
0 0 0
0 0 1
0 0 2
... (the remaining coordinates)

And then call the assistant: cube_topoassist -c cubefile.cube < input.txt

1.2.12 Dump

To export values from the cube report into another tool or to examine internal structure
of the cube report CUBE framework provedes a tool cube_dump tool, which prints out
different values. It calculates inclusive and exclusive values along metric tree and call
tree, agregates over system tree or displays values for every thread separately. In addition
it provides user to define new metrics(see file CubeDerivedMetrics.pdf). Results are
calculated and shown. For convenience user can invoke defined metrics along with new
once in any order. For doing so one lists unique names of metrics separated by commas.
For access to more than one callpaths, user can specify the ids or a range of them like "2-9".
This also can be done for threads. Additionally provides a calculation of the flat profile
values.

-m <metrics>|<new metrics>|all|<filename> Select one or more of metrics (unique
names) for data dump.

By giving a CubePL expression one can define one or more new metrics by giving corre-
spond formula. If the expression prefixed with "\< name \>:", < name > is used as a
unique name for the new metric.

13

Chapter 1. Cube Command Line Tools

<filename> - takes a CubePL expression from file <filename> and defines a derived
metric with it

all - all metrics will be printed.

Combination of these three is possible.

-c <cnode ids>|all|leafs|roots|level>X|level=X|level<X|name=/regexp/|<filename>

Select one or more call paths to be printed out .

<cnode ids> - list or range of call path ids: 0,3,5-10,25

all - all call paths are printed

leafs - only call paths without children are printed

roots - only root cnodes are printed

level<X, level=X or level>X - only cnodes of the level more, equal or less than N are
printed

name=/regexp/- only cnodes with the region name matching to the regular expression
regexp

<filename> - takes a CubePL expression from file <filename> and evaluates it for every
callpath.

If the result is non-zero - call path is included into the output.

-x incl|excl Selects, if the data along the metric tree should be calculated as an inclusive
or an exclusive value.

(Default value: incl).

-z incl|excl|stored Selects, if the data along the call tree should be calculated as an
inclusive or an exclusive value.

(Default value: excl).

-t <thread id>|aggr Show data for one or more selected threads or aggregated over
system tree.

-r Prints aggregated values for every region (flat profile), sorted by id.

-f < name > Selects a stored data with the name < name > to display

-d Shows the coordinates for every topology as well.

-y Disables expansion of clusters and shows bare stored meta structure.

-w Prints out the information about structure of the cube.

-o <filename>|- Uses a device or STDOUT for the output. If omit, STDOUT is used.

-s human|gnuplot|gnuplot2|csv|csv2|R Uses either human readable form, GNUPLOT
or CSV (two different layouts) format or binary R matrix for data export.

-h|-? Help; Output a brief help message.

This is examples of the usage.

Example 1:

14

1.2. Performance Algebra and Tools

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 0 \
-z incl -s gnuplot profile.cubex

===================== DATA ===================
Print out the data of the metric time
#main(id=0)
0 0 80.549003343
0 1 44.115097986
0 2 43.486614165
0 3 43.940738098
0 4 80.539393011
0 5 42.723353088
0 6 42.61159706
0 7 43.108220977
0 8 80.635220741
0 9 43.788284208
0 10 43.831524441
0 11 43.652044759
0 12 80.629776666
0 13 42.692885677
0 14 42.719330066
0 15 42.732487708

Print out the data of the metric New Metric1
#main(id=0)
0 0 80.549003343
0 1 1.79769313486e+308
0 2 1.79769313486e+308
0 3 1.79769313486e+308
0 4 80.539393011
0 5 1.79769313486e+308
0 6 1.79769313486e+308
0 7 1.79769313486e+308
0 8 80.635220741
0 9 1.79769313486e+308
0 10 1.79769313486e+308
0 11 1.79769313486e+308
0 12 80.629776666
0 13 1.79769313486e+308
0 14 1.79769313486e+308
0 15 1.79769313486e+308

Print out the data of the metric New Metric2
#main(id=0)
0 0 1
0 1 0
0 2 0
0 3 0
0 4 1
0 5 0
0 6 0
0 7 0
0 8 1

15

Chapter 1. Cube Command Line Tools

0 9 0
0 10 0
0 11 0
0 12 1
0 13 0
0 14 0
0 15 0

Example 2:

$cube_dump -m time -s gnuplot2 profile.cubex

===================== CONFIGURE GNUPLOT ===================
set logscal x ; set logscal y ; set grid ; set xrange [16:300000]
; set terminal png size "600,400"

===================== DATA ===================
Print out the data of the metric time

;set output "0.png"
; plot 6.4e-18*x**(5.0/2.0) + 5.2e-05 t "setPrecision(int, PrecisionFormat)(id=18)" ,
1.2e-17*x**(7.0/3.0) + 3.6e-05 t "setRoundNr(int, PrecisionFormat)(id=19)" ,
2.1e-17*x**(9.0/4.0) + 3.1e-05 t "setUpperExpNr(int, PrecisionFormat)(id=20)" ,
7.1e-19*x**(5.0/2.0) + 8.8e-06 t "getInstance()(id=21)" ,
2.8e-18*x**(2.0/1.0)*log(x) + 3.3e-06 t "getCubePluginCount()(id=24)"

;set output "1.png"
; plot 1.3e-20*x**(5.0/2.0)*log(x) + 4.2e-06 t "PluginList()(id=25)" ,
9.7e-18*x**(7.0/3.0) + 1.1e-05 t "loadContextFreePlugin(PluginData&)(id=28)" ,
1e-17*x**(9.0/4.0) + 8.8e-06 t "loadCubePlugin(PluginData&)(id=29)" ,
1e-18*x**(9.0/4.0) + 1.1e-06 t "name() const(id=35)" ,
2.6e-18*x**(2.0/1.0)*log(x) + 3.7e-06 t "getCubePlugin(int)(id=44)"

Example 3:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 0 \
-t aggr -z incl -s human profile.cubex

===================== DATA ===================
Print out the data of the metric time

All threads

main(id=0) 841.755571994
Print out the data of the metric New Metric1

All threads

main(id=0) 210.438892999
Print out the data of the metric New Metric2

16

1.2. Performance Algebra and Tools

All threads

main(id=0) 4

Example 4:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 20 \
-z incl -s csv profile.cubex

20,0,8.9812e-05
20,1,0
20,2,0
20,3,0
20,4,9.7463e-05
20,5,0
20,6,0
20,7,0
20,8,0.000132327
20,9,0
20,10,0
20,11,0
20,12,7.2788e-05
20,13,0
20,14,0
20,15,0

20,0,8.9812e-05
20,1,-1.79769313486e+308
20,2,-1.79769313486e+308
20,3,-1.79769313486e+308
20,4,9.7463e-05
20,5,-1.79769313486e+308
20,6,-1.79769313486e+308
20,7,-1.79769313486e+308
20,8,0.000132327
20,9,-1.79769313486e+308
20,10,-1.79769313486e+308
20,11,-1.79769313486e+308
20,12,7.2788e-05
20,13,-1.79769313486e+308
20,14,-1.79769313486e+308
20,15,-1.79769313486e+308

20,0,1
20,1,0
20,2,0
20,3,0
20,4,1
20,5,0
20,6,0
20,7,0
20,8,1
20,9,0

17

Chapter 1. Cube Command Line Tools

20,10,0
20,11,0
20,12,1
20,13,0
20,14,0
20,15,0

Example 5:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 1 \
-z incl -s csv2 profile.cubex

Cnode ID, Thread ID,time,New Metric1,New Metric2
1,0,80.548967177,80.548967177,1
1,1,44.115097986,1.79769313486e+308,0
1,2,43.486614165,1.79769313486e+308,0
1,3,43.940738098,1.79769313486e+308,0
1,4,80.539359524,80.539359524,1
1,5,42.723353088,1.79769313486e+308,0
1,6,42.61159706,1.79769313486e+308,0
1,7,43.108220977,1.79769313486e+308,0
1,8,80.635176341,80.635176341,1
1,9,43.788284208,1.79769313486e+308,0
1,10,43.831524441,1.79769313486e+308,0
1,11,43.652044759,1.79769313486e+308,0
1,12,80.629742485,80.629742485,1
1,13,42.692885677,1.79769313486e+308,0
1,14,42.719330066,1.79769313486e+308,0
1,15,42.732487708,1.79769313486e+308,0

Example 6:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 1 \
-z incl -s R profile.cubex -o output_file

This will generate binary file "output_file" which can be loaded in R. In consists of three
matrices, each one corresponding to one metric. Each matrix is named after the metric
and it contains values for all threads and nodes.

Example 7: We select only call path names, starting with "main" using the CubePL expres-
sion (stored in file name "selection.cubepl") :

{
${a}=0;
if (${cube::region::name}[${calculation::region::id}] =~ /^main/)
{ ${a}=1; }; return ${a};
}

Then:

18

1.2. Performance Algebra and Tools

cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c selection.cubepl \
-z incl -t aggr profile.cubex

===================== DATA ===================
Print out the data of the metric time

All threads

main(id=0) 841.755571994
main_loop(id=12) 840.73706946

Print out the data of the metric New Metric1
All threads

main(id=0) 210.438892999
main_loop(id=12) 0.210184267365

Print out the data of the metric New Metric2
All threads

main(id=0) 4
main_loop(id=12) 4000

Options "leafs", "roots", "level=", "level<", "level>" and "name=/regexp/" are shortcuts for
a build-in CubePL expression, which is used to select a call path.

• "leafs" : stands for:

{
${a}=0;
if (${cube::callpath::#children}[${calculation::callpath::id}] == 0)
{ ${a}=1; }; return ${a};
}

• "roots" : stands for:

{
${a}=0;
if (${cube::callpath::parent::id}[${calculation::callpath::id}] == -1)
{ ${a}=1; }; return ${a};
}

• "level=N" : stands for:

{
${level}=N;
${index}=0;
${i}=${calculation::callpath::id};
while (${cube::callpath::parent::id}[${i}] != -1)
{ ${i}= ${cube::callpath::parent::id}[${i}]; ${index}=${index}+1; };
${a}=0;
if (${index} == ${level})
{${a}=1; };
return ${a};
}

• "name=/regexp/" : stands for:

19

Chapter 1. Cube Command Line Tools

{
${a}=0;
if (${cube::region::name}[${calculation::region::id}] =~ /regexp/)

{ ${a}=1; }; return ${a};
};

"level<N" and "level>N" differ from "level=N" in the boolean operation in the line 8. For
detailed documentation of the syntax of CubePL please see.

20

www.scalasca.org

	Cube Command Line Tools
	Abstract
	Performance Algebra and Tools
	Difference
	Merge
	Mean
	Compare
	Clean
	Reroot, Prune
	Remap (version 2)
	Statistics
	from TAU to CUBE
	Common Calltree
	Topology Assistant
	Dump

	Bibliography

