
CubeLib 4.4 Derived Metrics
Intoduction in CubePL and Cube’s derived
metrics

August 2018
The Scalasca Development Team
scalasca@fz-juelich.de



Attention

The Cube Derived Metrics User Guide is currently being rewritten and still
incomplete. However, it should already contain enough information to get
you started and avoid the most common pitfalls.

ii



Contents

1 Introduction into Cube Derived Metrics 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Creation of a derived metric in Cube . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Using the C writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Using the C++ library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The three kinds of derived metrics . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Reference of CubePL 7
2.1 Supported calls in CubePL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Syntax of CubePL 9
3.1 Syntax step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1.2 Arithmetical Expressions . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1.3 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1.4 Function call expressions . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Lambda function (In-place function definition) . . . . . . . . . . . . . . . 10
3.1.3 Control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3.1 Condition IF-ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3.2 Loop WHILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4.1 User defined Variables . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4.2 Predefined Variables . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.5 Different ways to refer an another metric . . . . . . . . . . . . . . . . . 14
3.1.5.1 Context sensitive reference to another metric . . . . . . . . . . 14
3.1.5.2 Context insensitive reference to another metric . . . . . . . . . 14
3.1.5.3 Direct reference to another metric . . . . . . . . . . . . . . . . . 15
3.1.5.4 Definition of an encapsulated calculation within CubePL expres-

sion using metrics of Cube. . . . . . . . . . . . . . . . . . . . . . 15
3.1.5.5 Definition of an initialization expression for ghost metrics within

CubePL expression. . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5.6 Definition of an initialization expression for ghost metrics within

CubePL expression. . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Grammar of CubePL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Examples of CubePL expressions 19
4.1 Simple Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Complex Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Different made-up expressions . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Special metrics of Scalasca . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



Contents

Bibliography 21

iv



Contents

Copyright © 1998–2018 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1





1 Introduction into Cube Derived
Metrics

1.1 Introduction

With Cube 4.1.0 derived metrics are introduced and provide a powerful tool for performance
data processing.

Unlike normal metrics of the cube, derived metrics do not store any data inside of the cube
report, but derive their value according to an expression, formulated using CubePL (Cube
Processing Language) syntax ( '3' ).

Cube supports different kinds ( '1.3' ) of derived metrics. Derived metric can be a child
metric of any metric of cube or other derived metrics.

Derived metrics are naturally metrics with the value DOUBLE

1.2 Creation of a derived metric in Cube

Derived metrics play the very same role as a normal metric in cube, therefore one proceeds
with creation of derived metrics as usual. The only difference is the specification of the
CubePL expression.

1.2.1 Using the C writer

To create a derived metric in a C program, one calls cube_metric_set_expression(...)
subsequently to cube_def_met(...). Here is a code example:

cube_metric * met = cube_def_met(cube,
"Derived metric",
"derivedmetric1",
"DOUBLE",
"sec",
"",
"https://doc.web.org/metrics.html#derived",
"Average execution time",
NULL,
CUBE_METRIC_PREDERIVED_EXCLUSIVE
);

cube_metric_set_expression(met, "metric::time(i)/metric::visits(e)");

Derived metric specification allows to define an CubePL expression, which will be execuded
only once before the actual metric expression is executed. To specify an initalization
expression, one uses the call cube_metric_set_init_expression(...).

3



Chapter 1. Introduction into Cube Derived Metrics

Prederived metrics allow to redefine operators "+" and "-" in the aggregation formula by
any user defined expression using same CubePL syntax.

Any such expression should be a formula of "arg1" and "arg2" parameters. E.g. max(arg1,
arg2).

To specify an expression for an aggregation operator one uses the call cube_metric_set_aggr_expression(metric,operator,expression),
where operator can be CUBE_METRIC_AGGR_PLUS or CUBE_METRIC_AGGR_MINUS

1.2.2 Using the C++ library

To create a derived metric in C++ programs, one specifies the expression as the last
parameter of the metric definition. This parameter can be omitted, in this case the derived
metric returns always 0.

Here is a code example:

Metric * met = cube.def_met(
"Derived metric",
"derivedmetric1",
"DOUBLE",
"sec",
"",
"https://doc.web.org/metrics.html#derived",
"Average execution time",
NULL,
CUBE_METRIC_PREDERIVED_EXCLUSIVE,
"${unit}*metric::time(i)/metric::visits(e)",
"{ ${unit}=1000; }",
"min(arg1,arg2)",
""
);

CUBE_METRIC_PREDERIVED_EXCLUSIVE defines the kind of the derived metric (see '1.3'
below).

Derived metric specification allows to define an CubePL expression, which will be execuded
only once before the actual metric expression is executed. This expression is the last
argument in the parameter { ${unit}=1000; }.

Operator "+" is redefined like min(arg1,arg2).

Note, that the CubePL expression should be valid at the time of execution. It means, if
there is a reference to metric, this metric should be defined before.

1.3 The three kinds of derived metrics

Cube provides an API to calculate different inclusive and exclusive values aggregated over
different dimensions.

In the context of derived metrics it is sometimes useful, when evaluation of the expression
is done after the aggregation of the metrics in the expression, sometimes it is needed to
aggregate values of the derived metrics.

Therefor Cube provides three kinds of derived metrics:

4



1.3. The three kinds of derived metrics

1. Prederived exclusive metric - metric, which value of which expression is observed
as "being stored" inside of cube report and it behaves as a usual exclusive (along call
tree) metric.

One specifies this type of metric using constant

CUBE_METRIC_PREDERIVED_EXCLUSIVE

For this metric one can redefine only operator "+". Operator "-" will be ignored.

2. Prederived inclusive metric - metric, which value of which expression is observed
as "being stored" inside of cube report and it behaves as a usual inclusive (along call
tree) metric.

One specifies this type of metric using constant

CUBE_METRIC_PREDERIVED_INCLUSIVE

For this metric one can redefine both operators, "+" and "-".

3. Postderived metric - metric, which expression evaluated only after metrics, which
were used inside of the expression, get aggregated according to the aggregation
context (along system tree or along call tree).

If expression doesn't contain references to another metrics, no aggregation is done.
In this case the expression gets calculated and its value returned.

One specifies this type of metric using constant

CUBE_METRIC_POSTDERIVE

This metric doesn't allow to redefine anyoperators, because calculation of this metric
is performed AFTER aggregation within another metric.

5





2 Reference of CubePL

2.1 Supported calls in CubePL

Here is the table of currently supported calls in CubePL:

Operation Explanation
123.34 a numerical constant
"STRING" a string constant
-x negative value of x
() grouping (priority)
| | absolute value
+ - / ∗ arithmetical operations
A∧x A in power of x
> < >= <= != == numerical comparison

and or xor not boolean operations
eq string comparison
seq case insensitive string comparison
=∼ /expression/ matching of regular expression
sin(x) cos(x) asin(x) acos(x) tan(x) cot(x)
atan(x) acot(x)

trigonometrical functions

ln(x) natural logarithm of x
exp(x) natural exponent of x
sqrt(x) square root value of x
random(x) random number from 0 to x
pos(x) returns x, if x>, or 0
neg(x) returns x, if x<0, or 0
sgn(x) returns -1, if x<0, 0 if x is 0 and 1 is x>0
abs(x) returns absolut value
ceil(x) returns smallest integer value, which is

bigger than x
floor(x) returns biggest integer value, which is

smaller than x
min(x,y) returns smaller value of x and y
max(x,y) returns bigger value of x and y

7



Chapter 2. Reference of CubePL

uppercase(x) returns uppercase version of x
lowercase(x) returns lowercase version of x
env("x") returns a value of the environment

variable x

local(var) Declares (to compile time) a variable var
as local. It cannot be redeclared later

global(var) Declares (to compile time) a variable var
as global. It cannot be redeclared later

${var} 0th element of the variable with name var
${var}[x] x-th element of the variable with name var
sizeof(var) number of elements in the variable var
defined(var) returns true (1), if the variable var is

defined, otherwise it returns false (0)
metric::[uniq_name](i|e|∗, i|e|∗) context sensetive value of metric

uniq_name
metric::context::[uniq_name](i|e|∗, i|e|∗) context sensetive value of metric

uniq_name
metric::fixed::[uniq_name](i|e|∗, i|e|∗) context independend value of metric

uniq_name
metric::call::[uniq_name](c_id, i|e|∗, s_id,
i|e|∗)

value of metric uniq_name for the call
path with id c_id and system resource with
an id s_id

cube::metric::set::[uniq_name]("X", "Y") sets a property X of a metric uniq_name to
value Y. Corrently supported are only
"value" with value "VOID" or else

cube::metric::get::[uniq_name]("X") returns a property X of a metric
uniq_name. Corrently supported are

1. unique name - returns unique name
of a metric uniq_name

2. display name - returns display name
of a metric uniq_name

3. uom - returns unit of measurement
of a metric uniq_name

4. dtype - returns data type of a metric
uniq_name as a string

5. url - returns url of online help for the
metric uniq_name

6. description - returns description of a
metric uniq_name

7. value - returns property "value" for
the metric uniq_name. Its value
"VOID" deactivates metric and it
returns always a zero.

8



3 Syntax of CubePL

3.1 Syntax step by step

This chapter introduced the CubePL syntax of the most common programming structures.

3.1.1 Expressions

3.1.1.1 Constants

Any constant expression is an expression. eg. 123.0, "someString"

3.1.1.2 Arithmetical Expressions

Common mathematical notation of an arithmetical expression is valid in CubePL. Any
arithmetical expression is an expression. eg. 123.0 + 23.6, sin(23)

3.1.1.3 Boolean Expressions

Common literal notation of a boolean expression is valid in CubePL. Any boolean expression
is an expression.

[expression] or|and|xor [expression]

or

not [expression]

Any expression can be a term of a boolean expression. Non zero value is observed as
TRUE, zero value is FALSE.

3.1.1.4 Function call expressions

Function calls have the following syntax:

name ( [expression ] )

9



Chapter 3. Syntax of CubePL

3.1.2 Lambda function (In-place function definition)

To define a function in-place, one uses the following syntax:

{
[statement];
[statement];
...
return [expression];

}

In-place definition of a function is an expression. It means, it can appear everywhere,
where one can use an expression.

3.1.3 Control structures

Control structures like if-else or while are statements.

3.1.3.1 Condition IF-ELSE

One can execute series of statements under a condition using the short form of the if
statement:

if ( condition )
{
[statement];
[statement];
...

}

or full form with else :

if ( condition )
{
[statement];
[statement];
...
}
else

{
[statement];
[statement];
...
}

condition is a boolean expression

3.1.3.2 Loop WHILE

One can execute a series of statements as long as a condition is true using the while
statement:

while ( condition )
{
[statement];
[statement];
...

}

10



3.1. Syntax step by step

Sequence of statements will be executed till condition is not fulfilled, max 1000000000
times.

3.1.4 Variables

CubePL allows to work with memory, by using variables. All variables are multi-typed:

• In string context value of a numeric variable is presented in string format.

• In numerical context a string variable is converted to its numerical representation, if
possible. Otherwise it is 0.

All variables are arrays. Indexless access to the variable assummes mutually index value 0.

3.1.4.1 User defined Variables

The user can define a variable using the syntax:

${ name } = [expression];

or

${ name }[index] = [expression];

Currently its name is a fixed string of characters. In later versions of CubePL it will allow
any expression.

Example of a string context :

${name} seq "STRING"

Example of a numeric context :

${name} >= 0.34

Example of an array access to the variable :

${name}[ ${i} ] >= 0.34

Access to the variable is an expression.

Index for the access to the value is also an expression.

3.1.4.2 Predefined Variables

Cube provides a set of predefined variables for every calculation, which values are inde-
pendend. Following predefined variables do contain the general information about the
cube:

11



Chapter 3. Syntax of CubePL

Predefined variable Explanation
cube::#mirrors Number of mirrors in cube file
cube::#metrics Number of metrics in cube file
cube::#root::metrics Number of root metrics in cube file
cube::#regions Number of regions in cube file
cube::#callpaths Number of call paths in cube file
cube::#root::callpaths Number of root call paths
cube::#locations Number of locations in cube file
cube::#locations::void Number of void locations in cube file
cube::#locations::nonvoid Number of nonvoid locations in cube file
cube::#locationgroups Number of location groups in cube file
cube::#locationgroups::void Number of void location groups in cube

file
cube::#locationgroups::nonvoid Number of nonvoid location groups in

cube file
cube::#stns Number of system tree nodes in cube file
cube::#rootstns Number of root system tree nodes in cube

file
cube::filename Name of the cube file

CubePL engine defines a set of variables, which do depend on an index, their "id". Using
call sizeof(...) one can run over them and inspect within CubePL expression.

cube::metric::unit::name Unique name of the metric
cube::metric::disp::name Display name of the metric
cube::metric::url URL of the documentation of the metric
cube::metric::description Description of the metric
cube::metric::dtype Data type of the metric
cube::metric::uom Unit of measurement of the metric
cube::metric::expression CubePL expression of the metric
cube::metric::initexpression CubePL initialisation expression of the

metric
cube::metric::parentd::id ID of the parent of the metric
cube::metric::#children Number of children in the metric

cube::callpath::mod Module of the call path
cube::callpath::line File line of the call path
cube::calleeid ID of the callee region
cube::callpath::#children Number of children in the call path
cube::callpath::parent::id ID of the parent callpath

cube::region::name Name of the region
cube::region::mangled::name Mangled name of the region
cube::region::paradigm Name of the paradigm of the region
cube::region::role Name of the role the region is playing

within the paradigm
cube::region::url URL with the description of the region of

the call path

12



3.1. Syntax step by step

cube::region::description Description of the region of the call path
cube::region::mod Module of the region of the call path
cube::region::begin::line Begin line of the region of the call path
cube::region::end::line End line of the region of the call path

cube::stn::name Name of the system tree node
cube::stn::class Class of the system tree node
cube::stn::description Description of the system tree node
cube::stn::#children Number of children (other system tree

nodes) of the system tree node
cube::stn::#locationgroups Number of location groups of the system

tree node
cube::stn::parent::id ID (among all system tree nodes) of the

parent of the system tree node
cube::stn::parent::sysid ID (global) of the parent of the system tree

node

cube::locationgroup::name Name of the location group
cube::locationgroup::rank Rank of the location group
cube::locationgroup::type Type of the location group
cube::locationgroup::void Is the this location group void?
cube::locationgroup::#locations Number of locations of the location group
cube::locationgroup::parent::id ID (amoung all system tree nodes) of the

parent system tree node
cube::locationgroup::parent::sysid ID (global) of the parent system tree node

cube::location::name Name of the location
cube::location::rank Rank of the location
cube::location::type Type of the location
cube::location::void Is the this location void?
cube::location::parent::id ID (among all location groups) of the

parent location group
cube::location::parent::sysid ID (global) of the parent location group

CubePL engine sets a series of context sensetive variables, which value depends on the
paramaters, for which the derived metric is being calculated. Their value can be used to
refer to the values of context insensitive variables described above:

calculation::metric::id ID of the metric, being calculated
calculation::callpath::id ID of the callpath, for what is the metric

being calculated
calculation::region::id ID of the region, for what is the metric

being calculated
calculation::sysres::id ID (local within system resource type) if

the sysem resource, for what is the metric
being calculated

13



Chapter 3. Syntax of CubePL

calculation::sysres::sysid ID (global) if the sysem resource, for what
is the metric being calculated

calculation::sysres::kind Type of the system element:

• 0 = unknown

• 5 = system tree node

• 6 = location group

• 7 = location

3.1.5 Different ways to refer an another metric

3.1.5.1 Context sensitive reference to another metric

To use values of another metric in the same calculation context, one uses syntax:

metric::[uniq_name]( modificator, modificator )

or

metric::[uniq_name]( modificator)

or

metric::[uniq_name]()

There are three version of this call:

1. with two arguments (call path and system);

2. with one argument (call path);

3. with no argument(an arguments takes as '∗').

modificator specifies flavor of the calculation: i - inclusive, e - exclusive, ∗ - same like in
calculation context.

Metric reference is an expression.

3.1.5.2 Context insensitive reference to another metric

To use values of another metric in the some fixed calculation context (e.g. aggregated over
threads), one uses syntax:

metric::fixed::[uniq_name]( modificator, modificator )

or

metric::fixed::[uniq_name]( modificator)

14



3.1. Syntax step by step

or

metric::fixed::[uniq_name]()

There are three version of this call:

1. with two arguments (call path and system);

2. with one argument (call path);

3. with no argument(an arguments takes as '∗').

modificator specifies flavor of the calculation: i - inclusive, e - exclusive, ∗ - same like in
calculation context.

Metric reference is an expression.

3.1.5.3 Direct reference to another metric

To use values of another metric with an specific call path id and system resource id (!), one
uses syntax:

metric::call::[uniq_name]( callpath id, modificator, sysres id, modificator )

or

metric::call::[uniq_name]( callpath id, modificator )

There are two version of this call:

1. with four arguments (call path and system); - Only callculation of an inclusive or
exclusive value is performed

2. with one argument (call path); - Aggragation over system tree is performed addition-
ally to the calculation of the inclisive or exclusive value for the calltree id

modificator specifies flavor of the calculation: i - inclusive, e - exclusive.

Metric reference is an expression.

Note that "sysres id" is a global identificator and can be refered using ${calcula-
tion::sysres::id}.

3.1.5.4 Definition of an encapsulated calculation within CubePL expression
using metrics of Cube.

One special mechanis of CubePL processing engine allows some level of calculation sepa-
ration. A derived metric can be created within another CubePL expression. Such "ghost"
metric gets its name and properties and exists inside of the cube object as a casual metric.
Only difference to the casual metric is in the fact that ghost metric is not visible in GUI and
tools and is not stored inside of the metric tree of the cube file.

One can refer such metric as a casual metric using metric references (see '3.1.5.1' , '3.1.5.2'
and '3.1.5.3' ).

Example for definition of such metric :

15



Chapter 3. Syntax of CubePL

cube::metric::nvisitors(e)
<<
{

${return}=0;
if ( ${cube::locationgroup::void}[${calculation::sysres::id}] != 1)
{
if (metric::visits()>0 )
{
${return} = 1;

};
};
return ${return};

}
>>;
${visitors} = metric::fixed::nvisitors(e);

where

cube::metric::prederived::nvisitors(e)

gives a type (prederives, exclusive) and unique name (nvisitors) of this metric. Unique
name is used then later to refer to this metric via

${visitors} = metric::fixed::nvisitors(e);

There are kinds of metrics, which can be defined on such manner:

1. cube::metric::prederived::name(e) - An exclusive prederived metric with the
name name;

2. cube::metric::prederived::name(i) - An inclusive prederived metric with the
name name;

3. cube::metric::postderived::name - A postderived metric with the name name.

Notice that once the metric with some unique name created it exists whole lifetime of the
cube object. Therefore one can refer to some somewhere previously defined ghost metric
from any following it CubePL expressions.

Ghost Metric definition is a statement.

3.1.5.5 Definition of an initialization expression for ghost metrics within CubePL
expression.

One can specify within of a CubePL expression an initialisation phase for previously created
ghost metric. For that purpose one uses expression cube::init::metric::[name]. Notice
that named metric should be know by the moment of compilation of the CubePL expression.

Example for definition of such metric :

cube::init::metric::init::nvisitors
<<
{

global(nvisitors);
}
>>;

where

16



3.2. Grammar of CubePL

cube::init::metric::nvisitors

uses an unique name (nvisitors) of the metric.

Definition of the initialisation phase of a metric is a statement.

3.1.5.6 Definition of an initialization expression for ghost metrics within CubePL
expression.

One can specify within of a CubePL expression an aggregation operator "+" or "-" for previ-
ously created ghost metric. For that purpose one uses expression cube::metric::plus::[name]
or cube::metric::minus::[name]. Notice that named metric should be know by the
moment of compilation of the CubePL expression.

Example for definition of such metric :

cube::init::metric::plus::nvisitors
<<
max( arg1, arg2)
>>;

or

cube::init::metric::minus::nvisitors
<<
min( arg1, arg2)
>>;

where

cube::init::metric:plus::nvisitors

or

cube::init::metric:minus::nvisitors

uses an unique name (nvisitors) of the metric.

Definition of the initialisation phase of a metric is a statement.

3.2 Grammar of CubePL

Here will be a full grammar of CubePL expressions (later).

17





4 Examples of CubePL expressions

4.1 Simple Examples

1. Calculation of an arithmetical expression

123.4 + 234 -( 23)^2

2. Calculation of an arithmetical expression with different functions

sin(23 + ln(12))

4.2 Complex Examples

4.2.1 Different made-up expressions

1. Definition of a constant function

{ return 24; }

2. Definition of a more complex function

{ return sin ({ return 1; }); }

3. Definition of a function with an access to one variable

{${a}=123; return ${a}; }

4. Definition of a function with a control structure

{
${a}=metric::visits();
${b}=0;
if (${a}>100)
{ ${b}=metric::time(); };

return ${b};
}

5. Definition of a function with a loop structure

{
${a}=0; ${b}=0;
while (${a}<123)
{

${b}=${b}+metric::time();
${a}=${a}+1;

};
return ${b};
}

6. Definition of a function with a access to predefined variable

{
${a}=0;

19



Chapter 4. Examples of CubePL expressions

if (${calculation::region::name}[${calculation::callpath::id}] =~ /^MPI_/)
{

${a}=metric::time();
};

return ${a};
}

4.2.2 Special metrics of Scalasca

1. Calculation of an average runtime of a call path (Kenobi metric, postderived)

metric::time(i)/metric::visits(e)

2. Calculation of the time, spend in MPI synchronization calls

a) (initialization )

{
global(mpi_synchronization);
${i}=0;
while( ${i} < ${cube::#callpaths} )
{

${mpi_synchronization}[${i}] = 0;
${regionid} = ${cube::callpath::calleeid}[${i}] ;
if (

(${cube::region::paradigm}[ ${regionid} ] seq "mpi")
and
(
(${cube::region::name}[${regionid} ] seq "mpi_barrier" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_post" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_wait" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_start" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_complete" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_fence" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_lock" )
or
(${cube::region::name}[${regionid} ] seq "mpi_win_unlock" )
)
)

{
${mpi_synchronization}[${i}] = 1;

};
${i} = ${i} + 1;

};
return 0;

}

b) (actual calculation )

{
${a}=0;
if ( ${mpi_synchronization}[${calculation::callpath::id} ]== 1 )
{

${a} = metric::time(*,*)-metric::omp_idle_threads(*,*);
};
return ${a};

}

3. Calculation of thecComputational load imbalance (single participant)

– NO EXAMPLE YET –

20





www.scalasca.org


	Introduction into Cube Derived Metrics
	Introduction
	Creation of a derived metric in Cube
	Using the C writer
	Using the C++ library

	The three kinds of derived metrics

	Reference of CubePL
	Supported calls in CubePL

	Syntax of CubePL
	Syntax step by step
	Expressions
	Constants
	Arithmetical Expressions
	Boolean Expressions
	Function call expressions

	Lambda function (In-place function definition)
	Control structures
	Condition IF-ELSE
	Loop WHILE

	Variables
	User defined Variables
	Predefined Variables

	Different ways to refer an another metric
	Context sensitive reference to another metric
	Context insensitive reference to another metric
	Direct reference to another metric
	Definition of an encapsulated calculation within CubePL expression using metrics of Cube.
	Definition of an initialization expression for ghost metrics within CubePL expression.
	Definition of an initialization expression for ghost metrics within CubePL expression.


	Grammar of CubePL

	Examples of CubePL expressions
	Simple Examples
	Complex Examples
	Different made-up expressions
	Special metrics of Scalasca


	Bibliography

