CUBE 3.4 | User Guide

March 2013
The Scalasca Development Team
scalasca@fz-juelich.de

il (S
J U L I C H German Research School
for Simulation Sciences

FORSCHUNGSZENTRUM

Copyright © 1998-2013 Forschungszentrum Jilich GmbH, Germany

Copyright © 2009-2013 German Research School for Simulation Sciences GmbH,
Germany

Copyright © 2003-2008 University of Tennessee, Knoxville, USA

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the names of Forschungszentrum Jilich GmbH, the German Research
School for Simulation Sciences GmbH, or the University of Tennessee, Knoxville,
nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

i

Contents

Contents

1 Cube 3.4 User Guide

1.1 Abstract
1.2 Introduction
1.3 Usingthe GUI.

1.4 Performance Algebra and Tools

2 CUBE3 API

2.1 Creating CUBE Files

Bibliography

3 Appendix

3.1 File format of statistics files . . .

p— (YD ek ek ek

il

Chapter 1. Cube 3.4 User Guide

1 Cube 3.4 User Guide

1.1 Abstract

CUBE is a presentation component suitable for displaying performance data for parallel programs includ-
ing MPI and OpenMP applications. Program performance is represented in a multi-dimensional space
including various program and system resources. The tool allows the interactive exploration of this space
in a scalable fashion and browsing the different kinds of performance behavior with ease. CUBE also
includes a library to read and write performance data as well as operators to compare, integrate, and sum-
marize data from different experiments. This user manual provides instructions of how to use the CUBE
display, how to use the operators, and how to write CUBE files.

The CUBE3 implementation has an incompatible API and file format to preceding versions.

1.2 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for
displaying a wide variety of performance data for parallel programs including MPI[]
and OpenMP[2] applications. CUBE allows interactive exploration of the performance
data in a scalable fashion. Scalability is achieved in two ways: hierarchical decomposi-
tion of individual dimensions and aggregation across different dimensions. All metrics
are uniformly accommodated in the same display and thus provide the ability to easily
compare the effects of different kinds of program behavior.

CUBE has been designed around a high-level data model of program behavior called the
cube performance space. The CUBE performance space consists of three dimensions: a
metric dimension, a program dimension, and a system dimension. The metric dimension
contains a set of metrics, such as communication time or cache misses. The program
dimension contains the program’s call tree, which includes all the call paths onto which
metric values can be mapped. The system dimension contains the items executing in par-
allel, which can be processes or threads depending on the parallel programming model.
Each point (m,c,s) of the space can be mapped onto a number representing the actual
measurement for metric m while the control flow of process/thread s was executing call
path ¢ . This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy where a metric at a lower level is a sub-

Chapter 1. Cube 3.4 User Guide

set of its parent. For example, communication time is a subset of execution time. Second,
the program dimension is organized in a call-tree hierarchy. However, sometimes it can
be advantageous to abstract away from the hierarchy of the call tree, for example if one is
interested in the severities of certain methods, independently of the position of their invo-
cations. For this purpose CUBE supports also flat call profiles, that are represented as a
flat sequence of all methods. Finally, the system dimension is organized in a multi-level
hierarchy consisting of the levels: machine, SMP node, process, and thread.

CUBE also provides a library to read and write instances of the previously described
data model in the form of an XML file. The file representation is divided into a metadata
part and a data part. The metadata part describes the structure of the three dimensions
plus the definitions of various program and system resources. The data part contains the
actual severity numbers to be mapped onto the different elements of the performance
space.

The display component can load such a file and display the different dimensions of the
performance space using three coupled tree browsers (Figure 1.1). The browsers are
connected in such a way that you can view one dimension with respect to another di-
mension. The connection is based on selections: in each tree you can select one or more
nodes. For example, in Figure 1.1 the Execut ion metric, the sweep call path node, and
Process 0 are selected. For each tree, the selections in the trees on its left-hand-side
(if any) restrict the considered data: The metric nodes aggregate data over all call path
nodes and all system items, the call tree aggregates data for the Execution metric over
all system nodes, and each node of the system tree shows the severity for the Execution
metric of the sweep call path node for this system node.

If the CUBE file contains topological information, the distribution of the performance
metric across the topology can be examined using the topology view. Furthermore, the
display is augmented with a source-code display that shows the position of a call site in
the source code.

As performance tuning of parallel applications usually involves multiple experiments
to compare the effects of certain optimization strategies, CUBE includes a feature de-
signed to simplify cross-experiment analysis. The CUBE algebra[] is an extension of
the framework for multi-execution performance tuning by Karavanic and Miller[3] and
offers a set of operators that can be used to compare, integrate, and summarize multiple
CUBE data sets. The algebra allows the combination of multiple CUBE data sets into a
single one that can be displayed and examined like the original ones.

In addition to the information provided by plain CUBE files a statistics file can be pro-
vided, enabling the display of additional statistical information of severity values. Fur-
thermore, a statistics file can also contain information about the most severe instances
of certain performance patterns -- globally as well as with respect to specific call paths.
If a trace file of the program being analyzed is available, the user can connect to a trace
browser (i.e., Vampir or Paraver) and then use CUBE to zoom their timelines to the most
severe instances of the performance patterns for a more detailed examination of the cause
of these performance patterns.

1.3. Using the GUI

The following sections explain how to use the CUBE display, how to create CUBE files,
and how to use the algebra and other tools.

1.3 Using the GUI

This section explains how to use the CUBE-QT display component. After installation,
the executable "cube3-gt" can be found in the specified directory of executables (speci-
fiable by the “prefix” argument of configure, see the CUBE Installation Manual) and can
also be used via the alias "cube3". The program supports as an optional command-line
argument the name of a cube file that will be opened upon program start.

After a brief description of the basic principles, different components of the GUI will be
described in detail.

1.3.1 Basic Principles

The CUBE-QT display has three tree browsers, each of them representing a dimension
of the performance space (Figure 1.1). Per default, the left tree displays the metric di-
mension, the middle tree displays the program dimension, and the right tree displays the
system dimension. The nodes in the metric tree represent metrics. The nodes in the
program dimension can have different semantics depending on the particular view that
has been selected. In Figure 1.1, they represent call paths forming a call tree. The nodes
in the system dimension represent machines, nodes, processes, or threads from top to
bottom.

Each node is associated with a value, which is called the severity and is displayed si-
multaneously using a numerical value as well as a colored square. Colors enable the
easy identification of nodes of interest even in a large tree, whereas the numerical values
enable the precise comparison of individual values. The sign of a value is visually dis-
tinguished by the relief of the colored square. A raised relief indicates a positive sign, a
sunken relief indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing
a node. In the metric tree in Figure 1.1, the metric Execution is selected. Selecting a
node in a tree causes the other trees on its right to display values for that selection. For
the example of Figure 1.1, the metric tree displays the total metric values over all call
tree and system nodes, the call tree displays values for the Execution metric over all
system entities, and the system tree for the Execution metric and the sweep call tree
node. Briefly, a tree is always an aggregation over all selected nodes of its neighboring
trees to the left.

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded
nodes with a visible subtree by a [-] sign. You can expand/collapse a node by left-clicking
on the corresponding [+]/[-] signs. Collapsed nodes have inclusive values, i.e., their

Chapter 1. Cube 3.4 User Guide

- _ Cube 3.0 QT; cube filesirace.cube
File Display Help

@]@]@]@mm[am Eerat[z0 oz [+

[Absulute |v] [Absulute |v] [Absolute |-]
Metric tree l Call tree [Flat view] Systern tree [Topology O | Topology 1]
O 000 Time (ol | & H 20404 driver la| | & O- IBMBGP (JuGeng) e
|:| 1.23e7 Execution] Bt [2.95e6 task_init] B [0 - RO3-MO-KO
[1.39e7 Overhead G+ W 37 98 read_input I W 198.76 Process 0
[261 isits - m 0.1 decomp W 19891 Process 1
9.83ed Synchronizations G+ 088 inner_auto - W 199.04 Process 2
[1.30e8 Communications B [l 482,39 inner - 199.13 Process 3

1.02e13 Bytes transterred
3.41ed Camputational imbalance

[475 85 initialize I [20250 Process 32
439 bartier_sync - W 20263 Process 33

W 000 timers - [202.73 Process 34
36465 source I [202.89 Process 35
[7.23e6 sweep I [20827 Process 64
£.93e5 global_int_sum I [20838 Process 65
1.42ed flux_err LI - 20642 Process 66
- [1823% global_real_sum - - W 206861 Process 67
A G W 5584 tagk_end h I [209.85 Process 96
| I S— C) | CY ——) 03 C S—— 1 0
0.000000 12275627 (46 869000%) 2 819135e7| |0.000000 722839766 (58.884154%) 122756267 [0.000000 188762332 [D.002750%) 722839786
|] | _l

Figure 1.1: CUBE display window

severity is the sum of the severities over the whole collapsed subtree. For the example of
Figure 1.1, the Execution metric value 1.23¢7 is the total time for all executions. On the
other hand, the displayed values of expanded nodes are their exclusive values. E.g., the
expanded Execution metric node in Figure 1.2 shows that the program needed 3.18e6
seconds for execution other than MPT.

Note that expanding/collapsing a selected node causes the change of the current values
in the trees on its right-hand side. As explained above, in our example in Figure 1.1
the call tree displays values for the Execution metric over all system entities. Since
the Execution node is collapsed, the call tree severities are computed for the whole
Execution metric’s subtree. When expanding the selected Execution node, as shown
in Figure 1.2, the call tree displays values for the Execution metric without the MPI
meftric.

1.3.2 GUI Components

The GUI consists (from top to bottom) of
* a menu bar,
* an optional topology tool bar (that can be removed or repositioned),
* three value mode combo boxes,

* three resizable panes each containing some tabs,

1.3. Using the GUI

- Cube 3.0 QT: cube filesftrace.cube
File Display Help

@]@]@]@mm.[goo Elrat[a0 20z [+

[Absolute |-] [Absolute |-] [Abso\ute |-]
Metric tree l Call tree [Flatview] Systern tree [Topology O ‘ Topology 1 }

O 000 Time (ol | & H 20424 driver [«]| | &20O- EMEGF (JuGene) e
[d 3.1966 Execution] 581 task_init] & - RO3-M0-KO
B [9.1066 WP [056 read_input | [86.15 Process O
[1.35e7 Overhead [0.11 decomp - [85.67 Process 1

267e9\Visits = [088 inner_auto W 96.12 Process 2

[9.583e4d Synchronizations B [482,39 inher - [54.79 Process 3

1.30e% Communications
1.02e13 Bytes transferred
[3.41ed Computational imbalance

[47585 initialize I [55.94 Process 32
(026 harrier_sync I [55.86 Process 33
[000 timers I [55.80 Process 34

[35645 source I [85.67 Process 35
[E 2.78ef sweep I [55.73 Process 64
228 global_int_sum I [l 96.749 Process 65
1.42e4 flux_err | | W 5545 Process 68
- [021 alobal_real_sum - I [55.21 Process 67
- [W 014 task_end h I [55.65 Process 98
| IS S— C 03N | C E—A— 0 N Y S———) D
0.000000 317556966 (12.124495%) 2 819135e7| 0000000 277560866 (BY 405007%) 317556906 (0000000 B6.150482 (0.003104%) 277560686
. I _l

Figure 1.2: CUBE display window with expanded metric node ”Execution”

* three selected value information widgets,
* acolor legend, and
* a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane.
You can switch between the different tabs of a pane by left-clicking on the desired tab at
the top of the pane. Note that the order of the panes can be changed (see the description
of the menu item Display = Dimension order in Section 1.3.2.1).

The metric pane provides only the metric tree browser. The call pane offers a call tree
browser and a flat call profile. The system pane has a system tree browser, a boxplot
statistics view, and possibly several topology views, if corresponding topology data is
defined in the CUBE file. Tree browsers also provide a context menu.

1.3.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a topology menu
and a help menu. Some menu functions also have a keyboard shortcut, which is written
besides the menu item’s name in the menu. E.g., you can open a file with Ctrl+O without
going into the menu. A short description of the menu items is visible in the status bar if
you stay for a short while with the mouse above a menu item.

1. File: The file menu offers the following functions:

Chapter 1. Cube 3.4 User Guide

a) Open (Ctrl+0O): Offers a selection dialog to open a CUBE file. In case of an
already opened file, it will be closed before a new file gets opened. If a file
got opened successfully, it gets added to the top of the recent files list (see
below). If it was already in the list, it is moved to the top.

b) Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file
is opened.

c) Open external: Opens a file for the external percentage value mode (see
Section 1.3.2.3).

d) Close external: Closes the current external file and removes all correspond-
ing data. Disabled if no external file is opened.

e) Connect to trace browser: This menu item is only visible if a CUBE file
with a corresponding statistics file, containing information about the most se-
vere instances of certain performance patterns, is open and CUBE was con-
figured for remote trace browsing. In this case, it offers to connect to a trace
browser (i.e., Vampir or Paraver) to examine the behaviour of the program
around the most severe pattern instances. For an in-depth explanation of this
feature see subsection 1.3.3.2.

f) Settings: This menu item offers the saving, loading, and the deletion of set-
tings. You can save several settings under different names. Settings with the
name “<default>" are loaded automatically after the application is started.
Separate menu item allows you to save current settings as default.

On the one hand, settings store the appearance of the application like the
widget sizes, color and precision settings, the order of panes, etc. On the
other hand, settings can also store which data is loaded, which tree nodes are
expanded, etc. When saving a setting, the appearance is always saved. While
saving, you will be asked whether you would also like to save the data-related
settings.

If you load a setting which stores also data settings, the corresponding data
is also loaded. In the dialog for loading settings you are offered the list of all
available settings. For the settings with data, the name of the corresponding
cube file is displayed in braces. Note that settings with data only store the
name of the cube file from which to load the data, but not the data itself.
Thus if the cube file is not available any more, CUBE cannot load the data
settings. CUBE also makes some basic tests on the data to check if it could
have changed since saving the setting. E.g., if the number of items does not
coincide with those upon saving, it also does not load the data.

g) Dynamic loading threshold: This menu item is only available if CUBE was
configured for dynamic loading.

By default, CUBE always loads the whole amount of data when you open
a CUBE file. However, CUBE offers also a possibility to load only those

1.3. Using the GUI

h)

i)
7

data which is needed for the current display. To be more precise, the data
for the selected metric(s) and, if a selected metric is expanded, the data for
its children are loaded. If you change the metric selection, possibly some
new data is needed for the display that is dynamically loaded on demand.
Currently unneeded data gets unloaded.

This functionality is useful mostly for large files. Under this menu item you
can define a file size threshold (in bytes) above which CUBE offers you dy-
namic data loading. If a file being opened is larger than this threshold, CUBE
will ask you if you wish dynamic loading.

Screenshot: The function offers you to save a screen snapshot in a PNG
file. Unfortunately the outer frame of the main window is not saved, only the
application itself.

Quit (Ctrl+Q): Closes the application.

Recent files: The last 5 opened files are offered for re-opening, the top-most
being the most recently opened one. A full path to the file is visible in the
status bar if you move the mouse above one of the recent file items in the
menu.

2. Display: The display menu offers the following functions:

a)

b)

Dimension order: As explained above, CUBE has three resizable panes.
Initially the metric pane is on the left, the call pane is in the middle, and
the system pane is on the right-hand side. However, sometimes you may be
interested in other orders, and that is what this menu item is about. It offers
all possible pane orderings. For example, assume you would like to see the
metric and call values for a certain thread. In this case, you could place the
system pane on the left, the metric pane in the middle, and the call pane on the
right, as shown in Figure 1.3. Note that in panes to the left of the metric pane
no meaningful valuescan be presented, since they miss a reference metric; in
this case values are specified to be undefined, denoted by a “-” (minus) sign.

General coloring: Opens a dialog where different color settings can be
changed. The dialog is shown in Figure 1.4. The Ok button applies the
settings to the display and closes the dialog, the Apply button applies the
settings to the display, and Cancel cancels all changes since the dialog was
opened (even if “Apply”” was pressed in between) and closes the dialog.

At the top of the dialog you see a color legend with some vertical black
lines, showing the position of the color scale start, the colors cyan, green,
and yellow, and the color scale end. These lines can be dragged with the
left mouse button, or their position can also be changed by typing in some
values between 0.0 (left end) and 1.0 (right end) below the color legend in
the corresponding spins.

The different coloring methods offer different functions to interpolate the

Chapter 1. Cube 3.4 User Guide

- _ Cube 3.0 QT; cube filesirace.cube ’;

File Display Help

@]@]@]@]wm[am Eerat[z0 oz [+

[Absulute |-] [Absolute |-] [Absolute |-]
Systermntree | Topology© | Topology1 | Metric trae l Calltree | Flatview
B - IBMBGP (JuGene) - = (] 0.00 Time la |l | =0 052 driver («]
B [- RO3-MO-KO [d 9835 Execution] 0.01 tagk_init I
I[1- Process B 27614 WP [0.00 read_input
- Process 1 [424 87 COwerhead 0.00 decomp
- Process 2 [4.02ed Misits = [0.00 inner_auta
- Process 3 3 Synchronizations B [0.02 inner

I[1- Process 32 [2.00ed Communications
1.64eB Bytes transferred

161 Camputational imbalance

001 inftialize

I[1- Process 33
I[1- Process 34
I[1- Process 35
I[1- Process 64
I[1- Process 65
I[1- Process 66

[0.00 harrier_sync

[000 timers

3 1110 source

[56.15 sweep

W 0.00 alobal_int_sum
043 flu_err

I[1- Process 67 o [0.00 alobal_real_sum (=]
I[1- Process 96 - [[0.00 task_end h

4 [[EIC
0.000000 0.000000(0000000 98351160 (12.306856%,) 799.157454| |0.000000 B&.150482 (BY 594779%) 98351160

Figure 1.3: Modified pane order via the menu ’Display = Dimension order”

colors at positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a threshold
percentage value between 0.0 and 100.0, below which colors are lightened.
The nearer to the left end of the color scale, the stronger the lightening (with

linear increase).

With the spin at the bottom of the dialog you can define a threshold per-
centage value between 0.0 and 100.0, below which values should be colored

white.

c) Precision: Activating this menu item opens a dialog for precision settings
(see Figure 1.5). Besides Ok and Cancel, the dialog offers an Apply button,
that applies the current dialog settings to the display. Pressing Cancel undoes
all changes due to the dialog, even if you already pressed Apply previously,

and closes the dialog. Ok applies the settings and closes the dialog.

It consists of two parts: precision settings for the tree displays, and precision
settings for the selected value info widgets and the topology displays. For

both formats, three values can be defined:

i. Number of digits after the decimal point: As the name suggests, you
can specify the precision for the fraction part of the values. E.g., the
number 1.234 is displayed as 1.2 if you set this precision to 1, as 1.234

if you set it to 3, and as 1.2340 if you set it to 4.

ii. Exponent representation above 10* with x: Here you can define above

1.3. Using the GUI

~_ Colorsettings g

00 10

Start at Cyan at Green at Yellow at End at

[ooo 2 [pio e fozo (2 [ome [H 10 [

Coloring methaod

() Linear

() Quadratic 1
() Quadratic 2
() Exponential 1

@ Exponential2

Lighten colors forvalues under

this percentage of the maximal value: (000 S
Use white to color values under _
ts percertage it value range: L0 =

l ak] [Cancel l

Figure 1.4: The color dialog opened via the menu “Display = General coloring”

1il.

which threshold scientific notation should be used. E.g., the value 1000
is displayed as 1000 if this value is larger then 3 and as 1e3 otherwise.

Display zero values below 10~ with x: Due to inexact floating point
representation, it often happens that users wish to round down values
very near zero to zero. Here you can define the threshold below which
this rounding should take place. E.g., the value 0.0001 is displayed as
0.0001 if this value is larger than 3 and as zero otherwise.

d) Trees: This menu item offers two sub-items:

L.

1l

Font: Here you can specify the font, the font size (in pt), and the line
spacing for the tree displays (see Figure 1.6). The Ok button applies the
settings to the display and closes the dialog, the Apply button applies
the settings to the display, and Cancel cancels all changes since the di-
alog was opened (even if Apply was pressed in between) and closes the
dialog.

Selection marking: Here you can specify if selected items in trees
should be marked by a blue background or by a frame.

e) Optimize width: Under this menu item CUBE offers widget rescaling such
that the amount of information shown is maximized, i.e., CUBE optimally
distributes the available space between its components. You can chose if you
would like to stick to the current main window size, or if you allow to resize

it.

Chapter 1. Cube 3.4 User Guide

" _ Precision settings)

~Display in trees:

Mumber of digits after decimal point;

Exponent representation above 10% with e |4

II
4

Display zero for values below 104-x with x| 7

—Display in the value widget under the tree widgets and in topologies: —
Mumhber of digits after decimal point;

Expanent representation above 10% withi e |4

Display zero for values helow 1041 with x

(o (oo | [|

Figure 1.5: Display = Precision

" _ Fontsettings g

Font:

|AIbanyAMT| |vl

Size [pt]:

E £

Line spacing [pixel]:

s £
l [5]:9] [Cancel l

Figure 1.6: The font dialog opened via the menu ”Display = Trees = Font”

3. Topology: The topology menu offers the following functions related to the topol-
ogy display described in Section 1.3.2.7:

a) Item coloring: Offers a choice how zero-valued system nodes should be col-
ored in the topology display. The two offered options are either to use white
or to use white only if all system leaf values are zero and use the minimal
color otherwise.

b) Line coloring: Allows to define the color of the lines in topology painting.
Available colors are black, gray, white, or no lines.

c) Toolbar: This menu item allows to specify if the topology toolbar buttons
should be labeled by icons, by a text description, or if the toolbar should be
hidden. For more information about the toolbar see Section 1.3.2.2.

d) Show also unused hardware in topology: If not checked, unused topology
planes, i.e., planes whose grid elements don’t have any processes/threads as-
signed to, are hidden. Unused plane elements, if not hidden, are colored gray.

10

1.3. Using the GUI

e) Topology antialiasing: If checked, anti-aliasing is used when drawing lines
in the topologies.

4. Help: The help menu provides help on usage and gives some information about
CUBE.

a) Getting started: Opens a dialog with some basic information on the usage
of CUBE.

b) Mouse and keyboard control: Lists mouse and keyboard controls as given
in Section 1.3.4.

c) What’s this?: Here you can get more specific information on parts of the
CUBE GUL If you activate this menu item, you switch to the “What’s this?”
mode. If you now click on a widget, an appropriate help text is shown. The
mode is left when help is given or when you press Esc.

Another way to ask the question is to move the focus to the relevant widget
and press Shift+F1.

d) About: Opens a dialog with release information.

e) Selected metric description: Opens a new window showing the description
of the currently selected metric, equivalent to Online description in the metric
tree context menu. Disabled if online information is unavailable.

f) Selected region description: Opens a new window showing the description
of the currently selected region, equivalent to Online description in the call-
tree context menu. Disabled if online information is unavailable.

1.3.2.2 Toolbar

As already mentioned, the system pane may contain topology displays if corresponding
data is specified in the CUBE file. For the topology displays see Section 1.3.2.7. Ba-
sically, a topology display draws a two- or three-dimensional grid, in the form of some
planes placed one above the other. Each plane consists of a two-dimensional grid of
processes or threads.

The toolbar is enabled only if the system pane shows a topology display, and it offers
functions to manipulate the display of the above grid planes. The toolbar can be labeled
by icons, by text, or it can be hidden, see menu Topology = Toolbar in Section 1.3.2.1.
The toolbar buttons have tool tips, i.e., a short description pops up if the toolbar is enabled
and you move the mouse above a button.

The functions are the following, listed from the left to the right in the topology toolbar:

Move left Moves the whole topology to the left.

Move right E’ Moves the whole topology to the right.

11

Chapter 1. Cube 3.4 User Guide

Move up m Moves the whole topology upwards.

Move down II’ Moves the whole topology downwards.

Increase plane distance Iﬂ Increase the distance between the planes of the topology.
Decrease plane distance [{’ Decrease the distance between the planes of the topology.
Zoom in Enlarge the topology.

Zoom out E’ Scale down the topology.

Reset IE’ Reset the display. It scales the topology such that it fits into the visible rect-
angle, and transforms it into a default position.

Scale into window IE’ It scales the topology such that it fits into the visible rectangle,
without transformations.

Set minimum/maximum values for coloring E Similarly to the functions offered in
the context menu of trees (see Section 1.3.2.5), you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes,
i.e., the values corresponding to the left and right end of the color legend. If you
activate user-defined values for the color extremes, you are asked to define two val-
ues that should correspond to the minimal and to the maximal colors. All values
outside of this interval will get the color gray. Note that canceling any of the input
windows causes no changes in the coloring method. If user-defined min/max val-
ues are activated, the selected value information widget displays a “(u)” for*“user-
defined” behind the minimal and maximal color values.

x-rotation Rotate the topology cube about the x-axis with the defined angle.
y-rotation Rotate the topology cube about the y-axis with the defined angle.

Dimension order for the topology displays This button no longer exists, but formerly
allowed the order of topology dimensions to be adjusted: this is now done with the
control panel at the bottom of the topology pane.

Using the grip at the left of the toolbar, it can be dragged to another position or detached
entirely from the main window. The toolbar can also be closed after a right-click in the

grip.

1.3.2.3 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree,
where it is possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below,
the severity values from the CUBE file are displayed. However, sometimes these values
may be hard to interpret, and in such cases other value modes can be applied. Basically,

12

1.3. Using the GUI

there are three categories of additional value modes.

* The first category presents all severities in the tree as percentage of a reference
value. The reference value can be the absolute value of a selected or a root node
from the same tree or in one of the trees on the left-hand side. For example, in the
Own root percent value mode the severity values are presented as percentage of
the own root’s (inclusive) severity value. This way you can see how the severities
are distributed within the tree. All the value modes (Own root percent -- System
selection percent) fall into this category.

All nodes of trees on the left-hand side of the metric tree have undefined values.
(Basically, we could compute values for them, but it would sum up the severities
over all metrics, that have different meanings and usually even different units, and
thus those values would not have much expressiveness.) Since we cannot compute
percentage values based on undefined reference values, such value modes are not
supported. For example, if the call tree is on the left-hand side, and the metric tree
is in the middle, then the metric tree does not offer the Call root percent mode.

* The second category is available for system trees only, and shows the distribution
of the values within hierarchy levels. E.g., the Peer percent value mode displays
the severities as percentage of the maximal value on the same hierarchy depth. The
value modes (Peer percent -- Peer distribution) fall into this category.

* Finally, the External percent value mode relates the severity values to severities
from another external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be avail-
able:

1. Absolute (default): Available for all trees. The displayed values are the severity
value as read from the cube file, in units of measurement (e.g., seconds). Note that
these values can be negative, too, i.e., the expression “absolute” in not used in its
mathematical sense here.

2. Own root percent: Available for all trees. The displayed node values are the
percentage of their absolute values with respect to the absolute value of their root
node in collapsed state.

3. Metric root percent: Available for trees on the right-hand side of the metric tree.
The displayed node values are the percentage of their absolute values with respect
to the absolute value of the collapsed metric root node. If there are several metric
roots, the root of the selected metric node is taken. Note, that multiple selection
in the metric tree is possible within one root’s subtree only, thus there is always a
unique metric root for this mode.

4. Metric selection percent: Available for trees on the right-hand side of the metric
tree. The displayed node values are the percentage of their absolute values with re-
spect to the selected metric node’s absolute value in its current collapsed/expanded
state. In case of multiple selection, the sum of the selected metrics’ values for the

13

Chapter 1. Cube 3.4 User Guide

10.

1.

percentage computation is taken.

Call root percent: Available for trees on the right-hand side of the call tree. Simi-
lar to the metric root percent, but the call tree root instead of the metric tree root is
considered. In case of multiple selection with different call roots, the sum of those
root values is considered.

Call selection percent: Available for trees on the right-hand side of the call tree.
Similar to the metric selection percent, percentage is computed with respect to
the selected call node’s value in its current collapsed/expanded state. In case of
multiple selections, the sum of the selected call values is considered.

. System root percent: Available for trees on the right-hand side of the system

tree. Similar to the call root percent, the sum of the inclusive values of all roots of
selected system nodes are considered for percentage computation.

. System selection percent: Available for trees on the right-hand side of the system

tree. Similar to the call selection percent, percentage is computed with respect to
the selected system node(s) in its current collapsed/expanded state.

. Peer percent: For the system tree only. The peer percentage mode shows the

percentage of the nodes’ inclusive absolute values relative to the largest inclusive
absolute peer value, i.e., to the largest inclusive value between all entities on the
current hierarchy depth. For example, if there are 3 threads with inclusive absolute
values 100, 120, and 200, then they have the peer percent values 50, 60, and 100.

Peer distribution: For the system tree only. The peer distribution mode shows
the percentage of the system nodes’ inclusive absolute values on the scale between
the minimum and the maximum of peer inclusive absolute values. For example, if
there are 3 threads with absolute values 100, 120 and 200, then they have the peer
distribution values 0, 20 and 100.

External percent: Available for all trees, if the metric tree is the left-most widget.
To facilitate the comparison of different experiments, users can choose the external
percentage mode to display percentages relative to another data set. The external
percentage mode is basically like the metric root percentage mode except that the
value equal to 100% is determined by another data set.

Note that in all modes, only the leaf nodes in the system hierarchy (i.e., processes or
threads) have associated severity values. All other hierarchy levels (i.e., machines, nodes
and eventually processes) are only used to structure the hierarchy. This means that their

severity is undefined---denoted by a

66 9

(minus) sign---when they are expanded.

1.3.2.4 System resource subsets

By default, all system resources (typically threads) are included when determining box-
plot statistics. Other defined subsets can be chosen from the combobox below the box-
plot, such as “Visited” threads which are only those threads that visited the currently

14

1.3. Using the GUI

selected callpath. The current subset is retained until another is explicitly chosen or a
new subset is defined.

Additional subsets are defined from the system tree with the Define subset context menu
using the currently selected threads via multiple selection (Ctrl+<left-mouse click>) or
with the Find Items context menu selection option.

1.3.2.5 Tree browsers

A tree browser displays different hierarchical data structures in form of trees. Currently
supported tree types are metric trees, call trees, flat call profiles, and system trees. The
structure of the displayed data is common in all trees: The indentation of the tree nodes
reflects the hierarchical structure. Expandable nodes, i.e., nodes with non-hidden chil-
dren, are equipped with a [+]/[-] sign ([+] for collapsed and [-] for expanded nodes).
Furthermore, all nodes have a color icon, a value, and a label.

The value of a node is computed, as explained earlier, basing on the current selections
in the trees on the left-hand side and on the current value mode. The precision of the
value display in trees can be modified, see the menu item Display = Precision in Sec-
tion 1.3.2.1. The color icon reflects the position of the node’s value between 0.0 and a
maximal value. These maximal value is the maximal value in the tree for the absolute
value mode, or 100.0 otherwise. See the menu item Display = General coloring in Sec-
tion 1.3.2.1 and the context menu item Min/max values in the context menu description
below for color settings.

A label in the metric tree shows the metric’s name. A label in the call tree shows the
last callee of a particular call path. If you want to know the complete call path, you
must read all labels from the root down to the particular node you are interested in. After
switching to the flat profile view (see below), labels in the flat call profile denote methods
or program regions. A label in the system tree shows the name of the system resource it
represents, such as a node name or a machine name. Processes and threads are usually
identified by a rank number, but it is possible to give them specific names when creating
a CUBE file. The thread level of single-threaded applications is hidden. Multiple root
nodes are supported.

After opening a data set, the middle panel shows the call tree of the program. However,
a user might wish to know which fraction of a metric can be attributed to a particular
region (e.g., method) regardless of from where it was called. In this case, you can switch
from the call-tree view (default) to the flat-profile view (Figure 1.7). In the flat-profile
view, the call-tree hierarchy is replaced with a source-code hierarchy consisting of two
levels: regions and their subroutines. Any subroutines are displayed as a single child
node labeled Subroutines. A subroutine node represents all regions directly called from
the region above. In this way, you are able to see which fraction of a metric is associated
with a region exclusively, that is, without its regions called from there.

Tree displays are controlled by the left and right mouse buttons and some keyboard

15

Chapter 1. Cube 3.4 User Guide

keys. The left mouse button is used to select or expand/collapse a node: You can ex-
pand/collapse a node by left-clicking on the attached [+]/[-] sign, and select it by left-
clicking elsewhere in the node’s line. To select multiple items, Ctrl+<left-mouse click>
can be used. Selection without the Ctrl key deselects all previously selected nodes and
selects the clicked node. In single-selection mode you can also use the up/down arrows
to move the selection one node up/down. The right mouse button is used to pop up
a context menu with node-specific information, such as online documentation (see the
description of the context menu below).

. Cube 3.0 QT: cube_filesitrace.cube

File Display Help

@]@]@]@X—mt[aoo Erot[z0 F0z [+

[Ansnlute lv] [Ansnlute lv] [Ahsnlute I']
Metric tree l Call tree] Flatviewl System tres [Topology 0 | Topology 1]
& O 0.00 Time z O 000 MPI_Allreduce - B - IBMBGIP (JuGene) -
[d3.18e& Execution O .00 MPI_Barrier B 7 - RO3-hA0-MO
i 2. 1086 MPI FO 000 MPI_Ecast - I 062 Process 0
[1.39e7 Overhead G O 0.00 MPI_Finalize - I 062 Process 1

[Z28TeaVisits

9.83e4 Synchronizations
1.30e8 Communications
1.02e13 Bytes transterred
347e4 Computational imbalance G [043 barrier_sync

G 0 0.00 MPI_Init

O 0.00 MPI_Recy
O o000 MPI_Send
0000 TRACING

G W 055 beast_int
G [012 brast_real
0.7 decomp

- W 0E2 Process 2

- W 062 Process 3

- W 062 Process 32
- W 062 Process 33
- W 062 Process 34
- W 062 Process 35
- W 062 Process 64
- W 0E2 Process 63

1 [20484 driver - W 062 Process 66
o L @ 3.16e6 Subrautines - W 0E2 Process 67
v 1.42e4 flux_err W 062 Process 96
1] KD 4] an 1 »

0000000 317556806 (12.124455%) 2612135e7| (0000000 20353284ed (0541864%) 3.175569e6((0.000000 0624831 (0.003065%) 2038284e4

Figure 1.7: CUBE flat profile

Each tree has its own context menu which can be activated by a right mouse click within
the tree’s window. If you right-click on one of the tree’s nodes, this node gets framed,
and serves as a reference node for some of the menu items. If you click outside of tree
items, there is no refernce node, and some menu items are disabled.

The context menu consists, depending on the type of the tree, of some of the following
items. If you move the mouse over a context menu item, the status bar displays some
explanation of the functionality of that item.

1. Collapse all: For all trees. Collapses all nodes in the tree.

2. Collapse subtree: For all trees. Enabled only if there is a reference node. It
collapses all nodes in the subtree of the reference node (including the reference
node).

3. Collapse peers: For system trees only. Enabled only if there is a reference node.
Collapses all peer nodes of the reference node, i.e., all nodes at the same hierarchy

16

1.3. Using the GUI

level.

. Expand all: For all trees. Expands all nodes in the tree.

5. Expand subtree: For all trees. Enabled only if there is a reference node. Expands

all nodes in the subtree of the reference node (including the reference node).

. Expand peers: For system trees only. Enabled only if there is a reference node.
Expands all peer nodes of the reference node, i.e., all nodes at the same hierarchy
level.

. Expand largest: For all trees. Enabled only if there is a reference node. Starting
at the reference node, expands its child with the largest inclusive value (if any),
and continues recursively with that child until it finds a leaf. It is recommended
to collapse all nodes before using this function in order to be able to see the path
along the largest values.

. Dynamic hiding: Not available for metric trees. This menu item activates dy-
namic hiding. All currently hidden nodes get shown. You are asked to define a
percentage threshold between 0.0 and 100.0. All nodes whose color position on
the color scale (in percent) is below this threshold get hidden. As default value, the
color percentage position of the reference node is suggested, if you right-clicked
over a node. If not, the default value is the last threshold. The hiding is called
dynamic, because upon value changes (caused for example by changing the node
selection) hiding is re-computed for the new values. In other words, value changes
may change the visibility of the nodes.

a) Redefine threshold: This menu item is enabled if dynamic hiding is already
activated. This function allows to re-define the dynamic hiding threshold as
described above.

During dynamic hiding, for expanded nodes with some hidden children and for
nodes with all of its children hidden, their displayed (exclusive) value includes the
hidden children’s inclusive value. The percentage of the hidden children is shown
in brackets next to this aggregate value.

. Static hiding: Not available for metric trees. This menu item activates static hid-
ing. All currently hidden nodes stay hidden. Additionally, you can hide and show
nodes using the now enabled sub-items:

a) Static hiding of minor values: Enabled only in the static hiding mode. As
described under dynamic hiding, you are asked for a hiding threshold. All
nodes whose current color position on the color scale is below this percentage
threshold get hidden. However, in contrast to dynamic hiding, these hidings
are static: Even if after some value changes the color position of a hidden
node gets above the threshold, the node stays hidden.

b) Hide this: Enabled only in the static hiding mode if there is a reference node.
Hides the reference node.

17

Chapter 1. Cube 3.4 User Guide

10.

1.

12.

13.

14.

15.

16.

17.

c) Show children of this: Enabled only in the static hiding mode if there is a
reference node. Shows all hidden children of the reference node, if any.

Like for dynamic hiding, for expanded nodes with some hidden children and for
nodes with all of its children hidden, their displayed (exclusive) value includes the
hidden children’s inclusive value. The percentage of the hidden children is shown
in brackets next to this aggregate value.

No hiding: Not available for metric trees. This menu item deactivates any hiding,
and shows all hidden nodes.

Find items: For all trees. Opens a dialog to get a regular expression from the user.
If the user called the context menu over an item, the default text is the name of the
reference node, otherwise it is the last regular expression which was searched for.

If select items is checked, items matching the regular expression also become se-
lected.

If select items 1s unchecked, all non-hidden nodes whose names contain the given
text are marked with a yellow background, and all collapsed nodes whose subtree
contains such a non-hidden node by a light yellow background. The current node
found, that is initialized to the first found node, is marked by a distinguished yellow
hue.

Find next: For all trees. Changes the current found node to the next found node.
If you did not start a search yet, then you are asked for the regular expression to
search for.

Clear found items: For all trees. Removes the background markings of the pre-
ceding find items.

Define subset: Only for system tree. Uses the currently selected system resources
(e.g., from a preceding Find items) to create a new subset of all system resources
(typically threads) with the provided name. This is added to the combobox at the
bottom of the system tree and boxplot statistics panes, and becomes the currently
active subset for which statistics are calculated.

Info: For all trees (for call trees under Called region). Gives some short infor-
mation about the reference node. Disabled if there is no reference node or if no
information is available for the reference node.

Online description: For metric trees and flat call profiles (for call trees see under
Called region). Shows some (usually more extensive) online description for the
reference node. For example, metrics might point to an online documentation
explaining their semantics, or regions representing library functions might point to
the corresponding library documentation. Disabled if there is no reference node or
if no online information is available.

Location: For flat profiles only. Disabled if there is no reference node. Displays
information about the module and position within the module (line numbers) where

18

1.3. Using the GUI

18.

19.

20.

21.

22.

the method is defined.

Source code: For flat call profiles only (for call trees see Call site and Called
region below). Disabled if there is no reference node. Opens an editor for dis-
playing, editing, and saving the source code of the method/region to which the
reference node refers. The begin and the end of the method/region are highlighted.
If the specified source file is not found, you are asked to choose a file to open.

The file is in a read-only mode per default. If you wish to edit the text, please
uncheck the Read only box in the bottom left corner. For keyboard and mouse
control, see Section 1.3.4.

Call site: For call trees only. Enabled only if there is a reference node. Offers
information about the caller of the reference node.

a) Location: Displays information about the module and position within the
module (line numbers) of the caller of the reference node.

b) Source code: Opens an editor for displaying, editing, and saving the source
code where the call for which the reference node stays for happens. The
begin and the end of the relevant source code region are highlighted. If the
specified source file is not found, you are asked to chose a file to open.

Called region: For call trees only. Enabled only if there is a reference node. Offers
information about the reference node.

a) Info: Gives some short information about the reference node.

b) Online description: Shows some (usually more extensive) online descrip-
tion for the reference node. Disabled if no online description is available.

c) Location: Displays information about the module and position within the
module (line numbers) where the callee method of the reference node is de-
fined.

d) Source code: Opens an editor for displaying, editing, and saving the source
code of the callee of the reference node. Begin and end of the relevant region
are highlighted. If the specified source code does not exists, you are asked to
choose a file to open.

Min/max values: Not for metric trees. Here you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes,
1.e., the values corresponding to the left and right end of the color legend. If you
activate user-defined values for the color extremes, you are asked to define two val-
ues that should correspond to the minimal and to the maximal colors. All values
outside of this interval will get the color gray. Note that canceling any of the input
windows causes no changes in the coloring method. If user-defined min/max val-
ues are activated, the selected value information widget (see Section ??) displays
a “(u)” for “user-defined” behind the minimal and maximal color values.

Statistics: Only available if a statistics file for the current CUBE file is provided.

19

Chapter 1. Cube 3.4 User Guide

Displays statistical information about the instances of the selected metric in the
form of a box plot. For an in-depth explanation of this feature see subsection
1.3.3.1.

23. Max severity in trace browser: Only available for metric and call trees and only
if a statistics file providing information about the most severe instance(s) of the
selected metric is present. If CUBE is already connected to a trace browser (via
File = Connect to trace browser), the timeline display of the trace browser is
zoomed to the position of the occurrence of the most severe pattern so that the
cause for the pattern can be examined further. For a more detailed explanation of
this feature see subsection 1.3.3.2.

24. Sort by value (descending): For flat call profiles only. Sorts the nodes by their
current values in descending order. Note that if an item is expanded, its exclusive
value is taken for sorting, otherwise its inclusive value.

25. Sort by name (ascending): For flat call profiles only. Sorts the nodes alphabeti-
cally by name in ascending order.

1.3.2.6 Boxplot Statistics Display

The boxplot statistics display shows a box-and-whisker distribution of metric severity
values for the currently active subset of system resources (typically threads). The active
subset is changed via the combobox menu at the bottom of the pane, and the y-axis scale
is adjusted via the display mode combobox at the top of the pane.

The vertical whisker ranges from the smallest value (minimum) and to the largest value
(maximum), while the bottom and top of the box mark the lower quartile (Q1) and upper
quartile (Q3). Within the box, the bold horizontal line represents the median (Q2) and
the dashed line the mean value.

To see the statistics as numeric values in a separate window, use <left-mouse click>
inside the chart. Zooming into the boxplot is done with <left-mouse drag> from top to
bottom, and reset with a <middle-mouse click> inside the chart.

1.3.2.7 Topology Display

In many parallel applications, each process (or thread) communicates only with a lim-
ited number of processes. The parallel algorithm divides the application domain into
smaller chunks known as sub-domains. A process usually communicates with processes
owning sub-domains adjacent to its own. The mapping of data onto processes and the
neighborhood relationship resulting from this mapping is called virtual topology. Many
applications use one or more virtual topologies specified as multi-dimensional Cartesian
grids.

Another sort of topologies are physical topologies reflecting the hardware structure on

20

1.3. Using the GUI

which the application was run. A typical three-dimensional physical topology is given
by the (hardware) nodes in the first dimension, and the arrangement of cores/processors
on nodes in further two dimensions.

The CUBE display supports multi-dimensional Cartesian grids, where grids with high
dimensionality can be sliced or folded down to two or three dimensions for presentation.
If the currently opened cube file defines one or more such topologies, separate tabs are
available for each using the topology name when one is provided. The topology display
shows performance data mapped onto the Cartesian topology of the application. The
corresponding grid is specified by the number of dimensions and the size of each dimen-
sion. Threads/processes are attached to the grid elements, as specified by the CUBE file.
Not all system items have to be attached to a grid element, and not every grid element
has a system item attached. Examples of a two- and of a three-dimensional topology
are shown on Figure 1.8. Note that the topology toolbar is enabled when a topology is
available to be displayed.

The Cartesian grid is presented by planes stacked on top of each other in a three dimen-
sional projection. The number of planes depends on the number of dimensions in the
grid. Each plane is divided into tiles (typically shown as rombi). The number of tiles
depends on the dimension size. Each tile represents a system resource (e.g., a process)
of the application and has a coordinate associated with it.

The current value of each grid element (with respect to the selections on the left-hand
side and to the current value mode) is represented by coloring the grid element. Coloring
is based on a value scale from 0.0 to 100.0. Grid elements without having a system
item attached to it are colored gray. See Section 1.3.2.1 (menu Topology) for further
topology-specific coloring settings. For example, the upper topology in Figure 1.8 is
drawn without lines, and the one below with black lines and topology line anti-aliasing.

If the selected system item (or the first selected one in case of multiple selection) occurs
in the topology, it is marked by an additional frame and by additional lines at the side
of the plane which contains the corresponding grid point, such that the selected item’s
position is also visible if the corresponding plane is not completely visible.

Besides the functions offered by the topology toolbar (see 1.3.2.2), the following func-
tionality is supported:

1. Item selection: You can change the current system selection by left-clicking on a
grid element which has a system item assigned to it (resulting in the selection of
that system item).

2. Info: By right-clicking on a grid element, an information widget appears with
information about the system item assigned to it. The information contains

* the coordinate of the grid point in each topology dimension,
* the hardware node to which the attached system item belongs to,

* the system item’s name,

21

Chapter 1. Cube 3.4 User Guide

~"Cube 3.0 QT: cube files/trace.cube &

File Display Help

B0 EEE RS wee e

[Apsonte <] [Awsoire <] [Assore

Vet tree | Caltee | Flatview Systerntree | Topology0 | Topoioay 1 |

& 01056 Time <) [FOocooMP Aleduce [« _ . P a
[d3.19¢6 Execution 1 | FO000mP_Barrier I 3 L Vot oy
B 9106 MPI L 0000 MPI_Beast 5 i
O 1.39¢7 Overhead D000 MPI Finalize - L o

26129 Visits 1000 MPI_nit A

3 I 993e4 Synchronizations [0000 MPI_Recy s e

& | 13065 Communications CI0.00MPI_Send L o

102213 Bytes transferred F010.00 TRACING e

34164 Cornputational imbalance 043 bartier_sync e

055 heast int
012 beast real

[0.1 decomp

204e4 driver

L @ 3.16e6 Subroutines
14284 w_ert
228 global_int_sum
224 global_real_max
081 global_real_surn
[@025 initgeom -
4755 initalize

A

115 initsnc.
|- O 267 47 initxs
3.16e6 inner
= [3.1666 inner_auto
= | FEe20 octant
O —— 1 | €1 — ENEID gl [aD)
[0.000000... 3.1755696 (12... 26191357, 000000, 3155186... 31755698,)2 899631 315518666 (4 9207387 %) 99.311460|

Cube 3.0 QT: cube_filesitrace.cube 5

File Display Help

S nEHICEEEmEEEaEeat A

[me root percent "l [Ahsn\ule |vl [Ahsnlu(e ‘v]
Metiic ree. | Calltree | Flatview | Systemtres | Topology0 | Topology 1

B 1 0.00 Time [=] 000 MPILAllreduce -
(12,12 Execution] O 0.00 MP1_Barrier
B O 34 74 MPI [10.00 MPI_Ecast
5213 Overhead O 0.00MPI_Finalize
100,00 Vigits [0.00 MPI_Init

O 0.00MPI_Recy

O 0.00MPI_Send

O 0.00 TRACING

0.43 barrier_sync

[0.55 beast_int

[0.12 heast_real

0.11 decomp

= [2.04e4 driver

L @ 2.16e6 Subroutines
o 1 .42e4d flux_err

@ 2.23 global_int_sum
[2.24 global_real_max
081 gliobal_real_sum

100.00 Synchronizations
100.00 Comrmunications
100.00 Byles transferred
100.00 Computational imbalance

=] 025 initgeom
hd ([47585 initialize
4 4 4»
0000000 12124495 100.000000] [0.000000. 3155186 3.1755698 2869631 97 736427 (75.435508%) 29311460

0000000, 317556966 (12..., 261913587,

Figure 1.8: Topology Displays

¢ its MPI rank,
* its identifier,
* and its value, followed by the percentage of this value on the scale between
the minimal and maximal topology values.
3. Rotation about the x and y axes: can be done with left-mouse drag (click and
hold the left-mouse button while moving the mouse).
4. Increasing/decreasing the distance between the planes: with Ctrl+<left-mouse
drag>
5. Moving the whole topology up/down/left/right: with Shift+<left-mouse drag>

22

1.3. Using the GUI

1.3.2.8 Topology mapping panel

If the number of topology dimensions is larger than three, the first three dimensions
are shown and an additional control panel appears below the displayed topology. This
panel allows rearranging topology dimensions on the x, y and z axes, as well as slicing or
folding of higher dimensionality topologies for presentation in three or fewer dimensions.

Rearranging topology dimensions is achieved simply by dragging the topology dimen-
sion labels to the desired axis. When dragged on top of an existing topology dimension
label, the two are exchanged.

When slicing, select up to three of the dimensions to display completely and choose
one element of each of the remaining dimensions. The example in figure 1.9 shows a
topology with 4 dimensions (32x16x32x4) labelled X, Y, Z and T. The first element of
the 4th dimension (7) is automatically selected. By clicking on the button above the
T, an index in this dimension from O to 3 can be chosen. If the index is set to all, the
selection becomes invalid until an index of another dimension is selected.

X Cube 3.0 QT: CUBE/exampledD.cube v 2 x R x
File Display Topology Help
3E B m @ E E E E E @ X-rot: 300 & y-rot: 30 £ 7‘;? v E x-rot: (300 £ y-rot: 30 $ z‘;f v
Absolute v | |Absolute ~ | | Peer distribution 7 Peer distribution 7
Metric tree Calltree | Flat view System tree | Box Plot | BG/P XYIT | App < > System tree Box Plot | BG/P XYIT | App 256%256

~

@ 3.00e7 Time |~ [3.00e7 driver | ~
5.14210 Visits
1.97e5 Synchronizations
2.57210 Communication;
2.15e13 Bytes transferrec
7.31e4 Computational im

0,013
R00-MO-MO
Process 2051

7 AValue 12.23 (12.23%)
Absuluts 458.31 (12 23%)

<20

< al

~ ~ all all all 0
2 2| | g &5 &8 & wotect [| v | =z |
¢ <> < <> X Y z T []
‘u 00 3.00e7 (100.00%) 3.00e7] [0.00. 3.00e 3 00e7 |u 00 1223 100 nu| ‘u 00 12.23 100 nu|
A 4

Figure 1.9: 4-dimensional example

Alternatively, the folding mode can be activated by clicking on the fold button. This
mode is available for topologies with four to six dimensions and allows to display all el-
ements by folding two dimensions into one. Every dimension appears in a box which can
be dragged into one of the three container boxes for the displayed Cartesian dimensions
x,y and z. In folding mode, the color of the inner borders is changed into gray. The black
bordered rectangles show the element borders of each of the three displayed dimensions.

The right image in figure 1.9 shows the folding of dimension Z with dimension 7. One
element with index (0,0,1,3) has been selected by clicking with the right mouse button

23

Chapter 1. Cube 3.4 User Guide

on it. All elements inside the black rectancle around the selection belong to Z index one.
The gray lines divide the rectangle into four elements which correspond to the elements
of dimension 7" with indices O to 3.

1.3.2.9 Selected value info

Below each pane there is a selected value information widget. If no data is loaded, the
widget is empty. Otherwise, the widget displays more extensive and precise information
about the selected values in the tree above. This information widget and the topologies
may have different precision settings than the trees, such that there is the possibility
to display more precise information here than in the trees (see Section 1.3.2.1, menu
Display = Precision).

The widget has a 3-line display. The first line displays at most 4 numbers. The left-
most number shows the smallest value in the tree (or 0.0 in any percentage value mode
for trees, or the user-defined minimal value for coloring if activated), and the right-most
number shows the largest value in the tree (or 100.0 in any percentage value mode in
trees, or the user-defined maximal value for coloring if activated). Between these two
numbers the current value of the selected node is displayed, if it is defined. Additionally,
in the absolute value mode it is followed by the percentage of the selected value on the
scale between the minimal and maximal values, shown in brackets. Note that the values
of expanded non-leaf system nodes and of nodes of trees on the left-hand side of the
metric tree are not defined. If the value mode is not the absolute value mode, then in the
second line similar information is displayed for the absolute values in a light gray color.

In case of multiple selection, the information refers to the sum of all selected values. In
case of multiple selection in system trees in the peer distribution and in the peer percent
modes, this sum does not state any valuable information, but is displayed for consistency
reasons.

If the widget width is not large enough to display all numbers in the given precision, then
a part of the number displays get cut down and a ““ ... ” indicates that not all digits could
be displayed.

Below these numbers, in the third line, a small color bar shows the position of the color
of the selected node in the color legend. In case of undefined values, the legend is filled
with a gray grid.

1.3.2.10 Color legend

By default, the colors are taken from a spectrum ranging from blue over cyan, green,
and yellow to red, representing the whole range of possible values. You can change the
color settings in the menu,Display = General coloring, see Section 1.3.2.1. Exact
zero values are represented by the color white (in topologies you can decide whether you
would like to use white or the minimal color, see Section 1.3.2.1, menu Topology).

24

1.3. Using the GUI

1.3.2.11 Status Bar

The status bar displays some status information, like state of execution for longer proce-
dures, hints for menus the mouse pointing at etc.

1.3.3 Features enabled through statistic files

In this section we will explain two features -- namely the display of statistical information
about performance patterns which represent performance problems and the display of the
most severe instances of these patterns in a trace browser -- which are only available if
a statistic file for the currently opened CUBE file is present. Such a statistic file can be
generated by the Scalasca trace analyzer. The file format of statistic files is described in
the Appendix 3.1.

For CUBE to recognize the statistic file, it must be placed in the same directory as the
CUBE file. The basename of the statistic file should be identical to that of the CUBE file,
but with the suffix .stat. For example, when the CUBE file is called trace.cube.qgz,
the corresponding statistic file is called trace. stat.

1.3.3.1 Statistical information about performance patterns

If a statistic file is provided, you can view statistical information about one or multiple
patterns (for example in order to compare them). This is done by selecting the desired
metrics in the metric tree and then selecting the Statistics menu item in the context menu.
This brings up the box plot window as shown in Figure 1.10.

The box plot shows a graphical representation of the statistical data of the selected pat-
terns. The slender black lines on the top and the bottom designate the maximum and
the minimum measured severity of the pattern, respectively. The lower and the upper
borders of the white box indicate the values of the 25% and 75% quantile. The thick line
inside the box represents the median of the values, while the dashed line indicates the
mean.

There are two ways of interacting with the box plot. You can zoom to a certain interval
on the y-axis by clicking on a position with the height of the desired maximal or mini-
mal value and by consecutively dragging the mouse to a position with the height of the
corresponding other extreme value. You can reset the view (i.e., to undo all zooming) by
clicking the middle mouse button somewhere on the box plot.

If you are interested in more precise values for the severity statistics of a certain metric,
you can click somewhere in the column of the desired metric, which will yield a small
window (as shown in the top right corner of Figure 1.10) displaying the exact values of
the statistics.

25

Chapter 1. Cube 3.4 User Guide

" Statistics info_)

X statistic: (7 [0] [x

0.07

Pattern: WaitAtBarrier
Sum: 0.369845
| Count: 20
0.06 i Mean: 0.018492
| Variance: 0.000698
Maximuim: 0.065293
! Quartil 75: 0.047408
0054 | Wedian: 0.006477
Quartil 25: 0.000040
Minimum: 0.000002

0.04 : Close
!
:
!
!

0.03

0.02

0.01 1

T
—_—

T
o T T I
1 2 3 4

1: LateBroadcast 2: Barrier Completion 3: WaitAt Barrier 4: \WaitAtlBarrier

Close

Figure 1.10: Screenshot of a box plot as shown by CUBE displaying statistical informa-
tion about the selected patterns. The additional window on the top right
displaying the exact values of the statistics.

1.3.3.2 Display of most severe pattern instances using a trace browser

If a statistic file also contains information about the most severe instances of certain
patterns, CUBE can be connected to a trace browser (currently Vampir[&, 9] and Paraver
[6, 7] are supported) in order to view the state of the program being analyzed at the time
this most severe pattern instance occurred. For collective operations, the most severe
instance is the one with the largest sum of the waiting times of all processes, which is not
necessarily the one with the largest maximal waiting time of each individual process.

To use this feature, you first have to connect to a trace browser by using the Connect to
trace browser menu item of the File menu, which offers to connect to Vampir as well as
to Paraver. This will open one of the two dialog windows shown below.

For Vampir, you have to specify the host name and port of the Vampir server
you want to connect to and the path of the trace file you want to load. This
will launch the Vampir client (if it is correctly configured) and load the speci-
fied trace file. To configure Vampir so that it can be started automatically by
CUBE, a service file com.gwt.vampir.service, describing the path to your Vam-
pir client executable must be placed under (/usr/share/dbus-1/service) or

26

1.3. Using the GUI

3 . Connect to vampir ‘}

~_ Connect to paraver ,; 70 X
Host: | localhost J
Configuration file: k.fGeneralNiewsJ‘statE_as_is cfg
Port: (30000 |5
Trace file: [i ji i plefctest-p ,...pr\rl Browse
File: [ate.ﬂe\i><.ﬂ(ojak-binfexample.fc’test-pomp.elg]

Figure 1.11: The dialog windows for a connection to Vampir and to Paraver

S{HOME}/.local/share/dbus-1/services. This service file must be exactly as
shown below, with the exception that Exec should point to your Vampir client executable.

[D-BUS Service]
Name=com.gwt .vampir
Exec=/opt/vampir/bin/vampir

An example of the com.gwt .vampir.service file

For Paraver, you have to specify a configuration file (which is used to initialize the Par-
aver window which is opened when zooming) as well as the path of the desired trace
file. This will launch Paraver which will directly open the correct trace file. In order for
CUBE to be able to launch Paraver, the executable directory of Paraver must be in your
path.

It is also possible to connect to multiple trace browsers so that you can view a trace file
in Paraver and Vampir simultaneously, but due to limitations with the Vampir client you
can only have two Vampir clients running at the same time. All trace browsers will be
zoomed simultaneously if you select a zoom command (as described below).

Once CUBE is connected to a trace browser you can select the Max severity in trace
browser menu item of the metric tree so that all connected trace browsers are zoomed to
the (globally) most severe instance of the selected pattern.

A more sophisticated feature is the ability to zoom to the most severe instance of a pattern
in a selected call path. This can be done by selecting a metric in the metric tree which
will highlight the most severe call paths in the call tree. You can then use the context
menu of the call tree to select the Max severity in trace browser menu item which will
then zoom all connected trace browsers to the most severe instance of the selected pattern
with respect to the chosen call path (see Figure 1.12).

27

Chapter 1. Cube 3.4 User Guide

w % Cube 3.4 QT: eplk_su3imp_base_16_traceRrace cube gz <@ij28101 > s)
File Display Topology Help
[Ahsn\uta ‘v] [Ahsn\uta |v] [Ahsnluta ‘v]
Wetric tree | Calltree | Flatview | System tree | Box Plot | TopologyO |
- [10.00 Time [~} | &0 0.00 main (<] (B 0.00 Linux Intel =]
82.11 Execution [0.00 initialize_machine
& W 036 MPI [J0.00 g_sync
0.00 Synchronization =+ [10.00 setup

&+ [10.00 Communication
3.27 Point-to-point
- [0.01 Collective
[0 0.00 Early Reduce
[0.00 Early Scan
0.01 Late Broadcast

£ [J0.00 initial_set

[0.00 mynode

[0.00 get_prompt
1000 get i

£ [10.00 broadcast_bytes

1.37 Walt at N x N 10,00 numnodes Callste ’

0.00 N x N Completion [0 0.00 mynode Called region D

[31.57 IniyExit [0 0.00 initialize_pm Expand/collapse »

0.22 Overhead [J0.00 numnodes

N Hiding 4

I M 6.60e7 Visits [0.00 check_layout _—
- [28 Synchronizations [0.00 fixup_ranks Find items
- [l 7.81e4 Communications [0 0.00 setup_layout Find Next

o [l 3.16e9 Bytes transferred [70.00 make_lattice Clear found items

[l 42.16 Computational imbalance [0 0.00 make_nn_gathers
[0 0.00 make_3n_gathers
[10.00 phaseset Min/max values

i Ma in trace browser
& | b 010.00 delock

v @ Vampir - [Trace View - Mustrejhome21 fizam1 jzam 1 6/publiciepik_sudimp_base_16_tracelepik esd] <@i28i01 = v

Copy to cliphoard

%W File Edit Chart Filter Window Help

ERLEOTERL2BE G AV
19225 ms 192.30 ms 192.35 ms “me”’:\=92 40 ms 182,45 ms 18250 ms 192.55 ms [

Process 0
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process @
Process 10
Process 11
Process 12

el

Fe

[o.c0 0.01 0.01%) w1592|

0.00 0.00 (28 47%) UD'\‘ I0.00 0.00 (100.00%) 0.00|

Shows the most severe instance of pattern in trace browser 4

Figure 1.12: Context menu called on a special call path showing the “Max severity in
trace browser” menu item which results in the location of the worst Late
Broadcast instance shown in the timeline display of Vampir. It can be seen
that processes enter the MPI_Bcast operation earlier than the root process
leading to a wait state.

28

1.3. Using the GUI

1.3.4 Keyboard and mouse control

1.3.4.1 General control

Shift+F1 Help: What’s this?

Ctrl+O Shortcut for menu File = Open
Ctrl+W Shortcut for menu File = Close
Ctrl+Q Shortcut for menu File = Quit

<left-mouse click>

over menu/tool bar: activate
menu/function

over value mode combo. select value
mode

over tab: switch to tab

in tree: select/deselect/expand/collapse
items

in topology: select item

<right-mouse click>

in tree: context menu
in topology: context information

Ctrl+<left-mouse click>

in tree: multiple selection/deselection

<left-mouse drag>

over scroll bar: scroll
in topology: rotate topology

Ctrl+<left-mouse drag>

in topology: increase plane distance

Shift+<left-mouse drag>

in topology: move topology

<scroll mouse-wheel >

in topology: zoom in/out

Up arrow

in tree: move selection one item up
(single-selection only)
in topology/scroll area: scroll one unit

up

Down arrow

in tree: move selection one item down
(single-selection only)

in topology/scroll area: scroll one unit
down

Left arrow/Backspace/Minus

in tree : collapse subtree

Right arrow/Return/Plus in tree : expand subtree

Page up in tree/topology/scroll area: scroll one
page up

Page down in tree/topology/scroll area: scroll one

page down

1.3.4.2 Source code editor

Control in read only mode:

29

Chapter 1. Cube 3.4 User Guide

Up Arrow Move one line up

Down Arrow Move one line down

Left Arrow Scroll one character to the left (if
horizontally scrollable)

Right Arrow Scroll one character to the right (if
horizontally scrollable)

Page Up Move one (viewport) page up

PageDown Move one (viewport) page down

Home Move to the beginning of the text

End Move to the end of the text

<scroll mouse-wheel >

Scroll the page vertically

Alt+<scroll mouse-wheel >

Scroll the page horizontally (if
horizontally scrollable)

Ctrl+<scroll mouse-wheel >

Zoom the text

Ctrl+A

Select all text

Additionally for the read and write mode:

Left Arrow Move one character to the left

Right Arrow Move one character to the right

Backspace Delete the character to the left of the
cursor

Delete Delete the character to the right of the
cursor

Ctrl+C Copy the selected text to the clipboard

Ctrl+Insert Copy the selected text to the clipboard

Ctrl+K Delete to the end of the line

Cul+V Paste the clipboard text into text edit

Shift+Insert Paste the clipboard text into text edit

Cul+X Delete the selected text and copy it to the
clipboard

Shift+Delete Delete the selected text and copy it to the
clipboard

Ctrl+Z Undo the last operation

Crl+Y Redo the last operation

Ctrl+Left arrow

Move the cursor one word to the left

Ctrl+Right arrow

Move the cursor one word to the right

Ctrl+Home Move the cursor to the beginning of the
text
Ctrl+End Move the cursor to the end of the text

Hold Shift + some movement (e.g., Right
arrow)

Select region

30

1.4. Performance Algebra and Tools

1.4 Performance Algebra and Tools

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE offers a mechanism called
performance algebra that can be used to merge, subtract, and average the data from
different experiments and view the results in the form of a single “derived” experiment.
Using the same representation for derived experiments and original experiments provides
access to the derived behavior based on familiar metaphors and tools in addition to an
arbitrary and easy composition of operations. The algebra is an ideal tool to verify and
locate performance improvements and degradations likewise. The algebra includes three
operators---diff , merge, and mean---provided as command-line utilities which take two
or more CUBE files as input and generate another CUBE file as output. The operations
are closed in the sense that the operators can be applied to the results of previous oper-
ations. Note that although all operators are defined for any valid CUBE data sets, not
all possible operations make actually sense. For example, whereas it can be very helpful
to compare two versions of the same code, computing the difference between entirely
different programs is unlikely to yield any useful results.

1.4.1 Difference

Changing a program can alter its performance behavior. Altering the performance behav-
ior means that different results are achieved for different metrics. Some might increase
while others might decrease. Some might rise in certain parts of the program only, while
they drop off in other parts. Finding the reason for a gain or loss in overall performance
often requires considering the performance change as a multidimensional structure. With
CUBE’s difference operator, a user can view this structure by computing the difference
between two experiments and rendering the derived result experiment like an original
one. The difference operator takes two experiments and computes a derived experiment
whose severity function reflects the difference between the minuend’s severity and the
subtrahend’s severity.

The possible output is presented below.

user@host: cube3_diff scout.cube remapped.cube -o result.cube

Reading scout.cube ... done.

Reading remapped.cube ... done.

++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO: :Merging metric dimension... done.

INFO: :Merging program dimension... done.

INFO: :Merging system dimension... done.

INFO: :Mapping severities... done.

INFO: :Adding topologies...
Topology retained in experiment.
done.
INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully +++++++++++tt+++

31

Chapter 1. Cube 3.4 User Guide

Writing result.cube ... done.

Usage: cube3_diff [-o output] [-c] [-C] [-h] minuend subtrahend

-0 Name of the output file (default: diff.cube)

-¢ Do not collapse system dimension, if experiments are incompatible
-C Collapse system dimension

-h Help; Output a brief help message.

1.4.2 Merge

The merge operator’s purpose is the integration of performance data from different
sources. Often a certain combination of performance metrics cannot be measured during
a single run. For example, certain combinations of hardware events cannot be counted si-
multaneously due to hardware resource limits. Or the combination of performance met-
rics requires using different monitoring tools that cannot be deployed during the same
run. The merge operator takes an arbitrary number of CUBE experiments with a differ-
ent or overlapping set of metrics and yields a derived CUBE experiment with a joint set
of metrics.

The possible output is presented below.

user@host: cube3_merge scout.cube remapped.cube -o result.cube
++++++++++++ Merge operation begins +++++++++ttttttttttttttttt

Reading scout.cube ... done.

Reading remapped.cube ... done.
INFO::Merging metric dimension... done.
INFO: :Merging program dimension... done.
INFO: :Merging system dimension... done.

INFO: :Mapping severities... done.
INFO: :Merge operation...
Topology retained in experiment.

Topology retained in experiment.
done.
++++++++++++ Merge operation ends successfully ++++++++ttt+++++
Writing result.cube ... done.

Usage: cube3_merge [-o0 output] [-c] [-C] [-h] cube ...

-0 Name of the output file (default: merge.cube)

-¢c Do not collapse system dimension, if experiments are incompatible
-C Collapse system dimension

-h Help; Output a brief help message.

32

1.4. Performance Algebra and Tools

1.4.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by un-
related system activity during an experiment or to summarize across a range of execution
parameters. You can conduct several experiments and create a single average experiment
from the whole series. The mean operator takes an arbitrary number of arguments.

The possible output is presented below.

user@host: cube3_mean scoutl.cube scout2.cube scout3.cube scouté4.cube -o mean.cube
++++++++++++ Mean operation begins ++++++++++++H+++++HHHHHH+4

Reading scoutl.cube ... done.
INFO: :Merging metric dimension...

INFO: :Merging program dimension...

INFO: :Merging system dimension...
INFO: :Mapping severities... done.
INFO: :Adding topologies... done.
INFO: :Mean operation... done.
Reading scout2.cube ... done.
INFO: :Merging metric dimension...

INFO: :Merging program dimension...

INFO: :Merging system dimension...
INFO: :Mapping severities... done.
INFO: :Adding topologies... done.
INFO: :Mean operation... done.
Reading scout3.cube ... done.
INFO: :Merging metric dimension...

INFO: :Merging program dimension...

INFO: :Merging system dimension...
INFO: :Mapping severities... done.
INFO: :Adding topologies... done.
INFO: :Mean operation... done.
Reading scout4.cube ... done.
INFO: :Merging metric dimension...

INFO: :Merging program dimension...

INFO: :Merging system dimension...
INFO: :Mapping severities... done.
INFO: :Adding topologies... done.
INFO: :Mean operation... done.
++++++++++++ Mean operation ends
Writing mean.cube ... done.

done.
done.
done.

done.
done.
done.

done.
done.
done.

done.
done.
done.

successfully ++++++++++++++++

Usage: cube3_mean [-o0 output] [-c] [-C] [-h] cube ...

-0 Name of the output file (default: mean.cube)

-¢c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

33

Chapter 1. Cube 3.4 User Guide

1.4.4 Compare

Compares two experiments and prints out if they are equal or not. Two experiments are
equal if they have same dimensions hierarchy and the equal values of the severieties.

An example of the output is below.

user@host: cube3_cmp remapped.cube scoutl.cube

Reading remapped.cube ... done.

Reading scoutl.cube ... done.

++++++++++++ Compare operation begins +++++++++++++H A
Experiments are not equal.

t++++++++++++ Compare operation ends successfully +++++tttttttt+++

Usage: cube3_cmp [-h] cubel cube2
-h Help; Output a brief help message.

1.4.5 Clean

CUBE files may contain more data in the definition part than absolutely necessary. The
cube3_clean utility creates a new CUBE file with an identical structure as the input
experiment, but with the definition part cleaned up.

An example of the output is presented below.

user@host: cube3_clean remapped.cube -o cleaned.cube
++++++++++++ Clean operation begins ++++++++++++tttttt++++++++
Reading remapped.cube ... done.

Topology retained in experiment.
++++++++++++ Clean operation ends successfully ++++++++++++++++
Writing cleaned.cube ... done.

Usage: cube3_clean [-o output] [-h] cube
-0 Name of the output file (default: clean.cube|.gz)
-h Help; Output a brief help message.

1.4.6 Cut (Reroot, Prune, Filter)

For the detailed study of some part of the report, the CUBE file can be modified by
applying cut operations to call-tree nodes. Different operations are possible:

* Sub-trees may be re-rooted, i.e., only sub-trees with the given call-tree node as
root are retained in the report.

* Entire sub-trees may be pruned, i.e., removed from the report. In this case, all
metric values for those sub-trees will be attributed to their parent call-tree node.

34

1.4. Performance Algebra and Tools

* A filter can be applied to eliminate individual call-tree nodes as if they were “in-
lined” or filtered during measurement. A filter file lists shell wildcard patterns one
per line.

An example of the output is presented below.

user@host: cube3_cut -r inner_auto_ -p flux_err_ -o cut.cube remapped.cube
Reading remapped.cube ... done.
++++++++++++ Cut operation begins +++++++ttttttttttttttttt+tt

Topology retained in experiment.
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cut.cube ... done.

Usage: cube3_cut [-h] [-r nodename] [-p nodename] [-f filterfile] [-0 output] cube
-0 Name of the output file (default: cut.cube|.gz)

-r Re-root call tree at named node

-p Prune call tree from named node

-f Filter call-tree nodes matching patterns specified in filterfile

-h Help; Output a brief help message.

1.4.7 Part (Partition)

CUBE files may contain data for processes that execute different executables or perform
distinct roles within an application execution, such that it can be desirable to partition
some of the system tree processes (and their associated threads) and void the remainder.
The cube3_part utility creates a new CUBE file with an identical structure as the input
report, but with the specified processes marked <VOID> and their non-Visit metric values
set to zero. (Computational imbalance heuristic metrics are also voided as these would
otherwise be inconsistent.)

An example of the output is presented below.

user@host: cube3_part -R 2,3,5,7,11,13 -0 primes.cube input.cube
+H++++++++++ Part operation begins +H+++ttttttttttttt bbbttt
Reading input.cube ... done.

++++++++++++ Part operation ends successfully ++++++++++++++++
Writing primes.cube ... done.

Usage: cube3_part [-h] [-I] [-R ranks] [-0 output] input.cube
-l Inverse sense of partition

-R List of process ranks for partition (e.g., "0-3,7,13-")

-0 Name of the output file (default: part.cube|.gz)

-h Help; Show this brief help message and exit.

35

Chapter 1. Cube 3.4 User Guide

1.4.8 Remap

The Scalasca toolset initially creates CUBE files containing data for only a limited num-
ber of performance metrics. The full hierarchy of performance metrics is then created
during post-processing using the cube3_remap tool. Typically, it is automatically called
by the scalasca -examine command, but can also be executed manually.

Usage: cube3_remap [-0 output] [-h] cube
-0 Name of the output file (default: remap.cube|.gz)
-h Help; Output a brief help message.

1.4.9 Score

Classifies program regions by type and generates aggregated data for them. In addition,
the cube3_score tool can be used to estimate trace buffer requirements based on a given
CUBE file, typically from a previous summary experiment.

Regions are classified into the categories ANY (aggregate of all regions), MPI (pure
MPI functions), OMP (pure OpenMP functions/regions), USR (pure user regions not
containing MPI or OpenMP) and COM (’combined” user regions calling MPI/OpenMP,
directly or indirectly).

The metric(s) to be displayed can be specified via a command line option. The default
is to calculate teh absolute value as well as the percentage of the total time, and the
maximum trace buffer requirements across all processes. Metrics can be any of those
defined in the CUBE file, or two special metrics:

1. The total_tbc metric provides an estimate of total size of trace data (in bytes),
aggregated across all processes.

2. The max_tbc metric provides an estimate for the trace buffer capacity (in bytes)
that is required to store all events that would be generated by a single process.

If an unknown metric name is given, a list of metrics available in the input file is given.

An example of the output is presented below.

user@host: ./cube3_score experiment.cube

Reading experiment.cube... done.
Estimated aggregate size of event trace (total_tbc): 5775744 bytes
Estimated size of largest process trace (max_tbc): 1444008 bytes

(When tracing set ELG_BUFFER_SIZE larger than this to avoid intermediate flushes
or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
ANY 1444008 143.20 100.00 (summary) ALL
MPI 960072 62.53 43.67 (summary) MPI
USR 3048 3.48 2.43 (summary) USR
COM 480888 77.19 53.90 (summary) COM

36

1.4. Performance Algebra and Tools

Usage: cube3_score [-r] [-f filename] [-m metric[, metric ...] cube
-r Print metrics for each region

-f File containing names of regions to filter

-m List of metrics that should be displayed (default: max_tbc, time)
-s Sort by region names (rather than first metric)

-h Help; Output a brief help message.

1.4.10 Statistics

Extracts statistical information from the CUBE files.

user@host: ./cube3_stat -m time,mpi -p remapped.cube -%

MetricRoutine Count Sum Mean Variance Minimum

time INCL (MAIN_) 4 143.199101 35.799775 0.001783 35.759769
time EXCL(MAIN_) 4 0.078037 0.019509 0.000441 0.001156
time task_init_ 4 0.568882 0.142221 0.001802 0.102174
time read_input_ 4 0.101781 0.025445 0.000622 0.000703
time decomp_ 4 0.000005 0.000001 0.000000 0.000001
time inner_auto_ 4 142.361593 35.590398 0.000609 35.566589
time task_end_ 4 0.088803 0.022201 0.000473 0.000468

mpi INCL(MAIN_) 4 62.530811 15.632703 2.190396 13.607989
mpi EXCL(MAIN_) 4 0.000000 0.000000 0.000000 0.000000
mpi task_init_ 4 0.304931 0.076233 0.001438 0.040472
mpi read_input_ 4 0.101017 0.025254 0.000633 0.000034
mpi decomp_ 4 0.000000 0.000000 0.000000 0.000000
pi inner_auto_ 4 62.037503 15.509376 2.194255 13.478049
mpi task_end_ 4 0.087360 0.021840 0.000473 0.000108

user@host: ./cube3_stat -t33 remapped.cube -p -m time,mpi,visits

Region NumberOfCalls ExclusiveTime InclusiveTime time

sweep_ 48 76.438435 130.972847 76.438435
MPI_Recv 39936 36.632249 36.632249 36.632249
MPI_Send 39936 17.684986 17.684986 17.684986
MPI_Allreduce 128 7.383530 7.383530 7.383530
source_ 48 3.059890 3.059890 3.059890
MPI_Barrier 12 0.382902 0.382902 0.382902
flux_err_ 48 0.380047 1.754759 0.380047
TRACING 8 0.251017 0.251017 0.251017
MPI_Bcast 16 0.189381 0.189381 0.189381
MPI_Init 4 0.170402 0.419989 0.170402
snd_real_ 39936 0.139266 17.824251 0.139266
MPI_Finalize 4 0.087360 0.088790 0.087360
initialize_ 4 0.084858 0.168192 0.084858
initxs_ 4 0.083242 0.083242 0.083242
MAIN___ 4 0.078037 143.199101 0.078037
rcv_real 39936 0.077341 36.709590 0.077341

0.
36.
17.
.383530
.000000
.382902
.000000
.000000
.189381
.170402
.000000
.087360
.000000
.000000
.000000
.000000

eNeolNeolNeoNoNoNoNoNoNoNoNe N

Max
35.
0.
0.
0.

mpi

000000
632249
684986

imum

839160
037711
181852
051980

.000002
.612125
.043699

.162466
.000000
.113223
.051952
.000000
.031288
.043333

visits
48
39936
39936
128
48
12
48

16

37

Chapter 1. Cube 3.4 User Guide

inner_ 4 0.034985 142.337220 0.034985 0.000000
inner_auto_ 4 0.024373 142.361593 0.024373 0.000000
task_init_ 4 0.014327 0.568882 0.014327 0.000000
read_input_ 4 0.000716 0.101781 0.000716 0.000000
octant_ 416 0.000581 0.000581 0.000581 0.000000
global_real max_ 48 0.000441 1.374712 0.000441 0.000000
global_int_sum_ 48 0.000298 5.978850 0.000298 0.000000
global_real_ sum_ 32 0.000108 0.030815 0.000108 0.000000
barrier_sync_ 12 0.000105 0.383007 0.000105 0.000000
bcast_int_ 12 0.000068 0.189395 0.000068 0.000000
timers 2 0.000044 0.000044 0.000044 0.000000
initgeom_ 4 0.000042 0.000042 0.000042 0.000000
initsnc_ 4 0.000038 0.000050 0.000038 0.000000
task_end_ 4 0.000013 0.088803 0.000013 0.000000
bcast_real_ 4 0.000010 0.000065 0.000010 0.000000
decomp_ 4 0.000005 0.000005 0.000005 0.000000
timers_ 2 0.000004 0.000048 0.000004 0.000000

Usage: cube3_stat [-h] [-p] [-m metric[,metric...]] [-%] [-r routine[,routine...]] cubefile
OR
cube3_stat [-h] [-p] [-m metric[,metric...]] -t topN cubefile

-h Display this help message

-p Pretty-print statistics (instead of CSV output)

-% Provide statistics about process/thread metric values

-m List of metrics (default: time)

-r List of routines (default: main)

-t Number for topN regions flat profile

1.4.11 Conversion from TAU profile format to CUBE3

Converts a profile generated by the TAU Performance System [| 1] into the CUBE format.
Currently, only 1-level, 2-level and full call-path profiles are supported.

Usage: tau2cube [tau-profile-dir |[-o0 cube]

1.4.12 Topology Assistant

Topology assistant is a tool to handle topologies in CUBE files. It is able to add or edit a
topology.

Usage: cube3_topoassist {OPTION} cubefile

The current available options are:

38

[S e

416
48
48
32
12
12

N DD

1.4. Performance Algebra and Tools

* To create a new topology in an existing CUBE file,
* To [reJname an existing virtual topology, and

* To [re]name the dimensions of a virtual topology.

The command-line switches for this utility are:
-c: creates a new topology in a given CUBE file.

-n: displays a numbered list of the existing topologies in the given CUBE file, and lets
the user choose one to be named or renamed.

-d: displays the existing topologies, and lets the user name the dimensions of one of
them.

The resulting CUBE file is named topo.cube[.gz], in the current directory.

As mentioned above, when using the -d or -n command-line options, a numbered list of
the current topologies will appear, showing the topology names, their dimension names
(when existing), and the number of coordinates in each dimension, as well as the total
number of threads. This is an example of the usage:

$ cube3_topoassist -n topo.cube.gz

Reading topo.cube.gz . Please wait... Done.

Processes are ordered by rank. For more information about this file,
use cube3_info -S <cube experiment>

This CUBE has 3 topologie(s).
0. <Unnamed topology>, 3 dimensions: x: 3, y: 1, z: 4. Total = 12 threads.
1. Test topology, 1 dimensions: dim_x: 12. Total = 12 threads.

2. <Unnamed topology>, 3 dimensions: 3, 1, 4. Total = 12 threads. <Dimensions are not named>

Topology to [re]lname?

1

New name:

Hardware topology

Topology successfully [re]lnamed.

Writing topo.cube.gz ... done.

The process is similar for [reJnaming dimensions within a topology. One characteristic
1s that either all dimensions are named, or none.

One could easily create a script to generate the coordinates according to some algo-
rithm/equation, and feed this to the assistant as an input. The only requirement is to
answer the questions in the order they appear, and after that, feed the coordinates. Coor-
dinates are asked for in rank order, and inside every rank, in thread order.

The sequence of questions made by the assistant when creating a new topology (the -c
switch) is:

39

Chapter 1. Cube 3.4 User Guide

* New topology’s name

* Number of dimensions

e Will the above dimensions be named? (Y/N)

* If yes, asks the name. Empty is not valid.

* Number of coordinates in that dimension

* Asks if this dimension is either periodic or not (Y/N)
» Repeat the previous three steps for every dimension

 After that, it expects the coordinates for each thread in this topology, separated by
spaces, in the order described above.

This is a sample session of the assistant:

$ cube3_topoassist -c experiment.cube.gz
Reading experiment.cube.gz. Please wait... Done.
Processes are ordered by rank. For more information about this file, use cube3_info -S <cube experi

So far, only cartesian topologies are accepted.
Name for new topology?

Test topology

Number of Dimensions?

3

Do you want to name the dimensions (axis) of this topology? (Y/N)
Y

Name for dimension 0

torque

Number of elements for dimension 0
2000

Is dimension 0 periodic?

Y

Name for dimension 1

rotation

Number of elements for dimension 1
1500

Is dimension 1 periodic?

n

Name for dimension 2

period

Number of elements for dimension 2

50

Is dimension 2 periodic?

n

Alert: The number of possible coordinates (150000000) is bigger than the number of threads
on the specified cube file (12). Some positions will stay empty.
Topology on THREAD level.

Thread 0's (rank 0) coordinates in 3 dimensions, separated by spaces
000

001
002

40

1.4. Performance Algebra and Tools

Writing topo.cube.gz ... done.

$

So, a possible input file for this cube experiment could be:

Test topology
3

y

torque
2000

Y
rotation
1500

n

period
50

n
0
0
0

- O O O
—_ N - o

the remaining coordinates)

And then call the topology assistant:

$ cube3_topoassist -c cubefile.cube < input.txt

41

Chapter 1. Cube 3.4 User Guide

42

Chapter 2. CUBE3 API

2 CUBE3 API

2.1 Creating CUBE Files

The CUBE data format in an XML instance[| 0]. The CUBE library provides an interface
to create CUBE files. It is a simple class interface and includes only a few methods.
This section first describes the CUBE API and then presents a simple C++ program as an
example of how to use it.

2.1.1 CUBE API

The class interface defines a class Cube. The class provides a default constructor and
fourty methods. The methods are divided into four groups. The first three groups are
used to define the three dimensions of the performance space and the last group is used
to enter the actual data. In addition, an output operator << to write the data to a file is
provided.

2.1.1.1 Metric Dimension

This group refers to the metric dimension of the performance space. It consists of a single
method used to build metric trees. Each node in the metric tree represents a performance
metric. Metrics have different units of measurement. The unit can be either “sec” (i.e.,
seconds) for time based metrics, such as execution time, or “occ” (i.e., occurrences) for
event-based metrics, such as floating-point operations. During the establishment of a
metric tree, a child metric is usually more specific than its parent, and both of them have
the same unit of measurement. Thus, a child performance metric has to be a subset of its
parent metric (e.g., system time is a subset of execution time).

Metric* def_met (const std::string &disp_name, const std::string &uniq_name,
const std::string &dtype, const std::string &uom,
const std::string &val, const std::string &url,
const std::string &descr, Metric* parent);}

Returns a metric with display name disp_name, unique name uniq_name and descrip-
tion descr.

dtype specifies the data type, which can either be “INTEGER” or “FLOAT”.

43

Chapter 2. CUBE3 API

uom is the unit of measurement, which is either “sec” for seconds or “occ” for number
of occurrences.

val specifies whether there is any data available for this particular metric. It can either
be “VOID” (no data available, metric will not be shown in CUBE) or an empty
string (metric will be shown and data is present).

parent isapreviously created metric which will be the new metric’s parent. To define
a root node, use NULL instead.

url isalink to an HTML page describing the new metric in detail. If you want to mirror
the page at several locations, you can use the macro @ as a prefix, which will be
replaced by an available mirror defined using def_mirror () (see Section ??).

const std::vector<Metric*>& get_metv() const;

Returns a vector with all metrics in the CUBE object.

const std::vector<Metric*>& get_root_metv () const;

Returns a vector with all roots of the metric dimension in the CUBE object.

Metric* get_met (const std::string& uniq_name) const;

Returns a metric with the given unig_name. Returns NULL if the CUBE object doesn’t
contain a metric with this name.

Metric* get_root_met(Metric * met);

Returns the root metric for the given metric met.

2.1.1.2 Program Dimension

This group refers to the program dimension of the performance space. The entities pre-
sented in this dimension are region, call site, and call-tree node (i.e., call paths). A region
can be a function, a loop, or a basic block. Each region can have multiple call sites from
which the control flow of the program enters a new region. Although we use the term
call site here, any place that causes the program to enter a new region can be represented
as a call site, including loop entries. Correspondingly, the region entered from a call site
is called callee, which might as well be a loop. Every call-tree node points to a call site.
The actual call path represented by a call-tree node can be derived by following all the
call sites starting at the root node and ending at the particular node of interest. The user
can choose among three ways of defining the program dimension:

1. Call tree with line numbers

44

2.1. Creating CUBE Files

2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes point to call sites. A
call tree without line numbers is defined as a tree whose nodes point to regions (i.e., the
callees). A flat profile is simply defined as a set of regions, that is, no tree has to be
defined.

Region* def_region
(const std::string &name, long begln, long endln,
const std::string &url, const std::string &descr,
const std::string &mod);

Returns a new region with region name name and description descr. The region is
located in the module mod and exists from line begln to line end1n.

url is alink to an HTML page describing the new region in detail. For example, if the
region is a library function, the url can point its documentation. If you want to
mirror the page at several locations, you can use the macro @mirror@ as a prefix,
which will be replaced by an available mirror defined using def_mirror () (see
Section ??).

Cnode* def_cnode
(Region* callee,
const std::string \&mod, int line,
Cnode* parent);

Returns a new call-tree node representing a call from call site located at the line 1ine
of the module mod. The call tree node calls the callee callee (i.e., a previously defined
region). parent is a previously created call-tree node which will be the new one’s parent.
To define a root node, use NULL instead. This method is used to create a call tree with
line numbers.

Cnode* def_cnode
(Region* region,
Cnode* parent);

Defines a new call-tree node representing a call to the region region. parent is a pre-
viously created call-tree node which will be the new one’s parent. To define a root node,
use NULL instead. Note that different from the previous def_cnode (), this method is
used to create a call-tree without line numbers where each call-tree node points to a
region.

To define a call tree with line numbers use def_cnode (Region%, string, int ...).
To define a call tree without line numbers use def_cnode (Regionk, Cnodex) instead.
To create a flat profile use neither one --- just defining a set of regions will be sufficient.

45

Chapter 2. CUBE3 API

const std::vector<Region*>& get_regv() const;

Returns a vector with all regions in the CUBE object.

const std::vector<Cnode*>& get_cnodev() const;

Returns a vector with all call-tree nodes in the CUBE object.

Cnode* get_cnode (Cnode & cn) const;

Search a call-tree node cn. Returns NULL if the CUBE object does not contain the given
call-tree node.

2.1.1.3 System Dimension

This group refers to the system dimension of the performance space. It reflects the system
resources which the program is using at runtime. The entities present in this dimension
are machine, node, process, thread, which populate four levels of the system hierarchy
in the given order. That is, the first level consists of machines, the second level of nodes,
and so on. Finally, the last (i.e., leaf) level is populated only by threads. The system tree
is built in a top-down way starting with a machine. Note that even if every process has
only one thread, users still need to define the thread level.

Machine* def_mach (const std::string &name, const std::string &desc);

Returns a new machine with the name name and description desc.

Node* def_node (const std::string &name, Machine* mach);

Returns a new (SMP) node which has the name name and which belongs to the machine
mach.

Process* def_proc
(const std::string &name, int rank,
Node* node) ;

Returns a new process which has the name name and the rank rank. The rank is a number
from 0 to (n — 1), where n is the total number of processes. MPI applications may use
the rank in MPI_COMM_WORLD. The process runs on the node node.

Thread* def_thrd
(cosnt std::string name&, int rank,
~Process* proc);

46

2.1. Creating CUBE Files

Defines a new thread which has the name name and the rank rank. The rank is a number
from O to (n — 1), where n is the total number of threads spawned by a process. Open
MP applications may use the Open MP thread number. The thread belongs to the process
proc.

const std::vector<Sysres*>& get_sysv () const;

Returns a vector with all system resources (e.g. node, thread, process) available in the
CUBE object.

const std::vector<Machine*>& get_machv() const;

Returns a vector with all machines in the CUBE object.

const std::vector<Node*>& get_nodev () const;

Returns a vector with all nodes of all machines in the CUBE object.

const std::vector<Process*>& get_procv() const;

Returns a vector with all processes in the CUBE object.

const std::vector<Thread*>& get_thrdv() const;

Returns a vector with all threads in the CUBE object.

Machine * get_mach(Machine & mach) const;

Search for the machine mach in the CUBE object. Returns NULL if the CUBE object does
not contain the given machine.

Node *get_node (Node & node) const;

Search for the node node in the CUBE object. Returns NULL if the CUBE object does
not contain the given node.

47

Chapter 2. CUBE3 API

2.1.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relationships among machines, SMP
nodes, processes or threads. A topology usually consists of a single class of entities such
as threads or processes. The CUBE API provides a set of functions to create Cartesian
topologies and to define the machine/ SMP node/process/thread mappings onto coordi-
nates. Note that the definition of virtual topologies is optional.

Cartesian* def_cart
(long ndims, const std::vector<long>& dimv,
const std::vector<bool>& periodv);

Defines a new Cartesian topology. ndims and dimv specify the number of dimensions
and the size of each dimension. periodv specifies the periodicity for each dimension.
Currently,the maximum value for ndims is three.

void def_coords
(Cartesian* cart, Sysres* sys,
const std::vector<long>& coordv);

Maps a specific system resource onto a Cartesian coordinate. The system resource sys
may be a machine, SMP node, process or a thread. It is not recommended to map a
mixed set of entities onto one topology (e.g., machines and threads located in the same
topology). The parameter of cart has been defined by the above def_cart () method.

void Cartesian*->set_name (const std::string&);

Names a given virtual topology inside the cube object.
const std::string& Cartesian*->get_name();

Returns a topology’s name.

bool Cartesian*->set_namedims (std::vector<std::string>);

Labels the dimensions (the axis labels) of one Cartesian topology. Although different
topologies of the same CUBE object can have or not dimension names, inside one specific
topology, either all of them have or none.

const std::vector<std::string>& Cartesian*->get_namedims ()

Returns a vector of strings with the given topology’s dimensions. If there is none, it
returns a zero-sized vector.

48

2.1. Creating CUBE Files

const std::vector<Cartesian *>& get_cartv () const;

Returns a vector of all cartesian topologies available in the CUBE object.

const Cartesian * get_cart (int i) const;

Returns in i-th topology in the CUBE object.

2.1.1.5 Severity Mapping

After the establishment of the performance space, users can assign severity values to
points of the space. Each point is identified by a tuple (met, cnode, thrd) . The value
should be inclusive with respect to the metric, but exclusive with respect to the call-tree
node, that is it should not cover its children. The default severity value for the data points
left undefined is zero. Thus, users only need to define non-zero data points.

void set_sev
(Metric* met, Cnode* cnode,
Thread* thrd, double value);

Assigns the value value to the point (met, cnode, thrd).

void add_sev
(Metric* met, Cnode* cnode,
Thread* thrd, double value);

Adds the value value to the present value at point (met, cnode, thrd).

The previous two methods set_sev () and add_sev () are intended to be used when the
program dimension contains a call tree and not a flat profile. As the flat profile does
not require the definition of call-tree nodes, the following two functions should be used
instead:

void set_sev

(Metric* met, Region* region,
Thread* thrd, double value);

Assigns the value value to the point (met, region, thrd).
void add_sev

(Metric* met, Region* region,
Thread* thrd, double value);

Adds the value value to the present value at point (met, region, thrd).

double get_sev (Metric * met, Cnode * cnode, Thread * thrd) const;

Returns the value for the point (met, cnode, thrd).

49

Chapter 2. CUBE3 API

2.1.1.6 Miscellaneous

Often users may want to define some information related to the CUBE file itself, such
as the creation date, experiment platform, and so on. For this purpose, CUBE allows
the definition of arbitrary attributes in every CUBE data set. An attribute is simply a
key-value pair and can be defined using the following method:

void def_attr (const std::string &key, const std::tring &value);

Assigns the value value to the attribute key.

CUBE allows using multiple mirrors for the online documentation associated with met-
rics and regions. The url expression supplied as an argument for def_metric () and
def_region() can contain a prefix @mirror@. When the online documentation is ac-
cessed, CUBE can substitute all mirrors defined for the prefix until a valid one has been
found. If no valid online mirror can be found, CUBE will substitute the . /doc directory
of the installation path for @mirror(@.

void def_mirror (const std::string &mirror);

Defines the mirror mirror as potential substitution for the URL prefix @mirror@.

std::string get_attr(const std::string &key) const;

Returns the attribute in the CUBE object stored for the given key.

const std::map<std::string, std::string> get_attrs() const;

Returns all attributes associated to the CUBE object as a map.

const std::vector<std::string>& get_mirrors() const;

Returns all mirrors defined in the CUBE object.

int get_num_thrd() const;

Returns the maximal number of threads per process in the CUBE object.

50

2.1. Creating CUBE Files

2.1.1.7 Writer Library in C

In order to create data files, another possibility is to use the C version of the CUBE writer
API. The interface defines a struct cube_t and provides the following functions:

cube_t* cube_create();

Returns a new CUBE structure.

void cube_free (cube_t* c);

Destroys the given CUBE structure.

cube_metric* cube_def_met
(cube_t* ¢, const char* disp_name,
const char* uniqg name, const char* dtype,
const char* uom, const char* val,
const char* url, const char* descr,
cube_metric* parent);

Returns a new metric structure.

cube_region* cube_def_region
(cube_t* c, const char* name, long begln,
long endln, ~const char* url,
const char* descr, const char* mod);

Returns a new region.

cube_cnode* cube_def_cnode_cs
(cube_t* ¢, cube_region* callee,
const char* mod, int line,
cube_cnode* parent);

Returns a new call-tree node structure with line numbers.

cube_cnode* cube_def_cnode
(cube_t* ¢, cube_region* callee,
cube_cnode* parent);

Returns a new call-tree node structure without line numbers.

cube_machine* cube_def mach
(cube_t* c, const char* name
const char* desc);

51

Chapter 2. CUBE3 API

Returns a new machine.

cube_node* cube_def_node
(cube_t* ¢, const char* name,
cube_machine* mach);

Returns a new node.

cube_process* cube_def_proc
(cube_t* ¢, const char* name,
int rank, cube_node* node);

Returns a new process.

cube_thread* cube_def_thrd
(cube_t* ¢, const char* name,
int rank, cube_process* proc);

Returns a new thread.

cube_cartesian* cube_def_cart
(cube_t* ¢, long ndims,
long int* dimv, int* periodv);

Defines a new Cartesian topology.

void cube_def coords
(cube_t* ¢, cube_cartesian* cart,
cube_thread* thrd, long int* coord);

Maps a thread onto a Cartesian coordinate.

void cube_set_sev
(cube_t* ¢, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Assigns the severity value to the point (met, cnode, thrd). Can only be used after
metric, cnode and thread definitions are complete. Note that you can only use either the
region or the cnode form of these calls, but not both at the same time.

double cube_get_sev
(cube_t* ¢, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd);

52

2.1. Creating CUBE Files

Returns the severity of the point (met, cnode, thrd).

void cube_set_sev_reg
(cube_t* ¢, cube_metric* met, cube_region* reg,
cube_thread* thrd, double value);

Assigns the severity value to the point (met, reg, thrd). Can only be used after metric,
regino and thread definitions are complete. Note that you can only use either the region
or the cnode form of these calls, but not both at the same time.

void cube_add_sev
(cube_t* ¢, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Adds the severity value to the present value at point (met, cnode, thrd). Can only be
used after metric, cnode and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube_add_sev_reg
(cube_t* c, cube_metric* met, cube_region* reg,
cube_thread* thrd, double value);

Adds the severity value to the present value at point (met, reg, thrd). Can only be
used after metric, region and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube_write_all
(cube_t* c, FILE* fp);

Writes the entire CUBE data to the given file. This basically corresponds to calling
cube_write def () and cube_write sev_matrix().

void cube_write_def
(cube_t* c, FILE* fp);

Writes the definitions part of the CUBE data to the given file. Should only be used after
definitions are complete.

void cube_write_sev_matrix
(cube_t* ¢, FILE* fp);

Writes the severity values part of the CUBE data to the given file. Should only be used
after severity values are completely set. Unset values default to zero.

53

Chapter 2. CUBE3 API

void cube_write_sev_row
(cube_t* ¢, FILE* fp,
cube_metric* met,
cube_cnode* cnode,
double* sevs);

Writes the given severity values of (met, cnode) for all threads to the given file. This
can be used instead of cube_write_sev_matrix () to incrementally write parts of the
severity matrix.

void cube_write_finish
(cube_t* ¢, FILE* fp);

Writes the end tags to a file. Must be called at the very end before closing the file, but
only when incrementally writing the severity matrix using cube_write_sev_matrix().
When using cube_write_sev_matrix () to write the severity matrix in one chunk, call-
ing this function is not needed.

2.1.2 Typical Usage

A simple C++ program is given to demonstrate how to use the CUBE write interface.
Example below shows the corresponding CUBE display. The source code of the target
application is provided below.

1 void foo() {

10 }

11 void bar() {

20 }

21 int main(int argc, char* argv) {
60 foo();

80 bar () ;

100 }

// A C++ example using CUBE write interface
#include <cube3/Cube.h>

#include <string>

#include <fstream>

using namespace std;
using namespace cube;

int main(int argc, char* argv[]) {

54

2.1. Creating CUBE Files

Cube cube;

// Specify mirrors (optional)
cube.def_mirror ("http://icl.cs.utk.edu/software/kojak/");

// Specify information related to the file (optional)
cube.def_attr("experiment time", "September 27th, 2006");
cube.def_attr("description", "a simple example");

// Build metric tree
Metric* met(0 = cube.def_met ("Time", "Time", "FLOAT", "sec", "",
"@mirror@patterns-2.1.html#execution",
"root node", NULL); // using mirror
Metric* metl = cube.def_met ("User time", "User Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/usr.html",

"2nd level", met0); // without using mirror
cube.def_met ("System time", "System Time", "FLOAT", "sec",
"http://www.cs.utk.edu/sys.html",

"2nd level", met0O); // without using mirror

Metric* met2

// Build call tree

string mod = "/ICL/CUBE/example.c";
Region* regn0 = cube.def_region("main", 21, 100, "", "lst level", mod);
Region* regnl = cube.def_region("foo", 1, 10, "", "2nd level", mod);

Region* regn2 cube.def_region("bar", 11, 20, "", "2nd level", mod);

Cnode* cnode0 cube.def_cnode (regnl, mod, 21, NULL);
Cnode* cnodel = cube.def_cnode(regnl, mod, 60, cnode0);
Cnode* cnode?2 cube.def_cnode(regn2, mod, 80, cnode0);

// Builld system resource tree

Machine* mach = cube.def_mach("MSC", "");

Node* node = cube.def_node("Athena", mach);
Process* proc0 cube.def_proc("Process 0", 0, node)
Process* procl cube.def_proc("Process 1", 1, node);
Thread* thrd0 = cube.def_thrd("Thread 0", 0, procO);
Thread* thrdl cube.def_thrd("Thread 1", 1, procl);

r

// Build 2D Cartesian a topology (a 5x5 grid)

std::vector<std::string> namedims;
namedims.push_back ("Dimension X");

nn
r

namedims.push_back ("Dimension Y"); // comment this and no names will be rec

orded. The vector must have the

// exact number of dimensions present in the

current topology.

// namedims.push_back ("third"); // uncomment this and no names at all will be

recorded

int ndims = 2;
vector<long> dimv;

55

Chapter 2. CUBE3 API

vector<bool> periodv;
for (int 1 = 0; 1 < ndims; i++) {
dimv.push_back (5);
if (1 % 2 ==0)
periodv.push_back (true);
else
periodv.push_back (false);
}
Cartesian* cart = cube.def_cart (ndims, dimv, periodv);
cart->set_name ("Bi-dimensional topology");
cart->set_namedims (namedims) ;
vector<long> coord0, coordl;
coord0.push_back (0);
coord(.push_back (0);
coordl.push_back (3);
coordl.push_back (3);
// map the two threads onto the above 2 coordinates
cube.def_coords (cart, thrd0, coord0);
cube.def_coords (cart, thrdl, coordl);

// Severity mapping
cube.set_sev(met0, cnodel, thrdo0,
cube.set_sev(met0, cnode0, thrdl,
cube.set_sev(met0, cnodel, thrdo0,
cube.set_sev(met0, cnodel, thrdl,
cube.set_sev(met0, cnode2, thrdo0,
cube.set_sev(met0, cnode2, thrdl,
cube.set_sev(metl, cnodel, thrdo0,
cube.set_sev(metl, cnode0O, thrdl,
cube.set_sev(metl, cnodel, thrd0,
cube.set_sev(metl, cnodel, thrdl,

(

(

(

(

(

(

(

(

N+ Ne Ne Ne Ne Ne o~

o~

~.

cube.set_sev(metl, cnode2, thrdO0,
cube.set_sev(metl, cnode2, thrdl,
cube.set_sev(met2, cnodel, thrdo0,
cube.set_sev(met2, cnodel, thrdl,
cube.set_sev(met2, cnodel, thrd0,
cube.set_sev(met2, cnodel, thrdl,
cube.set_sev(met2, cnode2, thrd0,
cube.set_sev(met2, cnode2, thrdl,

Ne Ne Ne Ne N o~

~.

[N O T = T = T T W e S S S S ST~ T~ ST N
~

~.

// Output to a cube file
ofstream out;

out.open ("example.cube");
out << cube;

56

2.1. Creating CUBE Files

Cube 3.0 QT: cube_filesfexample.cube

.@@@]@]@] X-r0t1[300 Elerot(z0 oz [~
)

[Absolute |v] [Absolute |v] [Absolute
hgtric: tree l Calltree l Flat view] Systern tree l Topalogy O]
B 12,00 Time - B [.00 main B O-MsC -

500 Usertime [4.00 foo |J;'H:|—Athena
400 har [200 Frocess 0
200 Process 1

[&.00 System time

-

-

S
| I C0 CY [I 1 O | B (1)
00000 40000 (333333%) 12.0000] [0.0000 2.0000 GO.0000%) 4.0000

0.0000 12,0000 (50.0000%) 24.0000

Figure 2.1: Display of example.cube

Chapter 2. CUBE3 API

58

Bibliography

Bibliography

[1]

[10]

[11]

Message Passing Interface Forum: MPI: A Message Passing Interface Standard,
June, 1995, http://www.mpi-forum.org 1

OpenMP Architecture Review Board: OpenMP Fortran Application Program In-
terface --- Version 2.5, May,2000 http://www.openmp.org 1

K. L. Karavanic and B.Miller, A Framework for Multi-Execution Performance Tun-
ing, Parallel and Distributed Computing Practices, 4(3), 2001, September 2

F.Song and FWolf and N.Bhatia and J.Dongarra and S.Moore, An Algebra for
Cross-Experiment Performance Analysis, Proc. of ICPP 2004, 63-72, 2004, Augh-
ust, Montreal, Canada 2

F.Wolf and B.Mohr and J.Dongarra and S.Moore, Efficient Pattern Search in Large
Traces through Successive Refinement, Proc. of the European Conference on Par-
alle] Computing (Euro-Par), August - September, 2004 Lecture Notes in Computer
Science, Springer,Pisa, Italy,

J.Labarta and S.Girona and V.Pillet and T.Cortes and L.Gregoris, DiP: A Parallel
Program Development Environment, Proc. of the 2nd International Euro-Par Con-
ference, Springer, 665-674 Lyon, France, August, 1996 26

Barcelona Supercomputing Center, Paraver: Obtain De-
tailed Information from Raw Performance Traces,Oct,2008,
http://www.bsc.es/plantillaA.php?cat_1id=485 26

H.Brunst and W.E.Nagel, Scalable Performance Analysis of Parallel Systems: Con-
cepts and Experiences Proc. of the Parallel Computing Conference (ParCo), 2003,
Dresden, Germany 26

Technical University Dresden, Vampir - Performance Optimization, Oct, 2008
http://vampir.eu/ 26

World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (Second
Edition), October, 2000 http://www.w3.0rg/TR/REC-xml 43

Sameer S. Shende and Allen D. Malony, The TAU Parallel Performance System,
International Journal of High Performance Computing Applications,20(2), 287--
331 SAGE Publications, Summer, 2006 38

59

http://www.mpi-forum.org
http://www.openmp.org
http://www.bsc.es/plantillaA.php?cat_id=485
http://vampir.eu/
http://www.w3.org/TR/REC-xml

Bibliography

60

Chapter 3. Appendix

3 Appendix

3.1 File format of statistics files

Statistic files (for an example see Figure 3.1) are simply text files which contain the
necessary data. The first line is always ignored but should look similar to that in the
example as it simplifies the understanding for the human reader. All values in a statistic
file are simply separated by an arbitrary number of spaces.

PatternName Count Mean Median Minimum Maximum Sum Variance Quartil25 Quartil75
mpi_latebroadcast 4 0.010 0.000031 0.000004 0.042856 0.042 0.000459
- cnode: 5 enter: 0.245877 exit: 0.256608 duration: 0.042856 rank: 3

mpi_barrier_wait 20 0.018 0.006477 0.000002 0.065293 0.369 0.000698 0.000040 0.047409
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000100 rank: 2
- cnode: 12 enter: 0.326120 exit: 0.335651 duration: 0.065293 rank: 1

mpi_barrier_completion 20 0.000 0.000005 0.000002 0.000018 0.000 0.000000 0.000003 0.000009
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000009 rank: 0
- cnode: 12 enter: 0.159321 exit: 0.165005 duration: 0.000018 rank: 3

omp_ibarrier_wait 144 0.001 0.000027 0.000001 0.028451 0.212 0.000028 0.000002 0.000437
- cnode: 11 enter: 0.297292 exit: 0.297316 duration: 0.000057 rank: 2
- cnode: 10 enter: 0.322577 exit: 0.332093 duration: 0.028451 rank: 0

Figure 3.1: An example of a statistic file

For each pattern there is a line which contains at least its unique name and count of how
many instances of the pattern exist (as an integer). If more values are provided, there
have to be the mean value, median, minimum and maximum as well as the sum (all as
floating point numbers in arbitrary format). If one of these values is provided, all have
to. The next optional value is the variance (also as a floating point number). The last
two optional values of which both or none have to be provided are the 25% and the 75%
quantile, also as floating point numbers.

If any of these values is omitted, all following values have to be omitted, too. If for ex-
ample the variance is not provided, the lower and the upper quartile must not be provided
either.

61

Chapter 3. Appendix

In the subsequent lines (there can be an arbitrary number), the information of the most
severe instances is provided. Each of these lines has to begin with the text ‘- cnode’
followed by the (integer) identifier of this cnode in the CUBE file, and then ‘enter:’,
‘exit’ and ‘duration:’ each with floating-point numbers for the respective times (in
seconds), and then ‘rank:’ with the (integer) process rank.

The beginning of the next pattern is indicated by a blank line.

62

scalasca (¥

(L) o
’J J ULI C H G for Siltion Selences www.scalasca.org

FORSCHUNGSZENTRUM

	Cube 3.4 User Guide
	Abstract
	Introduction
	Using the GUI
	Performance Algebra and Tools

	CUBE3 API
	Creating CUBE Files

	Bibliography
	Appendix
	File format of statistics files

