
Characterizing Load and Communication Imbalance
in Large-Scale Parallel Applications

David Böhme, Felix Wolf
German Research School for Simulation Sciences

RWTH Aachen University, 52062 Aachen, Germany
Email: {d.boehme,f.wolf}@grs-sim.de

Markus Geimer
Jülich Supercomputing Centre

52425 Jülich, Germany
Email: m.geimer@fz-juelich.de

Abstract—Load or communication imbalance prevents many
codes from taking advantage of the parallelism available on
modern supercomputers. We present two scalable methods to
highlight imbalance in parallel programs: The first method iden-
tifies delays that inflict wait states at subsequent synchronization
points, and attributes their costs in terms of resource waste to
the original cause. The second method combines knowledge of
the critical path with traditional parallel profiles to derive a set
of compact performance indicators that help answer a variety
of important performance-analysis questions, such as identifying
load imbalance, quantifying the impact of imbalance on runtime,
and characterizing resource consumption. Both methods employ
a highly scalable parallel replay of event traces, making them a
suitable analysis instrument for massively parallel MPI programs
with tens of thousands of processes.

David Böhme is in his 4th year of pursuing a Ph.D.
degree at RWTH Aachen University, Germany. His advisor
is Prof. Dr. Felix Wolf; co-advisor is Dr. Markus Geimer.

I. INTRODUCTION

Rising numbers of cores per socket in combination with an
architecture ecosystem characterized by increasing diversifica-
tion and heterogeneity continue to complicate the development
of efficient parallel programs. Particularly load imbalance,
which frequently occurs during simulations of irregular and
dynamic domains – a typical scenario in many engineering
codes – presents a key challenge to achieving satisfactory
parallel efficiency. Typically, load imbalances manifest them-
selves in the form of wait states at the next synchronization
point following the imbalance, which allows a potentially
large temporal distance between the cause and its symptom.
Moreover, when complex point-to-point communication pat-
terns are employed, wait states may propagate across process
boundaries along far-reaching cause-effect chains that are hard
to track manually and that complicate the assessment of the
actual costs of an imbalance. These challenges creates a strong
need for effective performance analysis methods that highlight
load balancing issues that occur at larger scales. To be useful
to an application developer, these methods must not only be
scalable themselves but also require as little effort as possible
to interpret the results.

In the course of this thesis, we significantly extended the
capabilities of the Scalasca performance analysis toolset [1]
with two new methods that identify load imbalance and accu-
rately determine its performance impact in terms of runtime

and resource waste. In the past, Scalasca analyzed MPI and
hybrid MPI/OpenMP programs for MPI-related wait states.
Directly complementing this wait-state analysis, the new delay
analysis [2] characterizes load imbalance by its effect on wait
states: starting at the end of the causation chain, it maps the
costs of wait states onto the delays that originally caused
them. In addition, we developed a set of compact performance
indicators based on the detection of the critical path [3]
that intuitively guide the analysis of complex load-imbalance
phenomena. By replaying event-traces in parallel, Scalasca can
efficiently handle even large-scale processor configurations.

Being a fundamental property of parallel performance, load
imbalance has been adressed by various performance tools.
Many tools, e.g. [4], [5], [6], analyze imbalance based on per-
process profiles. While profile-based solutions are generally
lightweight and introduce little storage and run time overhead,
the aggregation of performance data over time hides dynamic
performance effects, such as the shift of load imbalance over
time. Trace-based solutions, such as Vampir [7], capture the
entire dynamic behavior, but often present performance data
in its entirety, forcing users to search for inefficiency patterns
manually. Carnival [8], a prior automatic solution to identify
root causes of wait states in event traces, used a serial approach
which does not scale. Our scalable, automatic performance
analysis approaches accurately determine the performance im-
pact of both static and dynamic imbalances, and guide devel-
opers directly to targets whose load or communication balance
optimization would have the highest benefit. Moreover, prior
solutions that specifically target imbalance only function for
SPMD (single-program multiple data) applications, whereas
our solutions apply equally well to both SPMD and MPMD
codes.

II. IDENTIFYING ROOT CAUSES OF WAIT STATES

Wait states, which are intervals through which a process
is idle while waiting for a delayed process, are a primary
symptom of load imbalance in parallel programs. The delay
analysis identifies the root causes of wait states and calculates
the costs of delays in terms of the waiting time that they
induce. Wait states can also delay subsequent communication
operations and produce further indirect wait states, adding to
the total costs of the original delay. However, while wait states
as symptoms of delay can be easily detected, the potentially



time

p
ro
ce
ss
es

1

2

3

comp

comp

comp

S1

S2R1

R2

Delay

Direct wait state

Short-term costs of

delay in comp on 1
Propagating wait state Delay

Indirect wait state Direct wait state

Long-term costs of

delay in comp on 1
Terminal wait state

Fig. 1. Time-line diagram showing the activities of three processes and their
interactions. The execution of a certain code region is displayed as a shaded
rectangle and the exchange of a message as an arrow pointing in the direction
of the transfer. Rank 1 delays rank 2 due to an imbalance in function comp(),
inducing a wait state in the receive operation R1 of rank 2. The wait state in
R1 subsequently delays process 3. Thus, the total costs of the delay on rank 1
correspond to the total amount of wait states caused by it directly (short-term
costs) or indirectly (long-term costs).

large temporal and spatial distance in between constitutes a
substantial challenge in deriving helpful conclusions from this
knowledge with respect to remediating the wait states. To
close this gap, the delay analysis contributes (1) a terminology
to describe the formation of wait states and a cost model
that allows delays to be ranked according to their associated
resource waste, and (2) a scalable algorithm that identifies
wait-state inducing delays and calculates their costs.

The time-line diagram in Figure 1 helps illustrate our wait-
state formation model. A wait state is an interval during
which a process sits idle. Wait states typically occur inside
a communication operation when a process is waiting to
synchronize with another process that has not yet reached
the synchronization point. Wait states can be classified in two
different ways, depending on the direction from where we start
analyzing the chain of causation that leads to their formation.
If we start from the cause, we can divide wait states into direct
and indirect wait states. A direct wait state is a wait state that
is caused by some “intentional” extra activity that does not
include waiting time itself, whereas an indirect wait state is
caused by a preceding wait state that propagated across the
process boundary. If we look at wait-state formation starting
from the effect, we can distinguish between wait states at the
end and those in the middle of the causation chain. A terminal
wait state is a wait state that does not propagate any further
and is, thus, positioned at the end of the causation chain. In
contrast, propagating wait states are those which cause further
wait states later on.

A delay is the original source of a wait state, that is,
an interval that causes a process to arrive belatedly at a
synchronization point, causing one or more other processes
to wait. Besides simple computational overload, delays may

(a) Computation (b) Waiting time (c) Delay costs

Fig. 2. Distribution of computation time, waiting time, and total delay costs
in Zeus-MP/2 across the 8x8x8 three-dimensional computational domain. Red
colors indicate high values.

include a variety of behaviors such as serial operations or
centralized coordination activities that are performed only by a
designated process. The costs of a delay are the total amount of
wait states it causes. Since the delay costs define a perspective
from the beginning of the causation chain, we believe that the
following refinement is most useful: Short-term costs cover the
direct wait states, whereas long-term costs cover the indirect
wait states. The total delay costs are simply the sum of the
two.

The result of the delay analysis is a mapping of the costs of a
delay onto the call paths and processes where the delay occurs,
offering a high degree of guidance in identifying promising
targets for load or communication balancing. Together with
the analysis of wait-state propagation effects, the delay costs
enable a precise understanding of the root causes and the
formation of wait states in parallel programs. By extending
Scalasca’s parallel trace replay approach with an additional
replay in backward direction, as described in Section IV, we
can detect delays and calculate their costs in a highly scalable
manner.

We applied the delay analysis to a variety of real-world
MPI programs. One example is the astrophysics code Zeus-
MP/2, where we studied the formation of wait states in
a simulation of a 3D blast wave over 100 time steps on
512 processes. Around 12.5% of the program’s total CPU
allocation time is waiting time. Scalasca’s report browser can
visualize the Cartesian process topology of a program, which
we use in Figure 2 to illustrate the relation between waiting
and delaying processes in terms of their position within the
computational domain. Obviously, there is a computational
load imbalance between the central and outer ranks of the
domain. Accordingly, the underloaded processes exhibit a
significant amount of waiting time (Figure 2(b)). Our analysis
shows that about 70% of the waiting time was indirectly
caused by wait-state propagation. Examining the delay costs
reveals that almost all the delay originates from the border
processes of the central, overloaded region (Figure 2(c)). The
distribution of the workload explains this observation: Within
the central and outer regions, the workload is relatively well
balanced. Therefore, communication within the same region



time

p
ro
ce
ss
es

1

2

3

A B C

A B C

A B C

Fig. 3. Time-line diagram of a parallel program run. Each rectangle represents
an activity. Arrows between processes denote communication; the hatched
areas inside communication activities represent wait states. The activities
highlighted in red are on the critical path.

is not significantly delayed. In contrast, the difference in
computation time between the central and outer region causes
wait states at synchronization points along the border, which
subsequently propagate towards the outer domain border.

By pinpointing one subroutine and three computational
loops with particularly high delay costs, the delay analysis
also helped isolating the imbalanced source-code regions that
lead to the wait states.

III. DETECTING IMBALANCE USING THE CRITICAL PATH

Our search for compact yet powerful means to uncover
load imbalance in parallel programs has also led us to revisit
the critical path as a key performance structure. Although
the power and expressiveness of the critical path has been
demonstrated in previous work (e.g. [9], [10], [11]), critical-
path techniques only play a minor role in current performance
analysis tools. This arises partly from the difficulty in isolating
the critical path, but also from the inability to extract intu-
itively accessible insight from the available information. Our
work addresses both issues. We leverage Scalasca’s parallel
trace replay technique to isolate the critical path in a highly
scalable way. Also, instead of exposing the lengthy critical-
path structure to the user in its entirety, we combine the
critical-path with per-process profiles to derive a set of com-
pact performance indicators, which provide intuitive guidance
about load-balance characteristics and quickly draw attention
to potentially inefficient code regions. The critical path pro-
vides an overview of the most time-consuming activities, but
does not capture important parallel performance characteristics
such as load balance by itself. Per-process profiles, on the
other hand, do not capture dynamic effects that characterize
a program’s execution. However, a combination of critical-
path and per-process profiles characterizes load balance and
highlights typical parallelization issues more reliably than per-
process profiles alone do.

The critical path is the longest path through a program
activity graph that does not include wait states. Thus, it
determines the length of program execution. Prolonging activ-
ities on the critical path increases program runtime, whereas
shortening them (usually) reduces it. In contrast, optimizing an
activity not on the critical path only increases waiting time,
but does not affect the overall runtime. Figure 3 illustrates

the concept. Our critical-path analysis produces two groups
of performance indicators. The first group, the critical-path
profile and the critical-path imbalance indicator, describes the
impact of program activities on (wall clock) execution time.
The critical-path profile represents the time an activity spends
on the critical path. The critical-path imbalance corresponds
to the time that is lost due to inefficient parallelization in
comparison with a perfectly balanced program. As such, it
provides similar guidance as prior profile-based load imbal-
ance metrics (e.g., the difference of maximum and average
aggregate workload per process), but the critical-path imbal-
ance indicator can draw a more accurate picture. The critical
path retains dynamic effects in the program execution, such
as shifting of imbalance between processes over time, which
per-process profiles simply cannot capture. Because of this,
purely profile-based imbalance metrics regularly underestimate
the actual performance impact of a given load imbalance. As
an extreme example, consider a program in which a function is
serialized across all processes but runs for the same amount of
time on each. Purely per-process profile based metrics would
not show any load imbalance at all, whereas the critical-
path imbalance indicator correctly characterizes the function’s
serialized execution as a performance bottleneck.

The second group of indicators, the performance impact
indicators, describes how program activities influence resource
consumption. These indicators are especially useful for the
analysis of MPMD programs. MPMD programs often combine
multiple SPMD codes which run in separate process partitions.
Achieving optimal load balance in MPMD codes typically also
involves runtime configuration adjustments, such as finding
optimal process partition sizes. Developers currently must use
trial-and-error methods for finding suitable configurations due
to the lack of proper tool support. Our performance impact
indicators simplify the search for optimal configurations by
distinguishing between imbalance that occurs within an SPMD
process partition (intra-partition imbalance) or between differ-
ent partitions (inter-partition imbalance).

We also evaluated the critical-path analysis on a variety
of real-world MPI codes. For the Zeus-MP/2 example, the
four code regions that the delay analysis proved being re-
sponsible for the bulk of waiting time are indeed the most
imbalanced ones according to the critical-path imbalance in-
dicator. Specifically, the imbalance indicator shows that the
program execution would finish 42 seconds earlier (12% of
its current run time) if these four regions were perfectly load-
balanced. In our IPDPS 2012 paper [3], we also demonstrate
how the performance impact indicators help finding optimal
configurations for the MPMD code ddcMD.

IV. SCALABLE EVENT-TRACE REPLAY

Both delay analysis and critical-path analysis are imple-
mented as extensions to the automatic wait-state detection
of the Scalasca performance analysis toolset, leveraging its
scalable, post-mortem event-trace analysis. Figure 4 illustrates
Scalasca’s trace-analysis workflow. To collect event traces, the
target application is instrumented so that it records relevant



Instr.
target
application

Measurement

library
Local

event traces

Parallel
analysis

Global
analysis report

Graphical
report browser

Fig. 4. Scalasca’s parallel trace-analysis workflow; gray rectangles denote
programs and white rectangles denote files. Stacked symbols denote multiple
instances of programs or files, run or processed in parallel.

events at runtime, such as entering and leaving of source-
code regions and sending or receiving of messages. After
the target application finishes, we launch the trace analyzer
with one analysis process per (target) process. This approach
exploits the distributed memory and processing capabilities of
the underlying parallel system, which is the key to achieving
good scalability. The analyzer then traverses the traces in
parallel, iterating over each process-local trace, and exchanges
data required for the performance analysis at each recorded
synchronization point using a communication operation simi-
lar to the one originally used by the program.

Other than the pure wait-state analysis, the delay and
critical-path analysis require an additional, backward replay
over the trace. A backward replay processes a trace backwards
in time, from its end to its beginning, and reverses the role
of senders and receivers. Overall, the analysis now consists
of two stages: (1) a parallel forward replay that performs
the wait state analysis and annotates communication events
with information on synchronization points and waiting time
incurred; and (2) a parallel backward replay that identifies the
delays causing each of the wait states detected during forward
replay, calculates their costs, and extracts the critical path.
Starting at the endmost wait states, the backward replay allows
delay costs to travel from the point where they materialize in
the form of wait states back to the place where they are caused
by delays. The backward replay also facilitates the critical-
path analysis, since the route of the critical path through the
program cannot be determined without knowing the end of the
execution. For MPI programs, the critical path runs between
MPI Init and MPI Finalize. Our critical-path search begins
by determining the MPI rank that entered MPI Finalize last,
which marks the endpoint of the critical path, and then exploits
the lack of wait states on the critical path: whenever a wait
state is found on the currently active path, the search proceeds
on the MPI rank that caused the wait state. This way, we follow
the entire critical path backwards through the trace. After
Scalasca completes the critical-path extraction, it calculates
the performance indicators using a parallel algorithm.

To demonstrate the scalability of our approach, we analyzed
an execution of the Sweep3D benchmark on 262,144 processes
of the Blue Gene/P system at the Jülich Supercomputing Cen-
tre. The benchmark itself ran for 473 seconds. The subsequent
analysis took 700 seconds in total, of which 591 were file I/O.

The actual trace analysis, including wait-state search, delay
analysis, and critical-path analysis, took less than 100 seconds.

V. CONCLUSION AND OUTLOOK

Load and communication imbalance remains a major scal-
ability challenge for applications on their way to deployment
on peta- or exa-scale systems. Imbalance typically leads to
wait states later on in the execution, but intricate propaga-
tion effects may obscure the link between observable wait
states and their original root causes. Therefore, the actual
performance impact of an imbalance is hard to discover. Our
performance indicators derived from the critical path help to
identify imbalance in the execution and determine its impact
on run time or resource usage, while the delay analysis
determines the contribution of imbalance to the formation
of wait states. Both methods provide valuable guidance in
identifying promising optimization targets. In comparison to
prior and related work, our parallel trace-analysis approach
incorporates dynamic effects that profile-based solutions miss,
thus providing more accurate results; provides deep insights at
a high level of abstraction that is easily accessible; and scales
to system sizes of more than 100,000 processes.

In the future, we plan to extend the delay and critical-path
analysis to OpenMP and hybrid OpenMP/MPI programs, and
integrate the current prototype implementations into upcoming
Scalasca releases.

REFERENCES

[1] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “A Scalable
Tool Architecture for Diagnosing Wait States in Massively Parallel
Applications,” Parallel Computing, vol. 35, no. 7, pp. 375–388, Jul.
2009.

[2] D. Böhme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root
causes of wait states in large-scale parallel applications,” in Proc. of the
39th International Conference on Parallel Processing (ICPP, San Diego,
CA, USA). IEEE Computer Society, Sep. 2010, pp. 90–100.

[3] D. Böhme, B. R. de Supinski, M. Geimer, M. Schulz, and F. Wolf,
“Scalable critical-path based performance analysis,” in Proc. of the
26th IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2012) (to appear), 2012.

[4] N. R. Tallent, L. Adhianto, and J. Mellor-Crummey, “Scalable Identifica-
tion of Load Imbalance in Parallel Executions Using Call Path Profiles,”
in Supercomputing 2010, New Orleans, LA, USA, Nov. 2010.

[5] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Euro-Par 2007
Parallel Processing, ser. Lecture Notes In Computer Science, vol. 4641.
Springer, 2007, pp. 150–159.

[6] M. Calzarossa, L. Massari, and D. Tessera, “A methodology towards
automatic performance analysis of parallel applications,” Parallel Com-
puting, vol. 30, no. 2, pp. 211–223, Feb. 2004.

[7] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and Analysis of MPI Resources,” Supercom-
puter, vol. 12, no. 1, pp. 69–80, 1996.

[8] W. Meira Jr., T. J. LeBlanc, and V. A. F. Almeida, “Using cause-effect
analysis to understand the performance of distributed programs,” in
SPDT ’98: Proceedings of the SIGMETRICS symposium on Parallel
and distributed tools. New York, NY, USA: ACM, 1998, pp. 101–111.

[9] M. Schulz, “Extracting Critical Path Graphs from MPI Applications,”
in Proceedings of the 7th IEEE International Conference on Cluster
Computing, September 2005.

[10] C. A. Alexander, D. S. Reese, J. C. Harden, and R. B. Brightwell, “Near-
Critical Path Analysis: A Tool for Parallel Program Optimization,” in
Proceedings of the First Southern Symposium on Computing, 1998.

[11] J. K. Hollingsworth, “An Online Computation of Critical Path Profil-
ing,” in Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT ’96), 1996.


