
On-the-fly Race Detection in Multi-Threaded Programs

Ali Jannesari and Walter F. Tichy

University of Karlsruhe
76131 Karlsruhe, Germany

{jannesari,tichy}@ipd.uni-karlsruhe.de

ABSTRACT
Multi-core chips enable parallel processing for general pur-
pose applications. Unfortunately, parallel programs may
contain synchronization defects. Such defects are difficult
to detect due to nondeterministic interleavings of parallel
threads. Current tools for detecting these defects produce
numerous false alarms, thereby concealing the true defects.
This paper describes an extended race detection technique
based on a combination of lockset analysis and the happens-
before relation. The approach provides more accurate warn-
ings and significantly reduces the number of false positives,
while limiting the number of false negatives. The technique
is implemented in Helgrind+, an extension of the open source
dynamic race detector Helgrind. Experimental results with
several applications and benchmarks demonstrate a signif-
icant reduction in false alarms at a moderate runtime in-
crease.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.11 [Software Engineer-
ing]: Testing and Debugging —monitors, testing tools.

General Terms
Experimentation, Performance, Reliability.

Keywords
Race detection, race conditions, debugging, parallel pro-
grams, multi-threaded programming, dynamic analysis, happens-
before, lockset.

1. INTRODUCTION
Two current developments, the emergence of multi-core

chips and stagnating clock rates of processors, are pushing
parallel computing out of the niche of numeric applications
into the mainstream. Unfortunately, parallel programs may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD’08, July 20–21, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-052-4/08/07 ...$5.00.

contain synchronization defects, a class of defects not easily
detected because of non-deterministic interleavings of con-
current threads. This paper concentrates on the detection
of data races, i.e, unsynchronized accesses to shared data. A
data race occurs when at least two threads access the same
memory location with no ordering constraints enforced be-
tween the accesses, and at least one of the accesses is a
write[18]. Because multi-threaded programs are schedule-
dependent, reproducing data races is often difficult. One
may not get the same execution order even with identical
inputs. Moreover, programs encountering data races often
do not crash immediately, resulting in mysterious and un-
predictable behavior. With multi-core computers, the im-
portance of tools that find data races automatically is sig-
nificantly increased.

We propose a dynamic approach for race detection based
on a synthesis of lockset and happens-before analysis. The
approach provides a lower rate of false positives and smaller
performance overhead. The basic idea is to consult the
happens-before relation whenever the lockset algorithm in-
dicates a possible race. The increased precision is due to a
more detailed state machine in the analysis (eight possible
states vs. four for a pure lockset algorithm). The approach
has been implemented in Helgrind+, an extension of the Hel-
grind tool[28]. Results on several benchmarks demonstrate
a significant reduction in false positive rates compared to
the original Helgrind tool, which is primarily based on the
lockset algorithm.

The paper is organized as follows. Section 2 discusses
related work. In Section 3 a short overview of the lock-
set detection algorithm, happens-before detection, and some
hybrid methods are presented. Then the extended race de-
tection approach is explained in Section 4. In Section 5,
Helgrind, an open source race detection tool, is introduced.
Furthermore, the extension of Helgrind and the memory lay-
out with the shadow value technique are explained. In Sec-
tion 6 the results of applying the modified tool to several
benchmarks and applications are presented. In the last sec-
tion, we conclude the paper with a short discussion of our
results and the focus of our future work.

2. RELATED WORK
There is a substantial amount of prior work regarding

detection of potential data races. Proposed solutions can
be classified as static (ahead-of-time) and dynamic (on-the-
fly) analyses. Static analysis considers the entire program
and warns about possible races in all possible executions or-
ders[9]. The main drawback of this approach is that it pro-

duces too many false positives, as static analysis must con-
servatively consider all potential thread interleavings, even
those that are not feasible. Another issue is that static anal-
ysis does not scale well to large programs due to path/state
explosions[6]. Furthermore, static analysis has problems
with dynamically allocated data. Detecting all feasible data
races by static analysis is known to be an NP-hard prob-
lem[18].

Dynamic analysis scales better and reports fewer false pos-
itives compared to static analysis. However, it detects races
only in the actual run, hence there is no guarantee that a
program is race-free. Consequently, the program has to be
tested with various inputs to cover different execution paths.
There are two different methods used by dynamic race de-
tectors: on-the fly and post-mortem. On-the-fly methods
record and analyze information as efficiently as possible dur-
ing program execution. Post-mortem methods record events
during program execution and analyzes them later[3], or
record only critical events and then replay the program[24].
The post-mortem approach is unsuitable for long-running
applications that have extensive interactions with their en-
vironment. All dynamic methods add overhead at runtime,
which must be traded off against detection accuracy.

Prior dynamic race detectors are based on two different
techniques: lockset or happens-before analysis. Lockset anal-
ysis checks whether two threads accessing a shared memory
location hold a common lock. If this is not the case, the
concurrent access is considered a potential data race[26, 29,
19]. The technique is simple, can be implemented with low
overhead, and is relatively insensitive to execution order.
The main drawback of a pure lockset-based detector is that
it produces many false alarms due to the fact that it ig-
nores synchronization primitives other than locks, such as
signal/wait, fork/join, and barriers.

Happens-before detectors[5, 24, 4] are based on Lamport’s
happens-before relation[12]. Happens-before analysis uses
program statement order and synchronization events to es-
tablish a partial temporal ordering of program statements.
A potential race is detected if two threads access a shared
memory location and the accesses are temporally unordered.
The happens-before technique can be applied to all synchro-
nization primitives, including signal/wait, fork/join, barri-
ers, and others. It does not report false positives in the ab-
sence of real data races. However, this approach may miss
races, i.e. produce false negatives, as it is sensitive to the
order of execution and depends on whether or not the sched-
uler generates a dangerous schedule. In fact, happens-before
detection produces more false negatives than lockset-based
detection[20]. Happens-before analysis is also difficult to
implement efficiently and does not scale well.

Recent race detectors combine happens-before and lockset-
based techniques to get the advantages of both approaches
and improve accuracy and performance[30, 22, 20, 28, 25,
11]. The combination was originally suggested by Dinning
and Schonberg[7].

Dynamic race detectors differ in how they monitor pro-
gram execution. Many detectors record load/store instruc-
tions and shared-memory references[26, 11]. Other race de-
tectors work with the bytecodes of object-oriented program-
ming languages[30, 20, 5], making them independent of pro-
gramming language and source code. Some race detectors
modify the source code in order to instrument memory ac-
cesses and synchronization instructions[22].

3. RACE DETECTION
In this section, we introduce the two main race detection

methods, followed by a more detailed description of the al-
gorithms and a discussion of their limitations.

3.1 Lockset-Based Detection
Lockset analysis is based on the observation that each

shared memory location accessed by two different threads
should be protected by a lock, if at least one access is a
write. The detector examines all locations where a shared
variable is accessed and checks whether the shared variable
is protected by a lock. If the variable is not protected, a
warning is issued. The algorithm is simple and easy to im-
plement. Eraser was the first implementation, which worked
with programs using the POSIX-Threads library. In this im-
plementation, the basic synchronization primitive is a mutex,
with methods to acquire and release it. The pseudo code of
the basic lockset algorithm or so-called Eraser algorithm[26]
is shown in Figure 1. During program execution, the Eraser
algorithm maintains for each shared variable d a set of locks
Cd that contains the intersection of the sets of locks that
were held during all accesses to variable d. The details of
the algorithm appear in [26].

Let Lt be the set of locks held by thread t.

For each variable d, initialize Cd to the set of all locks.
On each access to d by thread t,

set Cd := Cd ∩ Lt;
if Cd = {}, then issue warning.

Figure 1: Basic lockset-based algorithm.

The main drawback of the Eraser algorithm is that it pro-
duces too many false alarms, because it can only process lock
operations and fails when other synchronization primitives
or user-defined synchronizations are used. For example, nu-
meric algorithms often consist of several steps separated by
barriers. If memory accesses of two separate steps overlap,
Eraser would falsely report races, even though they are pre-
vented by the barriers. An algorithm based on the happens-
before relation would not report any false positive in this
situation.

A single write operation followed by read-only accesses is a
frequent case which lockset detectors must handle. Consider
a shared variable that is written once by a main thread and
subsequently read by worker threads. It appears that no lock
is needed. However, a pure lockset detector would report a
race in this case. To handle this situation, Eraser uses the
state machine in Figure 2. The idea is to defer error reports
until a second thread performs a write operation (and thus
reaches the Shared-Modified state in the diagram).

However, the state machine in Figure 2 may mask a race
(produce a false negative). The program listed in Figure 3
contains a simple undetected data race between parent and
worker thread. The parent may write the variable GLOB be-
fore the worker thread can read it. In this case, the state ma-
chine ends up in state Shared-Read without issuing a warn-
ing. With the opposite order of execution, Eraser would
report a race. The basic problem is that there is no syn-
chronization between parent and worker. (As there is no
happens-before relation between the parent and worker re-
garding the read/write operations, a pure happens-before
detector would detect the masked race.) This kind of false

W, any thread

R, any thread

first access W, new thread

R, new
thread

R/W, first thread

Shared-Modified

Shared-Read

Exclusive

New

Figure 2: Possible states for a memory location.
After allocation, the location is in the state New.
During the first write, it enters state Exclusive and
leaves this state only if another thread reads or
writes the location. An error is reported if the state
Shared-Modified is reached and the lockset is empty.

int GLOB = 0;

//worker Thread

void *worker(void*){

printf("GLOB=%d\n", GLOB);

return NULL;

}

//parent thread

int main(int argc, char **argv){

pthread_t threadid;

pthread_create(&threadid, NULL, worker, NULL);

GLOB = 1;

pthread_join(threadid, NULL);

}

Figure 3: A simple example causes false negatives
in Eraser-based race detectors.

negative also exists in other race detectors based on this
state diagram [11, 30].
We extend the state machine such that it handles the

above case correctly. More details are discussed in section
4.

3.2 Happens-before Detection
The happens-before relation orders events. Lamport in-

troduced the happens-before relation to define a partial or-
dering of events in distributed systems[12]. According to his
definition, an event a happens before an event b if a happens
at an earlier time than b.
Based on this relation, a potential race has occurred if we

observe two distinct events a and b that access the same
memory location, where at least one event is a write, and
neither a happens before b nor b happens before a, i.e.,
there is no temporal ordering of a and b. There are two dif-
ferent ways to implement the happens-before relation: vec-
tor clocks and thread segment graphs. Vector clocks have
been widely used in previous works[30, 22, 20]. For details
about the computing the happens-before relation with vec-
tor clocks refer to [14]. Some other detectors[11, 28] use

thread segment graphs.
Compared to lockset-based detection, happens-before anal-

ysis has a lower rate of false positives, but causes significant
overhead and is difficult to implement. Moreover, it is sen-
sitive to scheduling. Combining the happens-before rela-
tion with lockset analysis results in a hybrid solution with
a trade-off between accuracy and runtime overhead. Recent
race detectors[30, 22, 20, 11, 28] use the happens-before re-
lation to determine the order imposed by synchronization
primitives in order to avoid some false positives of the lock-
set algorithm. These approaches still report many false pos-
itives and even miss some races (see the example in Figure
3 discussed in Section 3.1).
A simple scenario where happens-before analysis could

prevent a false warning is the following. A thread allocates
a memory location, initializes it by setting it to some value,
and then creates a second thread to work on the data. Then
the first thread waits for the second thread to join, before it
uses the memory location again. Thus, the memory location
is shared between threads, but at any point in time only one
thread accesses it. A useful way of viewing this sequence
of events is that by creating a new thread, the ownership
of the memory location is passed to the second thread until
it terminates, at which time the first thread receives owner-
ship back. This view can be implemented by introducing the
concept of a thread segment. A thread segment delineates
time in addition to thread identity. By utilizing thread seg-
ments or thread segment identifiers (TSID) in the algorithm
instead of merely using thread identity, one can distinguish
accesses that cannot happen concurrently.
Figure 4 shows a simple scenario illustrating thread seg-

ment graphs. The graph represents a partial order for thread
segments. All segments on a path are totally ordered with
respect to time. If there is no path between two segments,
they are considered to be concurrent. When executing fork
operations, new thread segments are created. In this man-
ner, events are ordered and as long as memory accesses to
shared locations occur in segments with no overlap, there is
a happens-before relation and no race is possible. Figure 4
illustrates the happens-before relation between two succes-

sive accesses to x. TS11
hb→ TS21, because of the existing

path between segments TS11 and TS21. The two accesses to
x are temporally ordered.

TS 11X =2Thread 1 TS 12

TS 21

TS 13

Thread 2 X =3

create join

Figure 4: A thread consists of thread segments
separated by create and join operations. Memory
accesses that occur in non-overlapping thread seg-
ments are exclusive even if they belong to different
threads.

A pure lockset base detector produces a false alarm in the
given scenario, although only a single thread uses the shared
location at a time. The happens-before relation is used by
race detectors VisualThreads, Helgrind and RaceTrack [11,
28, 30]. The underlying idea is that instead of a thread being
owner of a shared variable that is in the exclusive state, the
variable is now associated with a thread segment identifier.

Whenever another thread accesses the variable, it is checked
whether the thread segments overlap or not. If not, the new
thread segment becomes the new owner of the variable and
its state remains unchanged.

Thread segments can be added to the lockset algorithm
as follows:

1. When location d is in state Exclusive, associate it
with the thread segment identifier (TSID) of the cur-
rent thread instead of the thread identifier.

2. If location d is in state Exclusive to thread segment
TSi and is accessed by TSj , and TSi happens before
TSj in the graph, then instead of marking d with one
of the shared states, associate d with TSj . The state
of d remains Exclusive.

The additional steps reduce some false positives, but there
is still room for improvement. Due to checking the happens-
before relation only in state Exclusive, the algorithm reverts
to a pure lockset algorithm when leaving this state. Figure
5 demonstrates an example where signal and wait produce
false positives despite the additional steps. Support for bar-
riers as discussed in section 3.1 is also missing.

int COND = 0;
int GLOB = 0;
static pthread_cond_t CV = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t MU = PTHREAD_MUTEX_INITIALIZER;

//worker thread
void *worker(void*){

usleep(1000); //worker blocks
pthread_mutex_lock(&MU);

COND = 1;
GLOB = 2;
pthread_cond_signal(&CV);

pthread_mutex_unlock(&MU);
return NULL;

}

//parent thread
int main(){

pthread_t threadid;
pthread_create(&threadid, NULL, worker, NULL);

pthread_mutex_lock(&MU);
GLOB = 1;
pthread_mutex_unlock(&MU);

pthread_mutex_lock(&MU);
while (COND != 1){

pthread_cond_wait(&CV, &MU);
}

pthread_mutex_unlock(&MU);
GLOB = 3;
pthread_join(threadid, NULL);
return 0;

}

Figure 5: An example where false positives regard-
ingGLOB are generated, although a happens-before re-
lation exists. The reason is that at the time of last
access to GLOB, GLOB is in the Shared-Modified state
because the happens-before relation introduced by
signal and wait is not considered.

It should be mentioned that race detectors use differ-
ent techniques to implement the additional steps introduced

above. VisualThreads uses thread segment graphs[11], while
RaceTrack uses vector clocks[30]. Helgrind uses vector clocks
in addition to thread segment graphs to reduce comparison
overhead [28]. Another point is that VisualThreads supports
only fork/join primitives whereas Helgrind and RaceTrack
support some other threading primitives, e.g. condition vari-
ables.

Our extended technique avoids the shortcomings of the
earlier detectors by combining the happens-before relation
and the lockset analysis in an efficient manner.

4. THE EXTENDED TECHNIQUE
In this section, we propose a new hybrid solution that

extends the memory state machine used by Eraser and sim-
ilar tools. In the presented solution, we address the limi-
tations observed in earlier tools by combining locksets and
the happens-before relation in a new way. The basic idea
is to apply the happens-before relation whenever the lock-
sets indicate a possible race. An extended memory state
machine depicted in the section 4.1 reduces false positives
while limiting false negatives.

4.1 Memory State Machine
Figure 6 shows the extended memory state machine fol-

lowed by description of each state. As the implementation
is based on Helgrind, thread segment identifiers (TSID) are
used to indicate a happens-before relation between two suc-
cessive accesses to a memory location. Details about TSID

are discussed in Section 3.2. A similar notation could be
used for vector clock values instead of thread segment iden-
tifiers.
Following is the notation used in the state diagram:

• d: an arbitrary memory location.

• W : write operation to d.

• R: read operation from d.

• TSnew: thread segment identifier of the current access
to d.

• TSold: thread segment identifier of the prior access to
d.

• TSold || TSnew: thread segments TSold and TSnew are
concurrent. Any access to d within TSold is concurrent
with accesses to d in TSnew.

• TSold
hb→ TSnew: thread segments TSold happens be-

fore TSnew. Any access to d within TSold happens
before accesses to d in TSnew.

• Lt: the current set of locks held by thread t.

• Cd: the current candidate set of locks protecting vari-
able d.

New: Newly allocated location that is not yet accessed.
No locksets are needed. On the first write/read access, enter
state Exclusive-Write/Exclusive-Read.

Exclusive-Write: Location d is exclusively written by
a particular thread. No locksets are needed. Record the
thread ID. As long as write accesses occur from the same
thread, stay in this state (the happens-before relation holds

New

Shared-
Modified1

Exclusive-Read

Shared-
Read W Λ Cd!={}

R

R Λ TSold || TSnew

Exclusive-
ReadWrite

W Λ Cd={}

Shared-
Modifed2

R/W Λ Cd!={}

R/W Λ Cd!={} Λ TSold || TSnew

R/W Λ Cd={} Λ TSold || TSnew

W

Race

Exclusive-Write

R

R Λ TSold TSnewhb

W Λ TSold || TSnew Λ Lt={}

W Λ TSold TSnewhbR Λ TSold TSnewhb

W Λ TSold TSnewhb

W Λ TSold TSnewhb

R Λ TSold TSnewhb

R/W Λ Cd={}

R/W Λ TSold TSnewhb

W Λ TSold || TSnew Λ Lt={} W Λ TSold || TSnew Λ Lt={}

W Λ TSold || TSnew Λ Lt!={}

(R Λ TSold || TSnew) ν (W Λ TSold || TSnew Λ Lt!={})

(R Λ TSold || TSnew) ν (W Λ TSold || TSnew Λ Lt!={})

Figure 6: Extended memory state machine.

within the same thread, so there is no concurrent access).
When a write access occurs from a different thread, switch
to thread segments. Associate d with the thread segment
of the new thread. Remain in this state as long as each

successive write satisfies TSold
hb→ TSnew, since there are no

concurrent accesses to d. When a write or read occurs with
TSold || TSnew, enter Shared-Modified1 or Exclusive-Read.

Exclusive-Read: Location d is exclusively read by a par-
ticular thread. Similar to Exclusive-Write. When an access
occurs that would result in TSold || TSnew, enter Shared-
Read or Shared-Modified1 and discard information about the
happens-before relation as it is no longer needed.

Shared-Read: Location d is concurrently accessed by
multiple threads, but all accesses are reads. We enter this
state from Exclusive-Read when a read results in multiple
concurrent accesses. In this state, we track only the lockset
Cd, which is initialized to Lt. The lockset is updated for
every access. If Cd is empty and a write operation occurs,
enter Exclusive-ReadWrite. If Cd is not empty and a write
occurs, enter Shared-Modified1. No errors are reported in
this state.

Shared-Modified1: Location d is read and written con-
currently by multiple threads. This state is entered either
from Exclusive-Write or Exclusive-Read, with Cd initialized
to Lt. As in Shared-Read, track only the lockset in this state.
If Cd becomes empty, enter Exclusive-ReadWrite.

Exclusive-ReadWrite: Location d is accessed by mul-
tiple threads and the lockset discipline alone is not suffi-
cient. Track the thread segment identifier corresponding to
the most recent access to d. Similar to Exclusive-Read or
Exclusive-Write, remain in this state as long as there is a
happens-before relation between successive accesses. When
there is a write operation and TSold || TSnew, enter Shared-
Modified2. When a read operation happens and there is a
happens-before relation, return to Shared-Read.

Shared-Modified2: Location d is concurrently read and
written by multiple threads. When entering this state, the
lockset Cd is initialized to Lt. Both lockset and thread seg-
ments are tracked. If the lockset is empty and d is concur-
rently accessed, generate an error and enter state Race. This
is the only state where both the happens-before relation and
the lockset is analyzed. But whenever a happens-before rela-
tion exists between successive accesses, return to Exclusive-

ReadWrite. This speeds up the algorithm because it re-
duces the overhead for locksets, especially in long-running
programs.

Race: A potential race is detected and reported. This
state can be reached from Shared-Modified when Cd = {}
and TSold || TSnew, which means that d is concurrently ac-
cessed by multiple threads without a common lock. Also it
is possible to reach Race from all exclusive states, in case
a write happens concurrently with another access and Lt =
{}. Transitions on empty Lt prevent false negatives in many
situations. Lt is the set of locks currently held by a thread
during program execution and tracking it involves hardly
any overhead.

4.2 Main Features
The general idea is to avoid entering a shared state until

the happens-before analysis shows that there is a concurrent
access to a memory location. Lockset tracking is performed
only in shared states, that is Cd is updated only in Shared-
Read, Shared-Modified1, and Shared-Modified2. No happens-
before test is done in the states Shared-Read and Shared-
Modified1. Only state Shared-Modified2 requires both lock-
set updates and happens-before analyses (see Figure 6).

Happens-before analysis is deferred until the lockset of
a location is empty, leading to performance improvement.
Updating both locksets and the thread segment graph for
each access during program execution can be quite expen-
sive in both time and space. The idea of deferring the
computation of happens-before until necessary was intro-
duced for the first time in [22]. This idea is implemented
here by introducing the state Exclusive-ReadWrite. Enter-
ing the states Exclusive-Read or Exclusive-Write instead of
Exclusive-ReadWrite would lead to false negatives in some
situations.

Separate Exclusive-Read and Exclusive-Write states are
beneficial for several reasons. As described previously, the
Eraser algorithm is vulnerable to scheduling (see the exam-
ple in Figure 3). By introducing these two exclusive states,
the state machine can distinguish a read after a write and a
write after a read, so the race is detected regardless of sched-
ule, causing an immediate transition to Race. In addition,
the edge from state New to Exclusive-Read makes the detec-
tor work more precisely and handle more cases properly. It
is often possible for locations to change from New directly to
Exclusive-Read, especially if the application is reading unini-
tialized variables, or due to compiler optimizations, where
the compiler loads a word from memory, part of which is
uninitialized, and then does not use the uninitialized part.
Another case is when a program has its own memory man-
agement routines that initializes memory with zeros before
allocation. In this situation, the memory will be New but a
read from it is quite legal.

With the edges from Exclusive-Write, Exclusive-Read and
Exclusive-ReadWrite to Race we capture races that happen
only once at initialization time. An Eraser-style detector
is based on the assumption that the program runs for a
long time and if the race happens many times, it will be
caught eventually. With the additional edges, the extended
memory state machine can catch the race even if it happens
at initialization time.

The distinction between Shared-Modified1 and Shared -

Modified2 is mainly justified by performance reasons. In
Shared-Modified1 only the lockset is maintained, whereas
in Shared-Modified2 both lockset and thread segments are
tracked. This optimization helps make the detector practi-
cal for real-world applications. Also, there is a difference in
the way the empty lockset is handled. In Shared-Modified1,
a transition to Race on an empty lockset would lead to nu-
merous false positives. Thus,a single Shared-Modified state
would increase the false alarm rate. On the other hand, if the
alarm produced in the single Shared-Modified is a true posi-
tive, it could be caught immediately avoiding a possible false
negative. Future experiments will compare both versions
choosing the best compromise solution. Based on the cur-
rent experimental results, the distinction between Shared-
Modified1 and Shared-Modified2 is beneficial for long-running
applications. If an empty lockset in Shared − modifed1 is
indeed a true positive, it is mostly followed by another par-
allel read/write leading to the Race state.

Finally, the idea of introducing a separate state Race is
useful, because once the race is reported, the tool does not
spend time on this memory location any more.

5. IMPLEMENTATION OF HELGRIND+

We extended the open source dynamic race detector Hel-
grind 3.3.0 [28] with the new detection technique. The new
tool is called Helgrind+. For the sake of brevity, only the
main modifications are described.

5.1 Helgrind
Helgrind is a part of the Valgrind tool[17, 15, 16] for race

detection in C/C++ and Fortran programs. It uses the
Eraser algorithm[26] and the improvements based on the
happens-before relation from VisualThreads[8] in order to
reduce false positives. Valgrind is a binary instrumentation
framework for Linux ELF Binaries and was initially used as
a memory checker. It consists of two parts: A core that is
responsible for generating intermediate code from an exe-
cutable binary and interprets the code using a just-in-time
compiler to speed up the execution time, and a plug-in that
instruments the intermediate code before it is executed and
interprets the results. This makes Valgrind a powerful and
flexible tool for all kinds of runtime checking.

Helgrind is language independent and does not need source
code. It supports the POSIX Threads API for multi-threading
(OpenMP is supported as it ultimately uses POSIX threads
in the GCC implementation). In order to suppress false
warnings of a part of code that is not modifiable (e.g., li-
braries), one writes a suppression file that contains the re-
port type and call stack patterns of specific false positives,
so that such warnings do not appear in future reports.

5.2 State Information and Data Structures
Helgrind uses binary instrumentation in order to observe

read and write instructions. Furthermore, a special version
of the POSIX Threads library is provided that intercepts
calls to thread-management, mutex-handling, etc. This is
necessary to maintain thread state information and locksets.
The algorithm is unaware of the high level objects or struc-
tures in the source code. For every memory location Hel-
grind maintains a so-called shadow word that contains the
state information associated with the memory location. The
shadow word used by Helgrind is a 32-bit word. Two bits
are used to encode states and the rest to store thread seg-

ment identification (only in Exclusive state) and lockset (in
shared states) information. For our extended memory state
machine, a 32-bit word for shadow values is not sufficient.
There are eight different states and in state Shared-Modified2
both lockset and thread segment information must be stored.
Therefore, Helgrind+ uses a 64-bit shadow word for each
memory location. Figure 7 demonstrates the structure of
the 64-bit shadow words in different states.

…0 …New

TSID1 …Exclusive-Write

TSID2 …Exclusive-Read

TSID3 …Exclusive-ReadWrite

locksetthreadset…5Shared-Read

locksetthreadset…5Shared-Modified1

locksetthreadsetTSID6Shared-Modified2

…8 …Race

Figure 7: Structure of 64-bit word shadow value and
state encoding

The first three most significant bits of the 64-bit shadow
value are used to encode the state (0 - 7). The interpre-
tation of the other bits depends on the state. Three bytes
are used to store the thread segment identifiers in exclusive
states and Shared-Modified2. In the exclusive states the sec-
ond 32-bit word is unused. Lockset information is stored
in the four least significant bytes (second 32-bit word) of
shared states. The states New and Race use only three bits
to store encoded state. If a memory location is in an exclu-
sive state, the thread segment ID of the last access is stored.
The lockset is not initialized unless one of the shared states is
reached. Moreover, structures that require dynamic alloca-
tion during runtime are provided from a fixed heap to avoid
dynamic memory allocation. These structures include con-
dition variable information, mutex information and thread
segments. Reference counting is used to determine which
segments are free and a simple garbage collection algorithm
returns unused segments back to the heap.
Shadow values in Helgrind+ double the space overhead

compared to Helgrind. But there are several optimizations
that could reduce the memory overhead in Helgrind+, as all
64 bits are needed in only one state.

6. EXPERIMENTS AND RESULTS
In this section, we present our experiences with Helgrind+

and evaluate our approach by applying it to a number of
applications and benchmarks. We show that the extended
approach significantly reduces the amount of false positives
at a reasonable overhead, making Helgrind+ more usable by
giving more precise reports. We have used different appli-
cation from a variety of domains, from small programs to
long-running real applications. We focus on false positives.

6.1 False Positives
The first test of Helgrind+ was the analysis of the multi-

threaded programs collected from graduate students in a
lab course at our department during the past two years. The

programs are lab assignments done by different teams of stu-
dents, using POSIX Threads or OpenMP for parallelization.
We executed the programs with differing number of threads
and chose those programs producing warnings with either
tool. The warnings were analyzed to see if they were real
races or false positives. Table 1 lists the analyzed programs.
The first entry is a parallel implementation of the Single
Source Shortest Path algorithm (SSSP)[21]. Another exam-
ple is bzip2 in several versions (produced by different student
teams), a sequential data compressor that uses the Burrows-
Wheeler block-sorting text compression algorithm and Huff-
man coding[27]. For comparison purposes, the number of
false positives produced by pbzib2 [10], the parallel version
of bzib2 available on Linux Ubuntu 7.10 is also provided.
The remaining programs are listed in Table 1. We also used
two well-known bug-free SPLASH-2[1] benchmarks FFT and
LU. SPLASH-2 has been used in many previous studies[22,
13, 24, 24, 23] to evaluate race detection.We applied Hel-
grind 3.3.0 and Helgrind+ to the programs. All experiments
shown in Table 1 were conducted on a dual core machine
with x86 32bit processors running Linux. The programs
were compiled with gcc 4.2.1.
Comparing the results in Table 1, false positives are drasti-

cally reduced. Also, when increasing the number of threads,
the number of false positives tends to increase for Helgrind,
while it stays constant for Helgrind+. All known, real races
were detected by both tools.
We also applied Helgrind+ to the recently released PAR-

SEC benchmark[2]. PARSEC differs from other benchmark
suites, as it is not HPC-focused. It contains twelve divers
programs from different areas such as computer vision, video
encoding, financial analytics, animation, physics and image
processing. Table 2 provides a short summary of the pro-
grams in the benchmark.

Program
Application
Domain

Parallelization
Model Granularity

blackscholes Financial
Analysis

data-parallel coarse

bodytrack Computer
Vision

data-parallel medium

canneal Engineering unstructured fine
dedup Enterprise

Storage
pipeline medium

facesim Animation data-parallel coarse
ferret Similarity

Search
pipeline medium

fluidanimate Animation data-parallel fine
freqmine Data Min-

ing
data-parallel medium

streamcluster Data Min-
ing

data-parallel medium

swaptions Financial
Analysis

data-parallel coarse

vips Media Pro-
cessing

data-parallel coarse

x264 Media Pro-
cessing

pipeline coarse

Table 2: Summary of PARSEC benchmarks.

Both Helgrind and Helgrind+ were applied to all PAR-
SEC programs. Table 3 displays the result of the experi-

Program Lines Threads
False Positives

Real Races
Helgrind Helgrind+

SSSP 414 2 19 1 0
SSSP 414 8 16 1 0
p-bzip2 version A 8515 2 7 2 0
p-bzip2 version A 8515 8 9 2 0
p-bzip2 version B 9270 2 3 2 0
p-bzip2 version B 9270 8 8 2 0
p-bzip2 version C 7028 2 2 1 0
p-bzip2 version C 7028 8 2 1 0
p-bzip2 version D 8570 2 0 0 0
p-bzip2 version D 8570 8 0 0 0
pbzib2 Linux 2355 2 2 0 0
pbzib2 Linux 2355 8 2 0 0
Histogram 194 2 0 0 0
Histogram 194 8 2 0 0
Mergesort 525 2 2 2 2
Mergesort 525 8 6 2 2

FFT 1086 2 2050 0 0
FFT 1086 4 3074 0 0
LU 1100 2 366 0 0
LU 1100 4 682 0 0

Table 1: False positive warnings on the selected student programs and the bug-free SPLASH-2 benchmarks.
Helgrind+ denotes the modified version of Helgrind.

ments run with two threads per application. All programs
were compiled with gcc 4.2.1 without any modification and
executed on a machine with 2x Intel XEON E5320 Quad-
core at 1.86GHz, 8 GB RAM, Ubuntu 7.10 x64. Because of
the large computational cost, we did not perform simulations
with the native input set. Instead, we used the simsmall in-
puts for all simulations and ran each program five times, av-
eraging the results. All numbers for read/write instructions
and synchronization primitives are totals across all threads.
Numbers for synchronization primitives include primitives
in system libraries. Locks are all lock-based synchroniza-
tions including Read-Write locks (rwlocks). Barriers are
barrier-based synchronizations, Conditions are waits on con-
dition variables. All programs used the standard Pthread
library for parallelization, except for freqmine, which uses
OpenMP.

The results appear in table Table 3. Helgrind+ reports
no false positives for seven out of twelve programs. For
blacksholes, which uses only two barriers, no alarm is re-
ported, whereas the original Helgrind reports two false pos-
itives, since it does not support barriers. Four of the pro-
grams use only locks for synchronization. For two of them,
canneal and fluidanimate, Helgrind+ produces no false
alarms. Swaptions uses 78 locks, but neither tool reports
false positives.
Freqmine uses only locks, but the difference with others is

that it is implemented in OpenMP. As Helgrind is primarily
built as a thread error detector POSIX threads, there are
some technical problems when using OpenMP. On Linux,
the GNU OpenMP implementation (libgomp.so) constructs
its own synchronization primitives and contains its own cus-
tom barrier primitive. Because of the way these synchro-
nization primitives are constructed, Helgrind cannot see all
the relevant inter-thread dependencies. Thus, the number
of false positives for programs using GNU OpenMP is quite

high. This limitation is going to be removed in the next
versions. Nevertheless, the difference in false alarms is re-
markable.
Streamcluster and Bodytrack use all three kind of syn-

chronization primitives. Streamcluster uses a high fraction
of barriers compared to the others. Helgrind produces many
warnings for this application mostly because it does not sup-
port barriers. Helgrind+ produced no warnings for Dedup,
whereas Helgrind produced thousands. Both tools produce
false positives for the remaining applications, but the num-
ber of false positives for Helgrind+ is significantly lower.

Condition variables produce many false positives, because
they are not easy to handle properly. In many situations it
is not easy to detect the happens-before relation introduced
by them. Thus, race detectors do not have enough informa-
tion about inter-thread dependency, causing false alarms. A
particularly difficult situation is when a thread sends a sig-
nal, but no thread waits for it and the signal is lost. Figure
8 illustrates such a scenario. A similar problem occurs when
there are spurious signals, i.e. the signaling thread sends
several uncaught signals.

6.2 Overhead
Due to 64-bit shadow values, Helgrind+ uses double the

auxiliary memory. Nevertheless, there are many opportuni-
ties for optimization. It is also possible to reduce the execu-
tion time and memory overhead by reducing the amount of
instrumentation.

We measured the execution time of instrumented code ver-
sus the actual execution time. Applications typically slow
down by a factor of 10 to 50 while using Helgrind. The over-
head of Helgrind+ over Helgrind on the PARSEC Bench-
mark is shown in Figure 9. All measurement are average
values of five executions with two threads on a machine with
2x Intel XEON E5320 Quadcore at 1.86GHz, 8 GB RAM,

Program Lines
Instructions (Billion) Synchronization Primitives False Positives
Reads Writes Locks Barriers Conditions Helgrind Helgrind+

blackscholes 812 0.092 0.045 0 2 0 2 0
bodytrack 10,279 0.425 0.102 35,849 215 90 2,236,552 1,400,951
canneal 4,029 0.435 0.187 88 0 0 1 0
dedup 3,689 0.658 0.254 18,436 0 3,536 7,752 0
facesim 29,310 9.632 4.191 10,460 0 1,795 341,483 3,390
ferret 9,735 0.005 0.002 6,660 0 10 0 0
fluidanimate 1,391 0.584 0.144 923,750 0 0 15,658 0
freqmine 2,706 0.744 0.283 78 0 0 1,006,210 1,429
streamcluster 1,255 0.428 0.009 266 22,784 74 11,779 0
swaptions 1,494 0.349 0.091 78 0 0 0 0
vips 3,228 0.758 0.199 10,575 0 2,698 614,761 542,642
x264 40,393 0.500 0.204 1,339 0 157 6,145 352

Table 3: Number of warnings as possible data races reported on PARSEC benchmarks. Programs are executed
for input set simsmall with two threads on an 8-core x86-machine. Numbers for read/write instructions and
synchronization primitives are totals across all threads.

Ubuntu 7.10 x64, with the simsmall inputs for all simula-
tions. As the figure shows, the time differences between the
32-bit and 64-bit versions are modest. In the average case,
the slowdown is about 10%. In the worst case the overhead
measured is 32%. The overhead is insignificant compared to
the time a user would have to spend checking the extra false
positives produced by Helgrind.

7. CONCLUSION AND FUTURE WORK
We have shown that by carefully combining the techniques

of lockset-based and happens-before-based detection, a race
detector with better accuracy and reasonable overhead can
be obtained. Our experimental results suggest that the new
combined technique can be applied to a wide variety of appli-
cations, resulting in fewer false positives and more accurate
warnings, while avoiding false negatives. Execution time
and space overhead is moderate enough for practical use in
large applications.

Future work includes experiments with additional real-
world applications and some optimizations that further im-
prove performance and accuracy. Additional work is needed
in automatically detecting and handling synchronization pat-
terns without relying on source code annotations. This work
could lead to further reductions in false positives. Tech-
niques for grouping warnings by fault location and classify-
ing races based on the states in which they were detected
could be helpful for identifying harmful races. Moreover,
applying runtime analysis to exclude variables which are
accessed by a single thread only could lead to better per-
formance and fewer warnings. Another direction for future
work is applying static analysis to reduce the amount of in-
strumentation required.

Acknowledgments
We would like to thank Valgrind author Julian Seward for
answering our questions regarding the Helgrind codebase.

8. REFERENCES
[1] The SPLASH-2 Programs: Characterization and

Methodological Considerations, Santa Margherita
Ligure, Italy, 1995.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. Technical report, January
2008.

[3] J.-D. Choi, B. P. Miller, and R. H. B. Netzer.
Techniques for debugging parallel programs with
flowback analysis. ACM Trans. Program. Lang. Syst.,
13(4):491–530, 1991.

[4] J.-D. Choi and S. L. Min. Race frontier: reproducing
data races in parallel-program debugging. SIGPLAN
Not., 26(7):145–154, 1991.

[5] M. Christiaens and K. D. Bosschere. Trade, a
topological approach to on-the-fly race detection in
java programs. In JVM’01: Proceedings of the JavaTM
Virtual Machine Research and Technology Symposium
on JavaTM Virtual Machine Research and Technology
Symposium, pages 15–15, Berkeley, CA, USA, 2001.
USENIX Association.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, pages
154–169, 2000.

[7] A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections.
SIGPLAN Not., 26(12):85–96, 1991.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. In JGI
’01: Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, page 181, New York, NY,
USA, 2001. ACM Press.

[9] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. SIGOPS
Oper. Syst. Rev., 37(5):237–252, 2003.

[10] J. Gilchrist. Parallel bzip2 (pbzip2):data compression
software, 2007.

[11] J. J. Harrow. Runtime checking of multithreaded
applications with visual threads. In Proceedings of the
7th International SPIN Workshop on SPIN Model
Checking and Software Verification, pages 331–342,
London, UK, 2000. Springer-Verlag.

[12] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,

int COND = 0;
int GLOB = 0;
static pthread_cond_t CV = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t MU = PTHREAD_MUTEX_INITIALIZER;

//worker thread
void *worker(void*){

GLOB = 1;
pthread_mutex_lock(&MU);
COND = 1;
GLOB = 2;
pthread_cond_signal(&CV);

pthread_mutex_unlock(&MU);
return NULL;

}

//parent thread
int main(){

pthread_t threadid;
pthread_create(&threadid, NULL, worker, NULL);
usleep(1000); //lost signal
pthread_mutex_lock(&MU);

while (COND != 1){
pthread_cond_wait(&CV, &MU);

}
pthread_mutex_unlock(&MU);
GLOB = 3;
pthread_join(threadid, NULL);
return 0;

}

Figure 8: An example that causes a false positive
on GLOB, even though a happens-before relation ex-
ists. The signal sent by the worker thread is lost and
so the race detector cannot establish the happens-
before relation. However, there is still an inter-
thread dependency, but through the COND variable.

21(7):558–565, 1978.

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting
atomicity violations via access-interleaving invariants.
IEEE Micro, 27(1):26–35, 2007.

[14] F. Mattern. Virtual time and global states of
distributed systems. In Parallel and Distributed
Algorithms: proceedings of the International Workshop
on Parallel and Distributed Algorithms.

[15] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, University of
Cambridge, UK, 2004.

[16] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. 2003.

[17] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation.
SIGPLAN Not., 42(6):89–100, 2007.

[18] R. H. B. Netzer and B. P. Miller. What are race
conditions?: Some issues and formalizations. ACM
Lett. Program. Lang. Syst., 1(1):74–88, 1992.

[19] H. Nishiyama. Detecting data races using dynamic
escape analysis based on read barrier. In VM’04:
Proceedings of the 3rd conference on Virtual Machine
Research And Technology Symposium, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[20] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. SIGPLAN Not., 38(10):167–178, 2003.

[21] V. Pankratius, C. Schaefer, A. Jannesari, and W. F.

0%

5%

10%

15%

20%

25%

30%

35%

R
u

n
ti

m
e

o
v

er
h

ea
d

Figure 9: Runtime overhead of modified race
checker on PARSEC benchmarks.

Tichy. Software engineering for multicore systems: an
experience report. In IWMSE ’08: Proceedings of the
1st international workshop on Multicore software
engineering, pages 53–60, New York, NY, USA, 2008.
ACM.

[22] E. Pozniansky and A. Schuster. Multirace: efficient
on-the-fly data race detection in multithreaded c++
programs: Research articles. Concurr. Comput. :
Pract. Exper., 19(3):327–340, 2007.

[23] B. Richards and J. R. Larus. Protocol-based data-race
detection. In SPDT ’98: Proceedings of the
SIGMETRICS symposium on Parallel and distributed
tools, pages 40–47, New York, NY, USA, 1998. ACM.

[24] M. Ronsse and K. D. Bosschere. Recplay: a fully
integrated practical record/replay system. ACM
Trans. Comput. Syst., 17(2):133–152, 1999.

[25] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and
J. Torrellas. Accurate and efficient filtering for the
intel thread checker race detector. In ASID ’06:
Proceedings of the 1st workshop on Architectural and
system support for improving software dependability,
pages 34–41, New York, NY, USA, 2006. ACM.

[26] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[27] J. Seward. bzip2: A free data compressor, 2007.

[28] Valgrind-project. Helgrind: a data-race detector, 2007.

[29] C. von Praun and T. R. Gross. Object race detection.
SIGPLAN Not., 36(11):70–82, 2001.

[30] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
efficient detection of data race conditions via adaptive
tracking. SIGOPS Oper. Syst. Rev., 39(5):221–234,
2005.

