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REPLAY-BASED SYNCHRONIZATION OF TIMESTAMPS IN EVENT TRACES OF

MASSIVELY PARALLEL APPLICATIONS

DANIEL BECKER∗, JOHN C. LINFORD†, ROLF RABENSEIFNER‡, AND FELIX WOLF∗

Abstract. Event traces are helpful in understanding the performance behavior of message-passing applications since they
allow in-depth analyses of communication and synchronization patterns. However, the absence of synchronized hardware clocks
may render the analysis ineffective because inaccurate relative event timings can misrepresent the logical event order and lead
to errors when quantifying the impact of certain behaviors. Although linear offset interpolation can restore consistency to some
degree, inaccuracies and time-dependent drifts may still disarrange the original succession of events—especially during longer runs.
In our earlier work, we have presented an algorithm that removes the remaining violations of the logical event order postmortem
and, in addition, have outlined the initial design of a parallel version. Here, we complete the parallel design and describe its
implementation within the Scalasca trace-analysis framework. We demonstrate its suitability for large-scale applications running
on more than thousand application processes and evaluate its accuracy by showing that it eliminates inconsistent inter-process
timings while preserving the length of local intervals.

1. Introduction. Event tracing is a popular technique for the postmortem performance analysis of mes-
sage-passing applications because it can be used to investigate temporal relationships between concurrent ac-
tivities. Obviously, the accuracy of the analysis depends on the comparability of timestamps taken on different
processors. Inaccurate timestamps may cause a given interval to appear shorter or longer than it actually was,
or change the logical event order, which requires a message to be received only after it has been sent. This is
also referred to as the clock condition. Besides leading to false conclusions during performance analysis when
the impact of certain behaviors is quantified, clock condition violations may confuse the user of trace visualiza-
tion tools such as Vampir [30] by causing arrows representing messages to point backward in time-line views
(Figure 1.1(a)). Moreover, automatic trace-analysis tools such as Scalasca [19] may produce not only inaccurate
but outright inconsistent results when calculating certain global metrics that rely on the correct logical order
of message events. For example, the output of Scalasca shown in Figure 1.1(b) suggests that the difference
between the total time spent in barrier synchronization (i. e., collective synchronization) and the time spent in
the barrier before and immediately after the actual synchronization has taken place is negative, which cannot
be true.

To avoid clock-condition violations, the error of timestamps should ideally be smaller than one half of
the message latency. A typical clock quartz with a drift of only 1 min/year will cause a deviation of 2 µs
already after 1 second. While some systems such as ibm Blue Gene offer a relatively accurate global clock,
many other systems including most pc clusters provide only processor-local clocks that are either entirely
non-synchronized or synchronized only within disjoint partitions (e.g., smp-node or multicore-chip). Clock
synchronization protocols such as ntp [29] can align the clocks to a certain degree, but are often not accurate
enough for our purposes. Assuming that every local clock on a parallel machine runs at a different but constant
speed (i. e., with a different but constant drift), the (global) time of an arbitrarily chosen master clock can be
calculated locally as a linear function of the local time. However, as the assumption of constant drifts is only
an approximation, violations of the clock condition may still occur - especially when the offset measurements
needed for the interpolation are taken with long intervals in between. For example, temperature variations may
cause variations of the drift rate of more than 10−8, which will cause synchronization errors of more than 1 µs
after 100 seconds execution time. Figure 1.2 shows clock offsets after linear end-to-end interpolation measured
using a simple benchmark program that was executed for 500 seconds. One can see that the non-linearity of
local clocks caused clock errors larger than the send-receive and allreduce latency.

While the errors of single timestamps are hard to assess, clock-condition violations can be easily detected
and offer a toehold to increase the fidelity of inter-process timings. In our earlier work [3], we have presented
an algorithm that retroactively corrects timestamps violating the clock condition in event traces of mpi appli-
cations. However, in view of rapidly increasing parallelism combined with advances in scalable trace-analysis
technology [5, 19, 6], it is crucial that the algorithm scales to large numbers of application processes. For
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(a) Time-line visualization of a message exchange in backward direction.

(b) A global time metric that must not be negative.

Fig. 1.1. Inconsistent trace analyses due to insufficiently synchronized timestamps.

this reason, we have designed and implemented a parallel version of the algorithm and integrated it into the
Scalasca performance-analysis framework [1, 18]. Instead of sequentially processing a single global trace file, we
follow Scalasca’s scalable trace-analysis approach [19] and process separate process-local trace files in parallel
by replaying the original communication on as many cpus as have been used to execute the target application
itself. Since trace processing capabilities (i. e., processors and memory) grow proportionally with the number
of application processes, we can achieve good scalability at very large scales.

Fig. 1.2. Non-linear offsets of physical clocks measured on an Infiniband cluster in comparison to the send-receive and
allreduce latency.

The outline of this article is as follows: After reviewing related work in Section 2, we briefly describe the
serial version of the algorithm in Section 3. In Section 4, we complete the parallel design outlined in [3] and
explain its implementation within the Scalasca trace-analysis infrastructure. We evaluate the scalability of the
parallel version in Section 5, where we also show that the collaterally introduced deviations of local interval
lengths remain within acceptable limits. Finally in Section 6, we conclude our paper and give an outlook on
future work.

2. Related Work. This article describes an approach to retroactively synchronizing timestamps in event
traces of parallel programs for the purpose of accurate program observation. While a detailed introduction to
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event-based program observation as discussed here can be found in Riek et al. [35], we restrict our account of
related work to the topic of clock synchronization.

Network-based synchronization protocols aim at synchronizing distributed clocks before reading them.
Clocks distributed across the network query the global time from reference clocks, which are often organized in a
hierarchy of servers. For instance, ntp [29] uses widely accessible and already synchronized primary time servers.
Secondary time servers and clients can query time information via both private networks and the Internet. To
reduce network traffic, the time servers are accessed only at regular intervals to adjust the local clock. Jumps
are avoided by changing the drift while leaving the actual time unmodified. Unfortunately, varying network
latencies limit the accuracy of ntp to about one millisecond compared to a few microseconds required to satisfy
the clock condition for mpi applications running on clusters equipped with modern interconnect technology.

Time differences among distributed clocks can be characterized in terms of their relative offset and drift
(i. e., the rate at which the offset changes over time). In a simple model assuming different but constant drifts,
global time can be established by measuring offsets to a designated master clock using Cristian’s probabilistic
remote clock reading technique [7]. After estimating the drift, the local time can be mapped onto the global
(i. e., master) time via linear offset interpolation. Offset values among participating clocks are measured either
at program initialization [13] or at initialization and finalization, and are subsequently used as parameters of
the linear correction function [22, 27]. So as not to perturb the program, offset measurements in between are
usually avoided, although a recent approach proposes periodic offset measurements during global synchronization
operations while limiting the effort required in each step by resorting to indirect measurements across several
hops [10]. While linear offset interpolation might prove satisfactory for short runs (or interpolation intervals),
measurement errors and time-dependent drifts may create inaccuracies and clock-condition violations during
longer runs. Additionally, repeated drift adjustments caused by ntp may impede linear interpolation, as they
deliberately introduce non-constant drifts.
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Fig. 2.1. Algorithms that calculate the clock errors through the differences of the message transfer time in both directions
between two processes.

If linear interpolation alone turns out to be inadequate to achieve the desired level of accuracy, error estima-
tion allows the retroactive correction of clock values in event traces after assessing synchronization errors among
all distributed clock pairs. First, difference functions among clock values are calculated from the difference be-
tween clock values of receive and send events (plus the minimum message latency). Second, a medial smoothing
function can be found and used to correct local clock values because for each clock pair two difference functions
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exist. Regression analysis and convex hull algorithms have been proposed by Duda et al. [12] to determine
the smoothing function. Using a minimal spanning tree algorithm, Jezequel [25] adopted Duda’s algorithm
for arbitrary processor topologies. In addition, Hofmann [21] improved Duda’s algorithm using a simple mini-
mum/maximum strategy and further proposed that the execution time should be divided into several intervals
to compensate for different clock drifts in long running applications. Figure 2.1 shows the principles underlying
Duda’s and Hofmann’s algorithms. Using a graph-theory algorithm to calculate the shortest paths, Hofmann
and Hilgers [23] simplified Jezequel’s algorithm for handling multi-processor topologies. A modification aimed at
handling cases of non-existing communication relations between some of the application processes is described
in [33]. Biberstein et al. [4] rewrote Hofmann’s and Hilgers’ algorithm for use on the Cell be architecture
using a short and intelligible notation. Their version solves the clock condition problem only for short intervals
(i. e., without splitting into sub-intervals for handling a non-linear drift of the physical clocks). Babaoǧlu and
Drummond [2, 11] have shown that clock synchronization is possible at minimal cost if the application makes a
full message exchange between all processors at sufficiently short intervals. However, jitter in message latency,
nonlinear relations between message latency and message length, and one-sided communication topologies limit
the usefulness of error estimation approaches. References to additional error estimation approaches can be
found in a survey by Yang and Marsland [37].

In contrast, logical synchronization uses happened-before relations among send and receive pairs to syn-
chronize distributed clocks. Lamport introduced a discrete logical clock [26] with each clock being represented
as a monotonically increasing software counter. As local clocks are incremented after every local event and the
updated values are exchanged at synchronization points, happened-before relations can be exploited to further
validate and synchronize distributed clocks. If a receive event appears before its corresponding send event,
that is, if a clock-condition violation occurs, the receive event is shifted forward in time according to the clock
value exchanged. Lamport’s discrete logical clock [26] can be used directly for monitoring [8]. Moreover, an
algorithm to prevent the drift between the logical clocks has been proposed by Raynal [34]. As an enhancement
of Lamport’s discrete logical clock, Fidge [15, 16] and Mattern [28] proposed a vector clock. In their scheme,
each processor maintains a vector representing all processor-local clocks. While the local clock is advanced with
each local event as before, the local vector is updated after receiving a message using an element-wise maximum
operation between the local vector and the remote vector that has been sent along with the message. The vector
clock is used in some monitoring tools [9, 14] and, in a modified form, also to distinguish in event traces between
primary wait states and secondary ones that are merely caused by propagation [24]. Furthermore, global events
are introduced in [20], while in [31] spontaneous events (e.g. collisions on a network) are taken into account.
Finally, limits of the logical clock and the vector clock are illustrated in [36].

3. Controlled Logical Clock. The controlled logical clock (clc) algorithm by Rabenseifner [32, 33]
retroactively corrects clock condition violations in event traces of message-passing applications by shifting mes-
sage events in time while trying to preserve the length of intervals between local events. The algorithm restores
the clock condition using happened-before relations derived from message semantics. The clock condition, given
in Equation (3.1), requires that a receive event occurs at the earliest lmin after the matching send event, with
lmin being the minimum message latency.

trecv ≥ tsend + lmin (3.1)

If the condition is violated for a send-receive event pair, the receive event is moved forward in time. To preserve
the length of intervals between local events, events following or immediately preceding the corrected event
are moved forward as well. These adjustments are called forward and backward amortization, respectively.
Note that the accuracy of the adjustment depends on the accuracy of the original timestamps. Therefore, the
algorithm benefits from weak pre-synchronization such as the aforementioned linear offset interpolation.

Figure 3.1 illustrates the different steps of the clc algorithm using a simple example consisting of two
processes exchanging a single message. The subfigures show the time lines of the two processes along with their
send (S) and receive (R) events, each of them enclosed by two other events (Ei). Figure 3.1(a) shows the initial
event trace based on timestamps measured with insufficiently synchronized local clocks. The trace exhibits a
violation of the clock condition by having the receive event appear earlier than the matching send event. To
restore the clock condition, R is moved forward in time to be lmin ahead of S (Figure 3.1(b)). Since now the
distance between R and E4 becomes too short, E4 is adjusted during the forward amortization to preserve
the length of the interval between the two events (Figure 3.1(c)). However, the jump discontinuity introduced
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by adjusting R affects not only events later than R but also events earlier than R. This is corrected by the
backward amortization which shifts E2 closer to the new position of R, see Figure 3.1(d).

While the forward amortization is at least initially applied to all events following R, the backward amor-
tization applies a linearly increasing correction to a limited amortization interval before R. However, in order
to avoid new violations of the clock condition, the correction must not advance any send event located in this
interval farther than the matching receive event (minus the minimum message latency). In such a case, we
apply the linear correction piecewise, advancing the send events as far as possible and calculating a different
slope for each subinterval before, after, or between those sends [3, 33].
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Fig. 3.1. Backward and forward amortization in the controlled logical clock algorithm.

Note that the algorithm only moves events forward in time. To prevent an increase of the overall time
represented by the trace that may occur as a result of a domino-style propagation of forward amortizations,
the algorithm applies scaling factors (i. e. control variables) to ensure that the overall error remains within
predefined boundaries. The clc algorithm always tries to advance all processor clocks to the fastest clock
when correcting the non-linearity of the clocks. Given that the original timestamps may be logically wrong,
this correction leads to logically correct timestamps with marginal local inaccuracies. As a result, timestamp
differences between events on different processes normally become more accurate than the original ones because
the clocks are advanced to the fastest one. In comparison, the aforementioned algorithms of Duda, Hofmann,
and colleagues align the timestamps with the average of the local clocks. However, for monitoring purpose this
difference is not significant because it is in the range of the drift rates among local clocks (i.e, in the range of
about 10−6 − 10−4). Combined with linear offset interpolation between program start and end, the expected
differences are in the range of 10−8.

Since the original (clc) algorithm takes only point-to-point messages into account, it has been extended in
our earlier work [3] to make it applicable to realistic mpi applications that perform not only point-to-point but
also collective communication. In our event model, a collective operation instance consists of multiple pairs of
enter and exit events (i. e., one pair for each participating process). The basic idea behind extending the clc
algorithm to collective communication is to map collective communication onto point-to-point communication.
For this purpose, we consider a single collective operation as a composition of multiple point-to-point operations,
taking the semantics of the different flavors of mpi collective operations into account (e.g. 1-to-N, N-to-1, etc.).
For instance, in an N-to-1 operation one root process receives data from N other processes. Given that the
root process is not allowed to exit the operation before it has received data from the last process to enter the
operation, the clock condition must be observed between the last enter event and the exit event of the root
process. Depending on the flavor of the collective operation, different enter and exit events are mapped onto
send and receive events, respectively. In reference to the fact that our method is based on logical clocks, we call
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the send and receive event type assigned during this mapping the logical event type as opposed to the actual
event type (e.g., enter or collective exit) specified in the event trace.

Until recently, only a serial implementation of the original (clc) algorithm existed. In the next section, we
describe how the extended version of the algorithm has been parallelized and how the parallel version has been
integrated into the Scalasca trace-analysis framework.

4. Parallel Timestamp Synchronization. Scalasca, which has been specifically designed for large-scale
systems, scans event traces of parallel applications for wait states that occur when processes fail to reach
synchronization points in a timely manner, for example, as a result of an unevenly distributed workload.
Such wait states can present severe challenges to achieving good performance, especially when trying to scale
communication-intensive applications to large processor counts. As a first step towards reducing their impact,
Scalasca provides a diagnostic method that allows their localization, classification, and quantification, in par-
ticular at larger scales. Scalability is achieved by analyzing the process-local traces in parallel, making Scalasca
a parallel program in its own right.

Similar to the wait-state analysis [19] performed by Scalasca, the clc algorithm requires comparing events
involved in the same communication operation, which makes it a suitable candidate for the same parallelization
strategy. Instead of sequentially processing a single global trace file, Scalasca processes separate process-local
trace files in parallel by replaying the original communication on as many cpus as have been used to execute the
target application itself. Since trace processing capabilities (i. e., processors and memory) grow proportionally
with the number of application processes, we can achieve good scalability at very large scales. During the replay,
sending and receiving processes exchange relevant information needed to analyze the communication operation
being replayed. The parallel clc algorithm is divided into two replay phases: a forward phase for the forward
amortization and a backward phase for the backward amortization. The backward phase is only needed if clock
condition violations appear during the forward phase.

4.1. Integration with Scalasca. Almost all the postmortem trace-analysis functionality of Scalasca
including the parallel clc algorithm is implemented on top of pearl [17], a parallel library that offers higher-
level abstractions to read and analyze large volumes of trace data. A typical pearl application is a parallel
program having as many processes as the target application had that generated the trace data, resulting in a
one-to-one mapping of target application and analysis processes. All analysis processes read the trace data of
“their” application process into main memory and traverse the traces in parallel while exchanging information
at synchronization points.

Local
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Local
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Trace
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rewrite

Fig. 4.1. Parallel trace-analysis process. Grey rectangles denote programs and white rectangles with the upper right corner
turned down denote files. Stacked symbols denote multiple instances of programs or files running or being processed in parallel.

In Scalasca, the parallel clc algorithm is applied after the traces have been loaded and before the wait-
state analysis takes place. To increase the fidelity of the clc outcome, the timestamps first undergo a pre-
synchronization step. This step performs linear offset interpolation based on offset measurements taken during
initialization and finalization of the target application. Once the offset values are known to each analysis
process, the interpolation operation is performed locally and does not require any further communication.
As an alternative to the native Scalasca wait state analysis, the traces can also be rewritten with modified
timestamps, converted, and visualized using Vampir. The full analysis process is illustrated in Figure 4.1.

4.2. Forward Amortization. During the forward phase, the communication replay proceeds in the same
direction as it did in the target application. For every pair of logical send and receive events, the sending process
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sends the timestamp of the logical send event to the receiving process, which compares it to the timestamp of
the matching logical receive event (minus the minimum message latency) and, if necessary, applies the forward-
amortization equation described in [3]. Recall that, in addition to actual send and receive events, events
pertaining to entering or leaving collective communication operations may be classified as logical send or receive
events. In this case, the logical event type is derived from the name of the collective operation and the role
(e.g., root) a particular process plays in the operation.

In its treatment of events the algorithm distinguishes between (logical) send or receive events and internal

events that neither send nor receive any kind of message. A different action is performed for each of the three
types. Since the correction of an internal event does not require any extra communication, the timestamp
adjustment is immediately applied. A send event is adjusted locally and the new timestamp is sent via forward-
replay to the receiving process. On the receiver side, the order of these two steps is reversed. The adjusted
send timestamp must be obtained from the sender, before the correction can be performed. Finally, the receiver
saves detected clock condition violations temporarily along with the associated error so that this information
can be reused during the backward amortization phase.

While the direction of inter-process exchange of timestamps is determined by the (logical) type of an event
(i. e., send or receive), the actual communication operation invoked to accomplish the transfer depends on the
operation originally used by the target application. For this purpose, communication operations are classified
according to the number of peers involved on either side: point-to-point, 1-to-N, N-to-1, N-to-N, and two special
classes for scan and exscan operations. In brief, point-to-point operations are replayed using point-to-point
communication, while collective operations are replayed using different flavors of collective communication.

For the sake of simplicity, our current implementation uses two different values for the minimum message
latency lmin (see Equation (3.1)): the minimum inter-node and the minimum intra-node latency. Following
a conservative approach aimed at avoiding overcorrection, we refrained from considering an extra collective
latency, as the duration of collective operations may depend on many factors that are hard to identify, some
of them even hidden inside the underlying mpi implementation. Thus, the algorithm requires exchanging the
timestamps and the node identifiers to know which of the two latency values must be used.

As mentioned earlier, the clc algorithm uses so-called control variables. Control variables are scaling factors
that are applied to interval expressions when calculating new event timestamps with the purpose of preserving
the length of local intervals and avoiding an avalanche-like propagation of corrections [3]. Usually, the control
variables are kept less than 1 minus the maximal drift of the clocks. To determine their exact value, however,
a global view of the trace data is needed, which is too expensive to establish in our parallel scheme as global
communication would be required for every single event. Instead, we approximate a (single) suitable value for
all control variables by performing multiple passes of forward replay through the trace data until the maximum
error is below a predefined threshold. In practice, more than one pass is seldom needed.

4.3. Backward Amortization. The purpose of the backward amortization phase is to smooth jump
discontinuities introduced during the forward amortization by slowly building up the ascension to the jump.
This is achieved by applying a process-local linear correction to the interval immediately preceding the jump.
However, to preserve the clock condition, the algorithm must not advance the timestamp of any send event
located in this interval farther than that of the matching receive event (minus the minimum message latency),
leading to the piecewise linear interpolation mentioned earlier. In addition to what has already been stated
in our initial design [3], determining these upper limits requires a backward replay, starting at the end of the
trace with communication proceeding in backward direction to avoid the danger of deadlocks. While replaying
the communication backward, we store with each logical send event the timestamp of the matching receive
event after forward amortization. With this information available, an appropriate piecewise linear interpolation
function can be calculated for the amortization interval behind every receive event shifted during the forward
replay. Note that during the backward amortization the roles of sender and receiver are reversed: the timestamp
of a receive event must be available at the process of the matching send event.

4.4. Remark. Given that most mpi implementations use binomial tree algorithms to perform their col-
lective operations, our replay-based approach reduces the communication complexity of replaying collectives
automatically to O(log N). Moreover, the stepwise parallel replay during the backward amortization phase
can, in theory, be replaced by a single collective operation per communicator for the entire trace, but would
impose impractical memory requirements. For the actual operations used during both replay phases and the
timestamps being exchanged, please refer to [3].
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5. Experimental Evaluation. Here we evaluate the scalability and accuracy of the parallel controlled
logical clock algorithm and also give evidence of the frequency and the extent of clock condition violations in
event traces of a realistic mpi application. We ran experiments on the following two platforms:
MareNostrum consists of 2560 js21 blade computing nodes, each with 2 dual-core ibm 64-bit Powerpc 970mp

processors running at 2.3 ghz. The computing nodes of MareNostrum communicate primarily through
a Myrinet network with Myrinet adapters integrated on each server blade. The measured mpi inter-node
latency was 7.7µs, the measured mpi intra-node latency was 1.3µs.

CACAU consists of 200 compute nodes, each with 1 dual-core Intel Xeon em64t cpu running at 3.2ghz.
The nodes are linked with a Voltaire Infiniband Network and a Gigabit Ethernet. The measured mpi
inter-node latency was 4.7µs, the measured mpi intra-node latency was 1.0µs.

As a test application, we used the mpi version of the asc smg2000 benchmark, a parallel semi-coarsening
multigrid solver that uses a complex communication pattern and performs a large number of non-nearest-
neighbor point-to-point communication operations. Applying a weak scaling strategy, a fixed 16 × 16 × 8
problem size per process with five solver iterations was configured.

While linear interpolation can remove most of the clock condition violations in traces of short runs, it is
usually insufficient for longer runs. We therefore emulated a longer run by inserting sleep statements immediately
before and after the main computational phase so that it was carried out ten minutes after initialization and
ten minutes before finalization. This corresponds to a scenario, in which only distinct intervals of a longer
run are traced with tracing being switched off in between. Since full traces of long running applications may
consume a prohibitive amount of storage space, the “partial” tracing emulated here mimics the recommended
practice of tracing only pivotal points that warrant a more detailed analysis. For our purposes, the artificial
chronological distance to the offset measurements on either end of the run adjusted the interpolation interval to
roughly twenty minutes execution time. However, with many realistic codes running for hours, this can still be
regarded as an optimistic assumption. Compared to true partial tracing of a longer smg2000 run, our method
had the advantage that the total runtime including the actual computational activity and therefore the distance
between the two offset measurements was roughly the same for all configurations.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

6
4

(2
.8

 M
)

1
2

8

(6
.8

 M
)

2
5

6

(1
6

.0
 M

)

5
1

2

(3
7

.9
 M

)

1
0

2
4

(9
0

.5
 M

)

# processors

(# messages)

fr
a

c
ti

o
n

 o
f 

a
ff

e
c

te
d

 m
e

s
s

a
g

e
s

reversed

violations

violations-clc

(a) MareNostrum.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

3
2

(1
.1

 M
)

6
4

(2
.8

 M
)

1
2

8

(6
.8

 M
)

# processors

(# messages)

fr
a

c
ti

o
n

 o
f 

a
ff

e
c

te
d

 m
e

s
s

a
g

e
s

reversed

violations

violations-clc

(b) Cacau.

Fig. 5.1. Percentage of messages with the order of send and receive events being reversed, of messages with clock condition
violations, and of clock condition violations explicitly corrected by the clc algorithm during forward amortization.
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Table 5.1
Average and maximum errors of message events in reversed order.

Platform Avg. error [µs] Max. error [µs]
MareNostrum 2.6 323
Cacau 4.3 186

Figure 5.1 shows the frequency of clock condition violations on MareNostrum and Cacau for a range of scales.
Since the number of violations varies between runs, the numbers represent averages across three measurements
for each configuration. The numbers show the percentage of messages with the order of send and receive
events being reversed in the original trace, of messages with clock condition violations (trecv < tsend + lmin) in
the original trace, and of clock condition violations explicitly corrected by the clc algorithm during forward
amortization. We also counted logical messages that can be derived by mapping collective communication onto
point-to-point semantics. When visualized, messages with the order of send and receive events being reversed
seem to flow backward in time. The number of violations explicitly corrected by the clc algorithm is usually
smaller than the initial number of violations because some of them are already implicitly removed during forward
amortization before a correction can be applied. On MareNostrum, around 1% of the messages flow backward
in time, while on Cacau the percentage ranges between 1 and 6%. Higher latencies on MareNostrum offer
a potential explanation for the smaller number of violations detected on this system because higher latencies
naturally insert a larger temporal distance between send and receive events of the same message. Although the
number of inconsistent messages on Cacau seem to decrease with growing numbers of processes, the results on
MareNostrum do not confirm a clear correlation between the two indicators. Table 5.1 lists the average and
maximum displacement errors (i. e. the time the receive event appears earlier than the send event) of message
events in backward order, as seen in the original trace.

5.1. Scalability. Because it is the larger system, we evaluated our algorithm’s scalability on MareNostrum.
According to Figure 5.2, the parallel timestamp synchronization, the Scalasca wait-state analysis, and the
execution time of smg2000 itself exhibit roughly equivalent scaling behavior - a result of the replay-based
nature of the two analysis mechanisms and the communication-bound performance characteristics of smg2000.
The fact that the total time needed by the integrated Scalasca analysis (synchronization and wait-state analysis)
including loading the traces grows more steeply suggests that i/o will increasingly dominate the overall behavior
beyond 1024 processes, rendering the additional cost of the synchronization negligible.
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Fig. 5.2. Scalability of parallel timestamp synchronization on MareNostrum.
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5.2. Accuracy. The transformation performed by the clc algorithm raises the question of how accurate
the modified traces actually are. To answer this question, it must first be acknowledged that traces with clock-
condition violations are inaccurate because they are inconsistent. The behavior they reflect violates causation
and is therefore impossible. The clc algorithm eliminates these inconsistencies, improving the accuracy of
inter-process timings. A very simple metric quantifying this improvement is the fraction of clock-condition
violations found in the original trace (second row in Figure 5.1), which are removed in the modified trace.

However, the necessary corrections applied in the course of the algorithm also modify—as a collateral
effect—relative process-local event timings, which may lead to differences in the lengths of local intervals when
comparing the original with the modified trace. Again, since the original timestamps have been taken with
clocks that exhibit unstable drifts, there is, of course, no guarantee that the measured interval lengths are
correct, although the deviation can be expected to be small in comparison to the total interval length. In
addition, the original timings are all we “know” about the target application’s local execution behavior. For
this reason, we decided to evaluate how this knowledge has been preserved in the modified trace.

To assess the fidelity of process-local timings after applying the clc algorithm, we determined the relative
deviation of local interval lengths, considering two different types of intervals: (i) intervals between an event
and the first event of the same process, which roughly corresponds to the timestamp of an event relative to the
begin of the trace and (ii) intervals between adjacent process-local events (i. e., intervals between an event and
its immediate successor). We refer to the first interval type as the event position and to the second interval type
as the event distance.

The maximum relative deviation of the event position across all our measurements was below 0.0001 %;
the maximum absolute deviation was 425.18 µs, roughly corresponding to the maximum displacement error
observed (Table 5.1). Table 5.2 shows the relative deviation of the event distance across different combinations
of platform and number of processors. The numbers in individual columns are percentages and are rounded to
two digits after the decimal point. They represent the maximum across three measurements. To account for
the relatively long “correct” stretches artificially introduced by the sleep statements before and after the main
computation, only the middle section of the trace between the sleep statements was considered. Furthermore,
since deviations in larger intervals are more relevant to performance analysis than those in smaller intervals,
the average was calculated using

∑
|∆t|/

∑
|t| to assign appropriate weight to larger intervals, with ∆t being

the absolute deviation and t being the original interval length.

Table 5.2
Relative deviation of event distance. All numbers are given in percent and rounded to two digits after the decimal point.

MareNostrum Cacau

# CPUs 64 128 256 512 1024 32 64 128

Average 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00
Maximum 27.17 461.74 411.52 311.64 974.44 82.78 69.31 16.77

Percentage of intervals with deviation above threshold

> 0% 80.80 96.21 97.34 98.23 99.07 92.43 93.67 24.27
> 0.01% 0.15 0.63 0.39 0.48 0.81 0.47 0.27 0.04
> 0.1% 0.15 0.61 0.38 0.46 0.79 0.45 0.26 0.04
> 1% 0.01 0.10 0.06 0.07 0.18 0.09 0.04 0.00
> 10% 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals

with deviation above threshold

> 0% 80.51 96.22 96.86 92.20 95.17 50.37 92.50 23.00
> 0.01% 0.41 0.95 0.58 0.71 0.72 0.24 0.68 0.05
> 0.1% 0.20 0.23 0.28 0.21 0.24 0.19 0.55 0.04
> 1% 0.01 0.02 0.03 0.02 0.02 0.04 0.11 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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It can be seen that in spite of very small averages, deviations of occasionally more than 100% are still
possible. Although the backward amortization is designed to smooth sudden jumps introduced by the forward
amortization, it can happen that a send event cannot be advanced far enough without causing a new clock
condition violation when passing the corresponding receive event. To evaluate frequency and extent of such
situations, we calculated (i) the percentage of intervals whose deviation exceeds a certain threshold and (ii) the
percentage of execution time (accumulated across all processes) consumed by intervals whose deviation exceeds
the threshold. The results given in Table 5.2 indicate that larger deviations are rare and that their influence on
performance-analysis results will usually be negligible.

6. Conclusion. Event traces of parallel applications may suffer from inaccurate timestamps in the absence
of synchronized hardware clocks. As a consequence, the analysis of such traces may yield wrong quantitative
and even qualitative results or confuse the user of time-line visualizations with messages flowing backward in
time. Because linear offset interpolation based on offset measurements can account for such deficiencies only
for very short runs, we have designed and implemented a parallel algorithm for the retroactive correction of
timestamps based on logical clocks that eliminates inconsistent inter-process timings while only marginally
changing the length of local intervals. Our replay-based implementation scales easily to more than thousand
application processes and shows potential for even larger configurations. The algorithm has been incorporated
into the Scalasca framework to facilitate trace analyses of longer runs on larger cluster systems. In the future,
we want to extend our algorithm to hybrid applications employing a mix of message passing and shared-memory
parallelism, which will require paying attention to happen-before relationships, for example, imposed by Openmp
barrier or lock event semantics.
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