UNB

Universitat Autonoma
de Barcelona

Departament d’Arquitectura de
Computadors i Sistemes Operatius

Performance Evaluation of Applications
for Heterogeneous Systems by means of
Performance Probes

Thesis submitted by Alexandre Otto
Strube for the degree of Philosophiae
Doctor by the Universitat Autonoma de
Barcelona, under the supervision of Dr.
Emilio Luque

July 15, 2011

Preface

Memoria presentada por Alexandre Otto Strube para optar al grado de Doctor por
la Universidad Autéonoma de Barcelona. Trabajo realizado en el Departamento de
Arquitectura de Computadores y Sistemas Operativos de la Universidad Autonoma
de Barcelona dentro del programa de Doctorado en Computacion de Altas Presta-
ciones bajo la direccion del Dr. Emilio Luque Fadén.

“I almost wish I hadn’t gone down that rabbit-hole
-and yet-and yet-

it’s rather curious, you know, this sort of life!”

— Alice in Wonderland

Acknowledgments

This is a strange part of this work. One is always afraid of saying the old cliches, or
of forgetting to mention some person and then, unwittingly, hurt someone’s feelings.
At least I don’t care about the cliches.

Before anything, some unusual acknowledgments: mr Carlito Jensen, a good
friend of my dad. Why? Because I have stolen I book of COBOL from his house
when I was less than five years old. That book shaped my life like nothing else did.
My cousin Ricardo, who started teaching me BASIC when I was 6, and d.Neda, who
kept on my education on computers during primary school, when my colleagues were
trying to learn how to subtract, and who hired me as a teacher for the computing
science classes when I was 12.

Let’s get started. First and foremost, Andrea “Dolly” Couto, my old friend,
versed in pretty much anything, from languages to art, cooking, photography, sailing,
beer and wines to software system analysis. She started the chain of events that
made me start in a Ph.D., and without her, I would not be here at all. I don’t know
if I should thank you or smack you, but I prefer the former. So I pay for the beer!

Then Eduardo, who was of more importance than he probably knows about.
Besides his help on my first steps as a researcher, his thesis was the whole base of
my work. I try to mimic - mostly unsuccessfully - his discipline and writing style,
in the sense of completeness and cohesion. Thanks Edu.

In Computer Science, every work tends to be radically different from the pre-
vious one. My personal guru from the very first moment I landed in our lab, Genaro
helped me with his seemingly infinite knowledge of everything related to computers
and other subjects, and with his good will to everyone. Again, I could not have
done this without you, my friend.

Of course I cannot forget to thank Emilio Luque and Dolores “Lola” Rexachs.
Your wisdom, patience and care go far beyond research. You are not only my role
model as researchers, but as human beings. One day I aspire to be like you.

I cannot forget my sister Fernanda. She has a heart as big as my parents, and

a smile as beautiful as the sky. And she gave me my niece, Gabi, which I see during
these lonely and long nights working. She is the piece of hope that this world can
be a better place.

As we are in the subject of people I aspire to be like, I cannot forget my
parents, Ralf and Nilce. I have no words to explain how I love and admire you.
If one day I manage to be half the human being you are, I will be a great person
already. Thanks for everything, always.

Pretty much no one is quite sure about the existence of a god, but one thing
I know for sure: guardian angels exist. Some of them helped me directly. See, my
health has not been the best during these crazy years. But when my heart decided
to give a break to tell me to go slower, Hisham was on my side all the way to the
hospital. Would I be here if it were not for him? Probably no.

Likewise, when the anaphylaxis hit me like a tsunami, letting me blind and
with a start of a cardiac arrest, Katia literally dragged me to the doctors. She
helped in so many ways throughout the years that I can only say thank you. I hope
you are happy, wherever you are.

In a large journey like this, from an arrogant grad student to a humble Ph.D,
you never go alone. Dario, the brother I discovered in this side of the world, always
had the shoulder and the ears available when I needed, and for bringing to the world
the lovely Arami. Thanks, thanks a lot. Thanks also Gustavo and Alexandra, my
great friends, thanks for your patience with this crazy friend. And thanks Daniel
and Jamile. I spent almost as much time in their house as in mine. They made the
distance from my family a little more bearable, by putting me into theirs.

Being this a small world, I have had the opportunity to make a friend in so
many different places and circles that it is hard to be just coincidence. From the
times when we both worked on internet providers, then to the motorcycling world,
then to the sailing world, and finally, working side by side 10.000km far from where
we met, I must thank Leonardo for being such an example of worker I should be,
and of living to the full and surviving to it.

My second family supported me and has set the example of how someone from
my generation can be happy and good. Thanks Kathrine, thanks Charles, thanks
my godson Oscar, thanks Ricardo.

Thanks Carla, and thanks Luciano, for the wii matches, for all the fun and
Joy.

I must say thanks, or “multumesc”’, to my great friend Alex Prunean. We
both have been through difficult times, and you helped me a lot. I hope I did, too.

I cannot forget my colleagues students, some who started with me, some who

were there already, and some who came later: Alvaro Wong, Chris, John, Alex,
Pilar, Claudia, Gonzalo, Moni, Thab, Jairo, Alvaro Chalar, Ronal, Andres, Tharso
and others which deserve to be here as well.

After I left Barcelona, life turned another way, and new people, new experiences
entered into my life. I must thanks all the support from my new bosses, Felix and
Markus, and from my colleagues and now friends, Pavel, Micha, Claudia, David,
and Peter.

Last, but not least, the person who is saw how hard these last steps of the Ph.D.
have been, and who is making my days sunnier. Olga, thanks for your patience, your
care and your love.

Contents

Contents|

(1__Introduction|
(1.1 Some history|
(1.2 Objectives| e

(1.3 Proposal and Outcomes]

[4.2.1 Thorough executions|

[4.2.2 Comparison of hardware characteristics|

4.4 Creation methodology|
441 Overviewl e e

[4.6 Phase discovery| oo

[4.7 Binary generation|.o

U8 Probeexecution|.

[b.1.1 Memory access pattern| L.

[5.1.2 Program control flow|

[>.3 Removal of less-important phases

[>.4 Compression|

5.5 Touched set approach|. oL
[5.5.1 Probe generationl

[5.5.2 Checkpointing library kernel modulef

6 Experimental study|

25
25
26
26
26
27
28
30
31
33
35
36
37
38
39
42

45
45
45
46
47
47
50
50
o1
52

59

6.2.1 Precisionl. 62

6.2.2 Probe Transmission Timel 63

[6.2.3 Reducing Probe size|0 . 64
(7__Conclusion and future workl 73
(.1 Work contribution| 73
[r.2 Publications 74
(.3 Future Workl. 74

[Bibliography| 76

Abstract

This doctoral Thesis describes a novel way to select the best computer node out of
a pool of available potentially heterogeneous computing nodes for the execution of
computational tasks. This is a very basic and difficult problem of computer science
and computing centres tried to get around it by using only homogeneous compute
clusters. Usually this fails as like any technical equipment, clusters get extended,
adapted or repaired over time, and you end up with a heterogeneous configuration.

So far, the solution for this, was:

e To leave it to the computer users to choose the right node(s) for execution, or

e To make extensive tests by executing and measuring all tasks on every type
of computing node available in the pool. In the typical case, where a large
number of tasks would need to be tested on many different types of nodes, this
could use a lot of computing resources, sometimes even more than the actual
execution one wants to optimize.

In a specific situation (hierarchical multi-clusters), the situation is worse, as
the configuration of the cluster changes over time, so that the execution tests would
have to be done over and over, every time the configuration of the cluster is changed.

I developed a novel and elegant solution for this problem, named ” Performance
Probe”, or just ”Probe”, for short. A probe is a striped-down version of a compu-
tational task which includes all important characteristics of the original task, but
can be executed in a much shorter time (seconds, instead of hours), is much smaller
than the original task (about 5% of the original size in the worst cases), but allows
to predict the execution time of the original within reasonable bounds (around 90%
accuracy).

These results are very important: as scheduling is a basic problem of computer
science, these results cannot only be used in the setting described by the thesis (of
setting the right compute node for tasks in a hierarchical multi-cluster), but can
also be applied in many different contexts every time scheduling and/or selection

decisions have to be made: selecting where a computational task would run most
efficiently (which cluster at which centre); picking the right execution nodes in a
large complex (grid, cloud), workflows and many more.

Chapter 1

Introduction

Read the directions and directly you will be directed in the right direction.— Doorknob

Applications are the reason people use computers. Different applications use
the computers in different ways, and might be better suited to run in one type of
computer than another. And yet, as obvious as it should be, to determine the best
match between a kind of computer and an application is neither easy nor a solved
problem at all.

When applications started to become so demanding that a single computer
would not be able to run them in reasonable time, one of the solutions was to join
several computers together and divide the problem tackled by these application into
smaller pieces, enough for each computer to process them in a reasonable time. The
cluster was born.

The end of speed improvements in processor cores by simple clock speed in-
crease made the evolution go towards adding more computers together to address
the increasing demand in computing power first, and then adding more processors
into a single computer, and subsequently adding more cores into a single dye. A
personal computer of today is not so different from a cluster from yesterday.

Increasing the number of computing elements does not bring automatic im-
provements to applications. Applications must be either adapted to conform to this
new model or rewritten.

One of the most popular models to make an application avail the extra com-
puting power provided by multiple computers running together in a network is the
Master/Worker paradigm. A simple definition of it is that a “master” machine as-
signs tasks to “workers”, which receives them, compute and return the final result
of this task back to the master. The master will give the workers more tasks until
the complete problem is solved, and then the master aggregates the results of all

2 CHAPTER 1. INTRODUCTION

completed tasks in form of the final result. It is widely used because of its simplicity,
reliability and elasticity.

An economic-wise form of having huge computing power is that of clusters
of commodity workstations. They are cheap and in case of failures or upgrades,
it is easy to replace them individually. It is a system widely used in academia, for
instance, when laboratories might provide the workstations for normal use during the
day for students and let them available for parallel applications during non-working
hours.

The replacement cycle of these clusters makes them heterogeneous throughout
time. And as already said, different applications perform differently according to the
computer where they are running. The heterogeneity also introduces inefficiencies
into the scheduling, which can be seen as times when the workers stay idle waiting
for more data.

This makes the decision of choosing which machine should run a given task
more difficult.

Clusters of workstations cannot grow indefinitely, be it because of space con-
straints, network addressing or even power consumption. Therefore, in order to
keep increasing the computing power to handle ever-increasing problems, one of the
solutions is to add another level in the distribution, by joining multiple clusters of
workstations together. We call this extra level “multi-cluster”. The Grid and the
Cloud are specializations of this concept.

The extra level of organization leads to differences in network performances:
each cluster has its own high-speed network, but communication between them is not
necessarily (and probably never is) the same. The heterogeneity between machines
is even more probable.

It is worth noting that we call heterogeneous machines and clusters in terms of
internal architecture or computational power. It does not mean heterogeneity such
as that mentioned in other papers related to GPU or accelerators, for instance.

One form of organizing a multi-cluster running a master-worker application
is hierarchically. Similarly as a single cluster running a master-worker application,
one element acts as a master, while others act as workers. On this case, a master
cluster has not only its own machines to send tasks, but also other clusters. These
clusters can be seen by the master as machines capable of processing a lot of tasks,
but with a higher time required to send tasks to them. The master cluster sends the
tasks to a worker, or sub-cluster through an entity called Communication Manager,
responsible only for taking care of the communication between a master cluster
and its sub-clusters. On the sub-cluster there is another Communication Manager,
which receives the tasks and send to a local master, which finally assigns them to

individual computing units or even to sub-clusters. This sub-master joins together
the results of the tasks under its responsibility, and sends them back to the master
cluster, again using the Communication Manager.

The hierarchical multi-cluster is a powerful tool to handle big problems with
advantages akin to that of a cluster of workstations: it is relatively cheap, simple to
implement, easy to grow, and simple to replace or disable individual elements (or
even whole clusters).

Ideally, machines should be computing as much as they possibly could, with
no time lost by waiting between the end of one task and the beginning of the next
one. In order to achieve this, the communications should occur while the workers
are computing. So while the worker is computing its task, it should be already
receiving the next one, effectively “hiding” or “masking” the communication time.

Easier said than done. To be able to mask communications, the master ma-
chine assigning all tasks must have knowledge of two things:

e The time required to send a given task to each of them. The master should
send tasks early enough that a worker wastes no time receiving it, but not so
early that in the case of a malfunction or a slow machine that unbalances this
scheduling, and, of course,

e the computing power of each machine while running this specific application.

These two parameters, network and machine performance are enough for a
scheduler to optimize the execution of an application in this hierarchical multi-cluster
environment. The relationship CPU power/Network bandwidth gives the scheduler
knowledge enough to send more tasks to a given machine than another, less tasks, or
even discard a machine (or a whole cluster) completely, either because the machines
are so slow that they does not help at all, or does not help on the efficiency threshold
set, or because the time required to send tasks to them might delay the whole
execution. The model is able to adapt to changing network conditions throughout
executions, and with our Probes, also is able to quickly characterize nodes that
might become available during the execution.

It is trivial to calculate network performance by just sending data from one
machine to another and calculate the time required to send it. But to determine
the performance of a computer while running an application is a harder task.

Performance characterization and prediction has been a subject in Computer
Science since its inception, and it is an issue far from solved, given the very na-
ture of applications and how they run on different computers. Compilers, run-time
environments, abstraction layers and virtual machines (such as 1960’s VM, 1970’s
CP/M, 1990’s Java and modern full-OS VMs) made the matters even more difficult.

4 CHAPTER 1. INTRODUCTION

One of the issues of performance characterization has to do with the time taken
to run an application. If an application is important enough to be characterized, it
probably also tends to have a large execution time, with orders of magnitude from
hours to months, and will be run thousands of times, and these are applications that
run several times.

The other issue is that different machines behave differently, even though they
are computationally equivalent (or ISA-equivalent) - that is, with the same inputs
and the same application, they give the same results, even though the internals are
not identical. Even when machines are apparently the same, smaller revisions of
processors or memory controllers can add to heterogeneity.

1.1 Some history

To deal with the issue of execution time, computer scientists came up with the
idea of benchmarks. Some of them were totally artificial, created to stress specific
components of the computers, while others are kernels of “real” applications with
some fixed inputs, intended reproduce this application’s behavior during a short
time.

Both kinds of benchmarks can be useful in some contexts - they give people a
way to compare different computers. The Linpack benchmark [18], for instance, is
the official standard of the Top500 supercomputer ranking [1], and has been used
for decades as such.

However, benchmarks, as any computer program, only do what they are told
to, and nothing more. The aforementioned Linpack, for instance, criticized for not
fulfilling its basic purpose of real comparisons between modern supercomputers, as
it does not takes into account the ever-increasing problem of memory-bound codes
[90], [77], not being representative even of its own field of dense linear algebra
applications [26], does not represent behavior of applications in general [75], and
have a much higher peak efficiency than real applications [76]. In fact, doubling the
Linpack index can give real applications a speedup of only around 10% [53]. So we
can affirm that benchmarks are not useful, per se, as valid tools for performance
characterization of real applications on computers.

There is research about using micro benchmarks to stress specific computer
components [21], as they are relatively simple and can be highly optimized for specific
uses. Some researchers also join multiple ones together in order to try to correlate
their performances to that of real applications [39], [43], [64], [40], or even general
characteristics of programs [36].

If a computer system is going to be used for a very specific application, there

1.2. OBJECTIVES 5

is no benchmark better than running the application itself. However, suppose the
following scenario: a company has this very specific application, that takes weeks
to execute every single time. The process of evaluating new equipment to run
this program should evidently stress the characteristics necessary for this specific
execution. With multiple options available, the production of performance indexes
can take a time so long that it might be impossible to do it.

There are other scenarios where a precise and quick knowledge of one appli-
cation’s performance is desired, as the multi-cluster mentioned before, and that is
why we pursue the goal of characterizing the performance of a program quickly.

1.2 Objectives

The objective of this work is to create a way to characterize and predict the perfor-
mance of one specific part of a parallel master-worker application: the worker, as
accurately and quickly as possible.

The quality of this prediction must be as close to the application itself as
possible, to better inform the scheduler about the performance of each machine
available in the multi-cluster system. A scheduler must be fast, which means that
this characterization must be quick, on the order of seconds.

As the multi-cluster environment usually uses slow networks as its intercon-
nect, amount of data required to perform this characterization must be reasonable,
to be transferred quickly.

These requirements made us create a methodology to analyze an application’s
execution, extract its relevant behavior, shrink it to its bare minimum and build a
Probe from it to be sent to the remote machines.

1.3 Proposal and Outcomes

We proposed the creation of a methodology that is able to take a parallel applica-
tion’s worker - that is, its serial component, extract its performance characteristics
- which means, the phases able to characterize performance, and create a Probe,
able to be sent to remote clusters and quickly characterize the performance of every
computing node available.

This Probe must have a high prediction quality related to the execution time
of the program it originated from, but with a much shorter execution time than it.

The Probe must also be small enough to be transported through slower non-

6 CHAPTER 1. INTRODUCTION

local networks, such as the internet, in a reasonable time.

Our method basically analyzes the behavior of an execution of the program
to be characterized, extracts the non-repetitive behavior from the application and
is able to run only the unique behavior, with the repetitions being extrapolatable
from them.

I think this proposal was reasonably fulfilled. Our Probe methodology is able
to:

e run entirely in three orders of magnitude less time than running the application
itself,

e predict execution time of the application with an average precision of over
90%, and

e be transported through the internet in matter of seconds.

1.4 Related Work

The work of Sherwood, Sair and Calder [66] is one of the foundations of this research.
They created a methodology to find repetitive behavior on applications so they are
able to reduce run-time for benchmarking future processors on functional simulators.

Further, Sherwood, Sair and Calder [66] proposed a profiling technique able
to understand an execution as a series of different phases that may repeat.

A work related to ours is that of Sodhi and Subhlok [73], where their perfor-
mance skeletons intend to mimic application behavior in a shorter execution time
for evaluating shared resources using a node selection algorithm [8I]. While they
focus on shared resources and network usage, we focus this work on computation for
master /worker applications by characterizing the worker. This happens for two rea-
sons: (a) it is the model most widely used by cloud and grid environments because
of the easy ’elasticity’ of it, and (b) our research group already have ongoing work
on characterizing communication patterns, such as the study conducted by Wong,
Luque and Rexachs [01]. Besides, the general workflow paradigm is composed of
nodes in graphs that only communicates in the beginning and the end. In this
sense, a node in a directed acyclic graph (DAG) is no different from a worker. [72]
174

The work of Weaver and McKee [87] developed a tool that runs under the
QEMU emulator or the Valgrind as a method to gather multi-platform basic block
vectors faster than when using functional simulators, but to use them inside those

1.4. RELATED WORK 7

functional simulators. Our work instruments applications in real machines, for char-
acterization of the applications running on those real environments, not under simu-
lators, where some facilities for characterization are present that we do not have, as
instrumentation that does not change the execution, instruction counters external
to the environments and so on.

The absence of good, fast data about execution time of applications on specific
computing nodes makes experiments on real environments difficult, and as conse-
quence, several experiments on grid scheduling policies are made by simulating the
grid environment instead of performing the experiments on real ones. For instance,
[42] performed simulated experiments where individual nodes’ performance is a ran-
dom value in a range about the average node. It suggests that in real environments,
these values would be given by historical data, also

The work of Wanek, Schikuta and Ul Haq [85] states that their performance
values are “declared by the service providers”, but also suggests that they are prob-
ably based on historical executions.

The analytical model of Topcuouglu, Hariri and Wu [84] mentions (and uses)
an estimated execution time, but does not state how this estimation is obtained.

There are frameworks for performance modelling and prediction, but they rely
on characteristics of simulators, like the research of Snavely, et. al. [70], [71].

The work of Reis et. al. [62] could benefit of our work as well. When artificially
injecting transitory faults in applications during fault detection experiments, the
number of such experiments may reach the number of millions. And that means
running an application thoroughly on each of those experiments. Instead of running
the application to the end, one could inject transitory faults (bit flip, register value
change, etc) only on those parts of the application considered to be the most relevant
to those experiments and cut the experimentation time. Our proposal of a Software
Probe is able to run only a relevant phase of an application, which can be adapted
to that purpose.

Some of the works that can directly benefit from our research, for instance, is
a system called Adaps, by Glasner and Volkert [23]. It states that it is possible to
use our probe methodology to create a predictor for their system. The probes are
able to provide a prediction of application execution time for their general scheme
of run-time application forecasts.

8 CHAPTER 1. INTRODUCTION
1.5 Work Organization

This manuscript is organized as follows. In chapter 2, the environment and program-
ming model is described. Chapter [3|sets the theoretical basis for the model. In 4| the
application characterization method and the Probe construction is described, where
chapter |5 goes a step further, into the description of methods to reduce Probes’
sizes. Chapter [0]is the experiments and results chapter, and this work is finished in
chapter [7]

Chapter 2

The multi-cluster environment

Let me see: four times five is twelve, and four times six is thirteen, and four times seven
is — oh dear! I shall never get to twenty at that rate! — Alice

2.1 Introduction

For decades, the advances in raw computing processing power has been given by
faster chips, with more transistors per chip, and faster clock speeds. The number of
transistors per chip approximately doubled every 18 months, which was predicted
by Intel’s co-founder Gordon Moore in 1965. Since then, this computing power
exponential increase has been known as Moore’s Law.

2.2 The free ride

Programmers, however, called it differently: “the free ride” [82]. The simplest way
to make your program faster was to simply wait for the next generation of processors,
and with no additional effort from the programmer, her application would run faster,
“for free”.

Even though algorithms able to process data in parallel exists for years [69],
programmers kept taking advantage of the free ride for as long as possible - which
makes sense. Why bother in learning new (and recognizedly difficult) techniques
that most computers would not be able to extract any advantage at all?

The exponential growth of computing power, however, reached two related
obstacles: power consumption and heat dissipation. The more power a processor
uses, the more heat it generates. The added heat needs more dissipation, which in

10 CHAPTER 2. THE MULTI-CLUSTER ENVIRONMENT

turn also consumes more power.

2.3 Clusters of workstations

With the advent of local-area networks, a form of computing became readily and,
most important, cheaply available: the clusters of workstations (COWSs). Linking
together several computers into a network and making them work towards the so-
lution of a single problem is one of the most cost-effective ways to tackle problems
bigger than the capacity of a single computer.

Scientific computing has changed a lot in the last decades. From the vector
computers of the past, to personal academic workstations, the current trend is to
aggregate a big number of processing units by means of one or more interconnects,
in the form of clusters. Today, every supercomputer is built around the principle of
aggregating a number of CPUs ranging from the dozens to hundreds of thousands,
each with relatively small computing power, where applications run in parallel in all
these processing units, in order to achieve a single goal, be them highly specialized
machines, or if they are small clusters of standard workstations interconnected by
ethernet networks.

Most of highly specialized machines, such as the modern supercomputers, uses
proprietary interconnects, homogeneous CPUs and its own I/O, cooling systems,
etc. On the other hand, clusters of standard workstations tend to be heterogeneous
by nature, even when the machines share a common ISA and operating system -
be it by the multiplicity of vendors and platforms, be it by the natural replace-
ment cycle of machines. Heterogeneity, even in single clusters, brings hindrances to
parallel programming: scheduling, load balancing, domain decomposition, processor
selection, as mentioned by [15].

2.4 The master/worker paradigm

The textbook example of parallel programming is the master/worker paradigm.
On it, the computation and the data are divided in tasks that can be executed
independently and simultaneously on different computing elements.

On it, two distinct entities exist: one master and some workers. The master is
responsible for decomposing a problem into tasks, and for distributing these tasks
among its workers. Also of masters’s responsibility is to gather the results from
these workers and from them, generate the program’s final output.

The workers operate cyclicly: they receive the task, process it and the result

2.5. MULTI-CLUSTERS 11

back to the master, and wait for the next task.

The great advantage of the master/worker paradigm is that it is well-suited
for dynamic, heterogeneous environments, where adaptability, reliability, capability
and efficiency are required [25].

e Adaptability, or elasticity: the same program can be solved in different envi-
ronments, with different number of workers, and even with changing number
of workers available, when allowed by the runtime. The performance increase
can be made by adding more workers;

e Reliability: the loss of one of more workers during an execution affects only
the execution of the task being computed by the element lost. The overall
functioning is not affected;

e Capability: more powerful computing elements will finish performing their
tasks before other elements; In the master/worker model, it will simply “ask”
for more work, instead of waiting for some synchronization barrier, for instance;

e Efficiency: computing elements must not be idle waiting for others. Idle times
in single units add to the overall execution time. We understand efficiency
here as the time the computing elements are effectively working in proportion
to the total execution time - that is, excluding the moments they are idle.

These factors are essential, for instance, in cloud computing environments,
where the number of computing elements and their computing power is highly vari-
able among executions and possibly even during one specific execution. It is also
essential for grid environments, where the available computing elements for perform-
ing a computation are not usually known beforehand and might have some dynamic
changes in the environment throughout the execution.

2.5 Multi-clusters

A natural extension of the act of gathering machines together in the form of the
cluster is that of joining clusters of workstations together. The ample availability
of network connectivity across organizations and the pervasiveness of the Internet
made possible the creation of these multi-clusters.

There are several forms of multi-cluster, from the simple act of using a set of
geographically distributed machines that can communicate directly to each other,
to grids, most present in scientific research, and cloud environments, popular among
enterprises.

12 CHAPTER 2. THE MULTI-CLUSTER ENVIRONMENT

However, the usage of multi-clusters to increase computing power brings with
itself added levels of heterogeneity, and with it, further difficulties in scheduling
and processor selection [50]. Now, not only the heterogeneity between machines is
important, but the heterogeneity in terms of interconnect of each cluster, the inter-
connect between clusters and heterogeneity in computing power among individual
nodes are important. The communication between each pair of clusters might be
different, and this poses a challenge for masking the communication time throughout
the computation.

Heterogeneity between machines is a well-studied problem[84] [57], but in
multi-clusters, efficient executions of applications is field less touched.

These factors are not linear and worse, not uniform across applications. What
is perceived as an inferior CPU for one application might not be the case for another
one. Differences in cache usage, for instance, account for big differences in applica-
tion performance, and the same happens for every other parameter that influences
in performance.

2.6 The hierarchical multi-cluster

The hierarchical multi-cluster is a extension of both concepts of geographically dis-
tributed multi-cluster and the master/worker paradigm. In this architecture, each
cluster is a master/worker itself. The cluster where the application is launched is
considered then the master cluster. The other ones are called sub-clusters, and in-
side them there are the figures of the sub-master, the sub-workers. On all clusters,
the element responsible for managing WAN communication is the Communication

Manager (CM), as seen in figure

In this scheme, what the master node sees is a set of machines where it can
send tasks to. The CM then is responsible to send tasks to the sub-clusters under
its responsibility and receive computation results from them. In that sense, what
the master perceives is that the CM behaves like a powerful machine (given it is the
computing power of its sub-clusters) with a higher interconnect latency (because it
is sending tasks to its sub-clusters through the internet).

This architecture allows great flexibility and scalability to run master/worker
applications, as to increase computing power is a matter of adding more clusters, as
long as the interconnect allows it.

As the sub-clusters are seen by the master node of the master cluster as a
powerful node, it might send tasks of either coarse-grained or more tasks, in the
case of a fixed-sized problem. To optimize communication, the CM might make
use of a pipeline scheme in order to send and receive a higher amount of work to

2.6. THE HIERARCHICAL MULTI-CLUSTER 13

Master

Master cluster I
-]

o o o e o o |

Workers CM

Subcl A
ubcluster Sub-Master

g .
oooooog [E
(=== [eeoes) [oeemx) (Feeec) (Femec) [oecec) (seeec) fTemedy [wewec)
OoOooooooQ

Subworkers

Figure 2.1: A hierarchical multi-cluster environment. Different machine sizes repre-

sent different processing power. Thickness of the arrows represent different network
bandwidths.

14 CHAPTER 2. THE MULTI-CLUSTER ENVIRONMENT

a sub-cluster than that which would be sent to a single worker, and make use of
buffers/caches to communicate only when necessary.

Sub-masters receive work from the master cluster via communication manager.
They then behave as regular masters in single clusters. They can schedule their tasks
and grain sizes among their workers, and join back the results to send back to the
master cluster.

Workers and sub-workers work identically - they receive tasks from a master
- be it the root master or from their own master, compute it, send the results back
to their master, and request new data. In order to mask communication time, they
might start receiving the next task in background before they finish their current
task, and can send their results back to their master while already processing its
next task.

On the application level, the communication manager and the sub-clusters
are transparent, so it can be run unchanged in a single cluster or in a hierarchical
multi-cluster, and even with failures in communicating with the sub-clusters, as the
CM is able to detect it and redistribute the work accordingly, without stopping the
application.

The work of [9] sets the basic ground for this work. On it, an analytical model
for execution of master/worker applications in hierarchical multi-clusters is defined,
based on the CPU and network performances between the different elements and
the computation/communication ratios.

This model is able to run master/worker applications on a set of aggregate
clusters working together hierarchically, and the cluster where the application was
launched sees the other clusters as powerful machines, with usually slower networks
than its own nodes. According to this power to bandwidth ratio, this model can
decide on the number of tasks to send to the sub-clusters, to use only parts of them
or slash clusters entirely, if they will not be able to reduce this application computing
time over a user-specified efficiency threshold.

This model is also able to predict a master /worker application execution time.
But both for scheduling the number of tasks and for predicting total execution time,
two kinds of information are required:

e The network throughput between all the clusters, and

e Computational capacity of every node available, in every cluster, for that
specific application.

To calculate network throughput is trivial. To calculate computational ca-
pacity, however, is not straightforward. The model of [9] actually ran at least one

2.6. THE HIERARCHICAL MULTI-CLUSTER 15

task of the application on every unique available node, during the first step of its
execution, to then decide where to run.

This, of course, brings its own sort of problems. Very early in my research, I
realized two problems with this model:

e Some nodes (in one of the Universities’ heterogeneous cluster) were so slow
that this performance determination would take an unfeasible time to run,
sometimes even longer than the rest of the application.

e The performance results were not valid for the next executions, as it was really
common to have different sets of computing nodes in some clusters beyond our
control.

So, basically, the performance estimation was taking an unrealistic time.

Our goal is to enhance the efficiency of master /worker applications on heteroge-
neous environments, where the available machines - and, of course, their performance
- is not known until the time to run this application comes.

We focus our studies on master/worker applications, but any environment
with heterogeneous machines that needs quick and precise information about how
an application will perform on a given machine may benefit from our method. That
is, queueing systems that selects resources based on availability, performance and
efficiency, such as grids and clouds, can take advantage of this research.

16

CHAPTER 2. THE MULTI-CLUSTER ENVIRONMENT

Chapter 3

Basic Block Vector Distribution
Analysis

Speak English! I don’t know the meaning of half those long words, and I don’t believe you
do either!— Eaglet

3.1 Introduction

This chapter explains the base methodology used to find repetitive behavior on an
application’s execution, made independent from any hardware characteristics. It
is related to how the code performs, although it is totally independent from the
programming language used and even from the presence of the source code at all.
Instead, if focus on how the code’s flow, which is highly correlated to the source
code. This methodology is called basic block vector analysis.

3.1.1 Metrics

In order to characterize a program’s execution, metrics are needed. Given we want
to predict execution time, the first metric is, evidently, execution time.

Nevertheless, just execution time is not enough for characterization - and more
important, it does not help us find repetitive behavior, which we could trim out from
the Probes.

The first metric we analyzed was the cache hits/misses of the applications.
Considering the ever-growing gap between the processor speeds and memory laten-
cies, one access to a memory position not replicated in the first-level cache (a cache

17

18 CHAPTER 3. BASIC BLOCK VECTOR DISTRIBUTION ANALYSIS

miss) might stall the processor for hundreds of clock cycles. So the cache miss/hit
ratio during an execution, if replicated, could mimic a great part of an application
program.

The obvious issue with the cache hit/miss metric is that it is completely depen-
dent on the underlying hardware. Even in hardwares of the same architecture line,
different cache sizes or configurations might produce unbeknownst consequences.

Moreover, the cache miss ratio is a metric derived both from the hardware and
from the behavior of the memory access pattern.

The memory access pattern alone can represent a significant part of the per-
formance characteristics of an application [I0] , but it is not the panacea that can
give an optimal representation of the execution time, as issues such as address space
randomization and allocation above the available capacity - which might make the
system start to make use of virtual memory - makes the memory access pattern a
an information of little use for our needs when taken into account individually.

Furthermore - the memory access itself is derived from a more fundamental
behavior - and this one independent of the specifics of the underlying hardware: the
code itself.

Other researchers arrived to the same conclusion - which bolstered our decision
into investigating the path of mimicking the program control flow itself.

The program control flow can be described as a series of decisions, jumps and
loops. And the structure of programs makes that some behavior repeats itself, such
as a calculation done over a large amount of data, for instance, or a function being
called several times.

Although programs have repetitive behavior, on the same time, throughout
execution they can have wildly different behavior. During one part of an execution,
a program can be cpu-bounded, and in a further moment, it can turn to memory-
bound as a consequence of a different part of it being run.

The changes into a program’s execution from one state to another tend to re-
peat. We call these repetitions phases, and that is one of our basic elements. Phases
are sets of intervals within a program’s execution that present similar behavior,
regardless of temporal adjacency [4§].

This work classify phases breaking a program into intervals of execution, and
finding similarity between them. Similarity is how close an interval of the program
execution is close to another in some metric. In our case, we classify similarity
by the number of executions of each basic block into each interval - that is, each
vector, with the other vectors. Vectors where the more or less same basic blocks are
executed more or less the same amount of time tend to take the same time to run

3.2. BASIC BLOCK VECTOR ANALYSIS 19

in the large scale.

For classifying similarity, we do not use any architecture, but as already stated,
the program’s control flow is used to classify similarity, as what the code is doing at
a particular moment determines the program’s behavior.

With this insight, it is possible to find phases in programs without hardware-
dependent metrics at all.

The metric used to classify the code traversal throughout the execution is the
Basic Block Vector Analysis, explained below.

3.2 Basic Block Vector Analysis

In a well-designed master /worker application, the determinant in execution time is
that of the workers computing their tasks. So we focus our efforts on understanding
the performance of the worker.

Most code that does not depend on constant user iteration (such as majority of
scientific high-performance applications) presents repetitive behavior of some sort -
methods and functions calls, and loops, are all repetition of the same code with some
different parameters. This is especially true in number-crunching scientific code.
According to Sherwood, Perelman and Calder [65], “the large scale of programs is
cyclic in nature”. On their research, they measured under simulation that for the
SPEC95 benchmarks, the hardware statistics in fixed periods of time, and noted
that these statistics (1) repeat from time to time, or (2) have a repeatable cyclic
behavior until the end of their execution. It is demonstrated that periodicity of the
basic block frequency profile “reflects the periodicity of detailed simulation across
several different architectural metrics (e.g., IPC, branch miss rate, cache miss rate,
value misprediction, address misprediction, and reorder buffer occupancy)”.

Periodic behavior is defined as a repeatable pattern seen for a given architec-
ture metric. On Sherwood’s breakthrough article, it is possible to notice that no
matter what the hardware characteristic is chosen, they change at the same time,
i.e., there are distinct phases, and to discover them, they used a metric indepen-
dent of any architectural parameter, but highly correlated with their performance.
Their intuition was that what is executed in a given moment determines program
behavior, and it reflects on architectural metrics.

This metric is then given by counting the number of times a piece of code -
defined here as basic block - is executed under several contiguous periods of time.
This is the most efficient technique for phase detection, according to Dhodapkar and
Smith [I7]. In this work, fixed-sized phases are used, as they work well enough, but

20 CHAPTER 3. BASIC BLOCK VECTOR DISTRIBUTION ANALYSIS

there is research on phases with variable sizes and even hiearchical ones, such as in
the work of Lau[47]. The size of the phase means the number of instructions of one
or more basic block vectors.

A basic block is classically defined as a piece of code with one point of entry
and one exit - i.e. no control flow. They called this metric “basic block distribution
analysis”. A key point is that the phase behavior seen in any program metric is
directly a function of the code being executed [49, [68] . Because of this, a metric
that is related to the code can describe phase behavior [67].

Sherwood’s goal was to reduce run-time of functional simulators for next-
generation processors. With a functional simulator, it was possible to count the
instructions and have precise information of which basic block of a given code this
simulated processor is running.

The biggest insight was the selection of an approach that does not use any
knowledge of the architectural state of a program, but yet is highly correlated with
the performance of such metrics.

His method consisted in counting the number of times a basic block was ex-
ecuted during a fixed number of instructions (called the basic block vector - BBV
[65]), and compare the similarity of these vectors.

Their goal with such method, for the field of computer architecture simulation,
was to find:

The end of the initialization part of the program, and the start of the cyclic
part of the program.

The period of the program. The period is the length of the cyclic nature found
during a programs execution.

The ideal place to simulate given a specific number of instructions one has
time to simulate.

e An accurate confidence estimation of the simulation point.

Simulation point here means the exact point in the execution where one could
start the simulation (recovering from an architecture checkpoint, complete with
cache/register/memory state, straightforward in a simulator), thus reducing simu-
lation time.

It is common that applications pass through a initialization period, where its
data structures are created, files are created and read and so on, before proceeding
to the actual processing phase. The processing phase usually consists of periodic

3.2. BASIC BLOCK VECTOR ANALYSIS 21

behavior, alternating between completely different sections of code (functions, pro-
cedures, loops, methods).

The idea is that similar vectors were running more or less the same code, and,
on large scale, they tend to take the same execution time [61].

By having the same execution time, it was possible to run only a reduced
number of occurrences of one phase, skipping repetitive behavior [59]. This greatly
reduced simulation time. In figure for instance, the three dominant functions,
x_solve, y_solve and z_solve took the wide majority of this execution’s time, but by
no means the functions themselves took a long time, but instead, the sheer number
of calls to these functions.

Their work resulted in a tool, called Simpoint [27]. Basically a K-means clus-
tering algorithm that reads a basic block vectors’ file and points out the relevant
phases found, to drive the simulation to these specific points. The basic blocks
were collected either during functional simulation or in real machines through code
instrumentation [5§] in order to feed the simulator later.

Once an application is profiled, for instance from an execution trace of an
architecture simulator such as simpleScalar [14], the basic block profile is then fed
into their SimPoint [28] tool.

Our Probe departed from the concept of phase classification and simulation
points and implemented these in a tool that is able to run in real computers, running
real code, instead of simulators. The specifics of the Probe are going to be discussed
on the next chapters.

Simpoint is a tool that uses the k-means algorithm from machine learning
to group code signatures into clusters based on signature similarity. The single
most representative code signature from each group is selected for execution, the
importance of this selected phase is weighted, and the results of each execution are
extrapolated to estimate the program’s overall behavior, according with each phase’s
weight.

Each execution phase has a typical set of instructions, that is, under a given
period of time the application will use only a subset of the total architecture instruc-
tion set. Dhodapkar and Smith found that exists a relationship between phases and
architecture instruction working sets, and that those phase changes tend to occur
when the instruction set changes. In [I7] they found that BBV analysis is accurate.
Their approach focused on online phase classification. On the other hand, Simpoint
is an offline tool.

22 CHAPTER 3. BASIC BLOCK VECTOR DISTRIBUTION ANALYSIS

B initialize [] copy x_face
B x solve X\ Yy _solve

copy_y face % compute_rhs
z_solve

Function:

Time(s):
200000

150000

100000

50000

™

Jacobi

Figure 3.1: Total time spent for the main functions in the Jacobi Relaxation Bench-
mark as measured by the Scalasca toolset in 1024 processors.

3.2. BASIC BLOCK VECTOR ANALYSIS 23

According to [48], the representatives for each phase selected by Simpoint based
on full-BBV data not only represent the whole program well, but also represents each
phases well. Their results shown an average error rate about 2% on the CPI metric
when compared with full executions across the SPEC2000 benchmarks.

Their first attempt was to find a single continuous window of executed instruc-
tions that matched the whole program’s execution, so that this smaller window of
execution can be used for simulation instead of executing the program to completion.
In [67], Sherwoord, et. al found out that more sophisticated applications cannot be
represented using a small contiguous section of execution.

Applications do have regular behavior, however not in a single window of
execution, coming from the beginning to some specific point. Instead, the repetitive
phases are found along the whole execution of some program. To find them, Simpoint
examines the similarity between different phases, grouping the ones which are similar
together, in a method called clustering. The goal of clustering is to divide a set of
points into groups such that points within each group are similar to one another,
and points in different groups are different from one another.

One problem with the clustering algorithm used in simpoint, the k-means, is
that its performance suffers from the excess of dimensions on the basic block vectors,
as every basic block is one dimension across the different BBVs. So the target basic
block vector from the full execution can have millions of dimensions on one fairly
complex application.

To address this problem, it was used an algorithm dimension reduction, by
creating a new lower-dimensional space and then projecting each data point into
the new space. The algorithm is the random linear projection, that reduces the
amount of dimensions while retaining the properties of the data.

In [67], it was found out that 15 dimensions are enough to correctly cluster
the phases, and that increasing this number gives little for improvement on finding
clusters. Once the clusters are found, it is necessary to run then, in a noncontiguous
way, as they can be spread among the whole execution. That is, the execution
can be broken down into N executions, where N is the number of clusters found
through analysis, and each execution is run separately. On homogeneous clusters of
workstations, this can be used to break the execution into parallel components that
can be distributed across the nodes. In any case, results from the separate clusters
of phases needs to be weighed and combine to arrive at the overall performance of
the program.

24 CHAPTER 3. BASIC BLOCK VECTOR DISTRIBUTION ANALYSIS

Chapter 4

Probe

What is the use of a book, without pictures or conversations?— Alice

4.1 Introduction

The general idea is that if we are able to know how long will an application take
to run on a machine without taking the time that would be required to run it
thoroughly previous to an execution, we will be able to decide if this machine fits
our needs or not.

For that, we came with the concept of a software Probe. We define a Probe as a
piece of code that is able to quickly extract useful information about the relationship
between the application and the system we want to know about. This means that a
Probe from a given application will run fast and will return us precise information
about how the application we are analyzing is going to run in there.

The work in multi-clusters already introduced at chapter [2, and described in
more detail in [§] , [9] deals with the issue of efficiency of Master/Worker applications
in those heterogeneous and distributed environments. For it, efficiency is defined as
the ratio between the best possible execution time Tj.s and the total execution time

T.., as in equation

Tbest

(4.1) Ef ficiency = T

Basically, that means the proportion between the time taken actually doing
useful computational work over the total execution time, with delays.

25

26 CHAPTER 4. PROBE

Several works on the literature uses simulated environments, usually because of
the long times required to characterize applications and test their policies, as noted
in chapter [I The work of Kim, Rho, Lee and Ko [42] is typical: they performed
simulated experiments where individual nodes’ performance is given by a random
value in a range around the average node’s one. It suggests that in real environments,
these values could be given by execution historial.

Therefore, the absence of a good and fast way to determine execution time
has hampered experiments on real environments for a long time. Mostly, either
historical data or simulation was used. Until now.

4.2 The alternatives

Before explaining our method, we briefly introduce two of the alternatives, why they
could be useful or otherwise: Thorough executions and Benchmarks.

4.2.1 Thorough executions

The explanation for this one is straightforward: there is no better method to pre-
dict the execution time of an application running in a machine than running this
application itself. The obvious problem with that is the execution time required
to do this makes it of little use for the selection of sub-clusters or sets of machines
according to the communication/computation rates. Actually, this was the method
used on the multi-cluster environment already which is the base of our research.

The problem is not isolated to the fact that execution time of one worker doing
this first task thoroughly may delay the overall execution, but furthermore, as at
least one execution of a task must be executed on each unique kind of machine on
each sub-cluster, which creates a cascade effect on delay. This delays the decision
of discarding a cluster completely, for example.

4.2.2 Comparison of hardware characteristics

Modern computers have special registers called “performance counters” that store
the counts of hardware-related activities, such as instruction counters, cache faults,
memory access and so on. While they are very useful for low-level application
performance tuning, its difficulty to relate them back to the code running [86] and
micro-architecture differences between CPUs of the same families (which themselves
lead to wildly different results of the same application on compatible but not identical
machines) make the question of performance determination of little usage in our case.

4.2. THE ALTERNATIVES 27

4.2.3 Benchmarks

The other alternative is using benchmarks to characterize machines [45]. The use
of benchmarks for determining performance of machines is only useful to have an
index to compare machines between themselves, but even then, only under some cir-
cumstances. Benchmarks are hardly able to represent an application’s performance

53).

There are several different kinds of benchmarks. Here are some examples:

Synthetic Benchmarks

Benchmarks created to exercise all aspects of the machine, or some specific, are not
new. Curnow created the Whetstone synthetic benchmark on the 1970’s [16], with
the explicit objective of “breaking” compiler optimizations, doing operations found
in common programs from that time.

Another classic synthetic benchmark is the one of Weicker, known as Dhrys-
tone, a pun to the previous one [89]. This one tries to be general for the applications
of its time, in terms of the distribution of statement types, data types, and data
locality.

None of them try to reflect any specific application, quite on the contrary -
they tend to be means to compare CPUs in a general manner.

Joshi, Eeckhout and John created a tool, called BenchMaker [38], [40] which
from a set of program characteristics related to the instruction mix, instruction-
level parallelism, control flow behavior, and memory access patterns [39], generates
a synthetic benchmark whose performance relates to that of a real-world application,
with mixed results.

It is unclear how to transport the instruction mix and instruction-level paral-
lelism from one application to a benchmark to a different cpu with the same ISA,
but different internal structure.

Another approach is that of Strohmaier and Shan [75], [76], [77]. Their Apex-
Map tool is able to create different types of memory access pattern in parallel
applications, in order to compare architectures. No claim of similarity with any
applications is made.

Kernels of widely-used algorithms, Microbenchmarks

These benchmarks take the main loop of well-known algorithms and encase them
into smaller packages with some default input data. Perhaps the most omnipresent

28 CHAPTER 4. PROBE

of these is the High-Performance Linpack [60] that solves a (random) dense linear
system in double precision (64 bits) arithmetic on distributed-memory computers.

The research of Hoisie [32] uses an application itself as a benchmark. This
application is the Sweep3d, a “particle transport code taken from the United States
Department of Energy (DOE)’s Accelerated Strategic Computing Initiative (ASCI)
workload, SWEEP3D represents the core of a widely utilized method of solving
the Boltzmann transport equation”. As such, it is a really good benchmark for
testing the scalability of extremely parallel systems, but no correlation with other
programs exist. We used, however, Sweep3D as an application in and on itself, and
characterized its behavior, and created Probes from it.

Some works try to be more thorough in covering the different characteristics
of different application for pure benchmarking purposes, i.e. for comparing ma-
chines. Such examples are the SPEC [37],Phansalkar:2006p1558 and NAS Parallel
benchmarks [IT]. Another use of these benchmark suites is to use themselves as the
application, as is commonly done in the field of performance measurement, exactly
because they are so thorough in general characteristics.

Mashups of different benchmarks to try to reproduce application behavior

Some works try to analyze characteristics of several different benchmarks, and, ac-
cording to their indexes, create a “mix” of benchmarks that can correlate to the
performance of some application, such as the work of Murphy and Kogge [55], where
they found a high rate of discrepancy between benchmarks and real applications.

4.3 Our alternative: the Probes

We focused in transporting the knowledge and techniques used in the world of
simulation to real applications, running on real computers.

The idea is to be able to give the multi-cluster scheduler (and possibly other
schedulers) information in order to be able to select the computing nodes best suited
for running a specific application, according to an efficiency threshold.

For that, a Probe must be sent to the remote node(s) to be characterized, where
it runs for a short time and returns the predicted execution time of the application
it was based upon.

The goals set for the Probe implementation were the following:

e Be able to correctly predict the execution time of an application (that is, with

4.3. OUR ALTERNATIVE: THE PROBES 29
a high quality of prediction);

e This prediction must be done in a fraction of the time required to run the
application itself;

e The amount of data to be sent for this prediction be small enough that it can
be sent to the remote clusters in a reasonable time.

I believe these objectives were achieved. The Probe is able to reach a prediction
quality higher than expected. In most cases, prediction quality stays way above 90%.

Regarding the time the Probes takes to run, it stays in most of the experiments
under 15 seconds, with most of them revolving around 3 and 16 seconds.

And finally, about the transmission size, the use of the reduction techniques
described in the next chapter made the probes significantly smaller, enough to be
transmitted through the internet to the remote clusters in matters of minutes.

The time reduction that our Probe methodology provides for predicting exe-
cution time is not only useful for master/worker applications. It is also useful for
performance prediction of highly parallel codes, such as in the work of Wong, Luque
and Rexachs [91], where the computation part between communication events of its
characterization methodology can be reduced to individual Probes, enhancing its
prediction time, and any other scheduler that needs performance information. Grid
and workflow engines are obvious examples.

So we define the concept of a software Probe as a program which was generated
using parts of the original program based on its execution behavior that can repro-
duce the performance behavior of a given application/input data pair on a machine
in a fraction of time required to run this application itself. That is, the small rele-
vant phases we execute are representative of the whole execution by extrapolation
of their importance to the total execution.

We can determine, just by knowing how the code is exercised, the repetitive
performance behavior, that is, parts of the program which behaves similarly in terms
of performance.

As stated in chapter [3] when the code is doing the same operations, its time
to perform them tends to be similar, in the large scale, as there is a strong relation
between the code being executed and performance predictability. [7]

Therefore, to know the characteristics of an application on a given machine,
only the relevant parts of this application must be ran, a very reduced number of
times. The rest of the program’s execution is mostly different iterations of the same
phases, and can be represented by these relevant parts and their weights.

30 CHAPTER 4. PROBE

Application Characterization Application/Machine Characterization

Data collection [PROBE]

Y

()
(s
()
()

Y

Checkpoint restart

\4

Probe creation

PROBE Measurement

\ 4

(-
 weme]
()
(

Prediction]

Figure 4.1: General Scheme.

Phases with less than a minimal participation in total execution time - for
instance, 1% of it - can be discarded. With a reduced number of executions of each
phase it is possible to extrapolate the full execution time.

Our software probe aims to give us performance information about a machine
we know nothing about in this aspect. This information can then be useful for
determining if this machine is worthy to run this given application completely, or if
it’s best to let it to run somewhere else.

4.4 Creation methodology

Before being used, a Probe must evidently be created. The next sections describe
the steps required for creating a probe, starting from application characterization,
state saving, Probe build, with the tools and techniques required to perform such

4.4. CREATION METHODOLOGY 31

actions.

In general terms, we must:

e Run the program, in a controlled environment, to monitor its execution. No
source code is required, as we use instrumentation directly on the binary;

e Analyze this program’s execution, in order to find the repetitive behavior.
With this we can discover the relevant phases and its weights;

e Capture this behavior. Given the Probes are for real computers and not sim-
ulators, the only way of doing this is by the use of checkpoints. We also take
into account issues such as architectural warmup;

e Create additional support structures to run the checkpoints for a specific
amount of time

e The Probes are ready. New they need to be sent to remote machines run, and
predict the original application’s execution time.

We want to predict the execution time of an application or worker task while
performing on a machine, without spending too much time in the process. How-
ever, this fast characterization must be kept accurate regarding to the performance
characteristics of the application itself, that is, it must have a good prediction.

To be able to keep a good balance between these antagonistic goals, we use the
basic block vector analysis previously described in chapter |3[order to run as little
of the original program, but running only the pieces of code necessary for execution
time prediction, that is, performance-wise. By avoiding repetitions, we are able to
capture meaningful behavior and reduce time altogether. According to the basic
block vector analysis, it is possible to define the proportion of the total execution
time taken by each phase. By extrapolating the time taken by the execution of
each phase to its proportion of the total execution time, it is possible to predict the
application’s total execution time.

4.4.1 Overview

The generation of a Probe for an application comprises the following steps: data
gathering, phase discovery, phase save, Probe construction. With them it is possible
to perform remote machine’s probe execution and measure this Probe’s performance.

In essence, what happens is:

32

CHAPTER 4. PROBE

In our reference machine, the application is ran to the end, and the program’s
basic block vectors are collected;

The Simpoint utility reads the basic block vectors input file and discovers the
relevant parts of our applications - the phases - and its weights. The weights
are the importance, or the proportion that each relevant phase has over the
entire execution;

With the beginning of the relevant phases known (in number of instructions),
we run the application again, instrumented. This instrumentation counts the
number of instructions, and when the beginning of a phase is reached (minus
a number of instructions for warmup), it saves a checkpoint, with special
instrumentation that will be engaged when this checkpoint is restored.

The execution proceeds saving as much checkpoints as phases found by Sim-
point.

Essentially, the first version of our Probes is done after this point. One can

send these special checkpoints to a remote machine and restore from them. What
this instrumentation code does is:

e Wait for the warmup. At this point, instrumentation is kept to a minimum

inlined instruction counter, to not interfere with the execution. After the
warmup, it saves the time and resets the instruction counter.

The instruction counter is inlined again, in order to interfere as little as possible
with the execution. When the number of instructions set for the basic block
vector size is reached, this phase’s execution time is calculated and execution
is interrupted.

The Probe runtime then proceeds to the next phase, and so on, until all the

phases have been executed. This happens in matter of seconds.

Our software Probe will be created by modifying the application we want to

know about dynamically. In a first step, to acquire the basic block vectors, we
instrument the application with gathering instructions. Later, to save the applica-
tion’s phases beginnings, we will instrument these places with checkpoint commands.
And finally, the probe will be ran as the application dynamically modified to restore
from the checkpoints, run each phase, compute its time, and then jump to the next
relevant phase, by means of restoring from the next checkpoint.

These steps will now be described in detail.

4.5. DATA COLLECTION 33

4.5 Data Collection

The first step of our methodology is to acquire knowledge about the application
behavior. We use instrumentation code to gather the basic blocks [88]. It inserts
code at the program we want to characterize, counting the times each basic block is
run during a period measured in number of instructions committed.

At the beginning of our research we used a static instrumentation toolkit called
Atom, from Intel. It was a very straightforward tool to create instrumented binaries.
However, it was being phased out by Intel because of its numerous problems in favor
of their new tool for Dynamic instrumentation, then still in development, called Pin
[31]. Atom’s problems and total lack of support made impossible to use it.

The trend in academia seemed to be the usage of Dynlnst, which has a similar
goal of dynamically instrumenting programs [34], so we followed suit. Using Dynlnst,
we created a tool to gather the basic block vectors. However, several compatibility
issues with then GNU /Linux kernel versions, and the fact that it requires a previous
environment setup which is hardly done automatically, is a big drawback when
characterizing unknown machines - something that needs to be automatic, so we
ditched this tool and started the search again for one better suited for our needs.

As Intel was putting heavy effort on their new tool, we tried using it, and it
suited our needs much better than the Dynlnst. it requires only that its binary
and some helper files on the remote machines, which lessens the requisites on the
environment we want to characterize when compared to Dynlnst, as we can send
the runtime together with the Probes with little trouble.

Together with the fact that the overhead imposed by Dynlnst was, in our
observations, somewhat bigger than the one imposed by Pin, we decided in favor of
the Pin toolkit.

Pin is able to instrument at different levels of granularity, thus being able to
minimize the intrusion according to the user’s needs, ranging from the full program
image up to the instruction level. That is, a program that does not need to be
instrumented at instruction level will not be, thus avoiding unnecessary intrusion.

Our instrumentation code uses, evidently, Basic Block granularity level. It
counts the number of times each basic block was executed on each interval of N
instructions. On our experiments, we used N as 100 million instructions, which is
big enough to capture performance parameters and big enough to make the cache
warmup effect not significant, however being small enough to reduce on orders of
thousands the time required for characterization on an unknown machine. It then
generates a basic block file to feed Simpoint. All machines we tried executed 100
millions instructions under a second even in cases of low cache hit ratios.

34 CHAPTER 4. PROBE

MAX_INSTRUCTIONS=100000000; // This is actually an argument

inscounter=0; // Instruction counter
interval=0; // Numer of this BBV
map <address, long> BBV; // Basic blocks vector

while(true):
if (inscounter != MAX_INSTRUCTIONS) :

BBV (address) ++; // Uses the address of the basic block as key
inscounter++;

else
dump (BBV, interval, output_file); // Dumps data in Simpoint format
empty_map (BBV) ; // Resets the structures and
inscounter=0; // stays running the application
interval++;

Figure 4.2: Pseudocode of the instrumentation for capturing basic blocks

One characteristic of Pin for acquiring basic block vectors is that, since it runs
on user level, it is unable to instrument operating system activity. This turned out
to be an advantage in our case. The idea is that our instrumentation code only
captures the application activity, because the original application, when used on
other machines, will use the libraries of that machine, so any differences in execution
time given by different libraries will be reflected in our Probes in the same way they
would on the original application.

Another apparent limitation is that instrumentation might slow down an ap-
plication’s execution in orders of magnitude, when instrumentation is not done right.
For the basic block vector acquisition of this stage of our process, time is not rel-
evant, however. In further stages, instrumentation is kept to a bare minimum and
inlined, in order to affect as little as possible the execution.

The instrumentation code consists of an instruction counter and a map, a
histogram-type data structure, where the key is the number of the basic blocks,
and the value is a counter of the number of executions of this basic block. The
pseudocode for the data acquisition instrumentation routine can be seen in Figure
4.2k

4.6. PHASE DISCOVERY 35
4.6 Phase discovery

Once the basic block vectors were gathered, the Simpoint tool is then used to discover
the application phases and weights.

Although its original purpose is to discover simulation points for running short
executions of applications in functional computer architecture simulators, we can use
with no modifications to discover the most relevant phases of real applications, in
real machines.

Besides the underneath complexity of Simpoint, its a straightforward tool to
use. Once one provides it with the basic blocks vectors and the max K to be used
on the k-means algorithm, its operation is automatic. Simpoint’s output consists of
two files:

e one containing the initial point of each relevant phase: this means, the com-
mitted interval since the beginning of an execution;

e one containing its weights, that is, what portion of the whole execution this
phase represents.

An interval, as defined in the pseudo-code, is the number of a specific basic
block vector throughout the execution. The initial interval that SimPoint gives us
must be multiplied by the interval size used when gathering the basic blocks - in our
case, 100 million. For instance, a interval of 34 means that this phase starts at 34 *
100 million = 3400000000 committed instructions after the begin of the execution.

This means that the granularity of the phase discovery method - and the
phases’ size itself - is given by the size of the basic block vectors. There is research
in using BBV of variable sizes [47], but the potential gain in precision did not justify
the extra overhead.

The weights of each phase are the proportions of this phase’s number of exe-
cutions in relation to the full execution. It means that if a phase has a weight of
50%, for instance, means that this specific basic block vector (or those similar to it)
accounts for half of the collected BBVs throughout the execution.

To this point, we know the relevant phases and their weights on the overall
execution. With the initial instruction of each relevant phase known it is possible
to proceed to the next step of actually generating the probes from them. On the
original work of Sherwood, this would be a matter of saving a snapshot of the
application on these moments, and simply use them with the instruction counter of
the simulator running with an alarm. On real machines, this is not so trivial, and
that is what we explain in the further sections.

36 CHAPTER 4. PROBE
4.7 Binary generation

Our method of generating the Probes needs:

e The application/data set being characterized;
e The interval size;

e The interval numbers of each relevant phase.

These requirements are rather obvious - there are also additional requirements
for the specific prototype implementation, which are:

e The instrumentation toolkit;
e System-wide checkpointing library;

e Our instrumentation code to generate the Probes;

It was coded in C++, C, Assembly and Shell Script and developed as a pin
tool. Pin tool is the name of instrumentation code that uses the Pin toolkit.

From the previous steps of application behavior analysis and phase discovery,
we have the relevant phases initial instruction as given by Simpoint. This is the
input for the further proceedings.

The application is ran monitoring the total instructions committed. When
this instruction counter reaches the point of one relevant phase minus a number
of instructions for warmup, it creates a checkpoint. Execution is resumed and this
procedure goes on until the last phase was checkpointed.

One of the characteristics of the Pin toolkit is that the instrumentation code
lies in the same address space of the application. Actually, it creates a copy of the
whole executable, instrumented, and jumps the execution to this new code, keeping
the original code unaffected in memory. This means that when checkpointing, it
also keeps the instrumentation code on the checkpoint itself.

This is important to us. It means that the same instrumentation code used
for creating the checkpoint snapshots of the execution is going to be used when
measuring the phase execution time on remote machines.

The checkpointing library provides undocumented callbacks for a code to know
either it is being checkpointed or execution is being restored /restarted from a check-
point. As we cannot touch the program itself, this code is embedded into the in-
strumentation. So we have two instrumentation modes:

4.8. PROBE EXECUTION 37

e Code for counting instructions and generate the checkpoints, and

e Code for time measurement and execution interruption.

Both codes are totally different, but they need to be enclosed in the same
instrumentation because of the characteristics cited above. See figure [£.3]

When we are actually saving the phases for further executions, we call it “mon-
itoring” mode. In this mode, its working is straightforward. Its input is the Simpoint
output, where there are the number of each relevant phases on the execution. This
instrumentation code then sort Simpoint’s output and runs over the application,
counting instructions. When the point

(4.2) save point = (Interval * Interval size) — warmup

is reached, the instrumentation pauses the execution and checkpoints the appli-
cation altogether with the instrumentation. The instrumentation code has a special
callback which says that this pause was generated by the procedure of creating a
checkpoint, so it tells the application to keep on with the execution, and for the
instrumentation code to keep on with the instruction count until the next phase is
reached.

The outcome of this procedure is a set of checkpoints that can be run on
remote machines. These checkpoints carry not only the original application, but
also special instrumentation code to count the instructions and measure the phase
execution time.

4.8 Probe execution

The previous steps gives us enough data to generate a Probe. This Probe is then
composed by:

e A shell script to restart from the checkpoints;
e The Pin runtime and the application files, if necessary;

e The checkpoints themselves.

As previously stated, the instrumentation code when the application is gener-
ating the checkpoints behaves differently that when it is restarting from them. On

38 CHAPTER 4. PROBE

phases=[simpoint output];
MAX_INSTRUCTIONS=100000000; // This is actually an argument
WARMUP=7000; // Instructions for warmup
inscounter=0; // Instruction counter
counter=MAX_INSTRUCTIONS; // Negative counter of one phase
if (mode==MONITORING) :
if (inscounter==phases [x] *MAX_INSTRUCTIONS - WARMUP):
make checkpoint;
X++;
inscounter++;
else if (mode==RESTART_FROM_CHECKPOINT) :
start_time=time.now();
loop: if(counter--==0): // JE in asm
SIGSTOP;
end_time=time.now();
printf(start_time, end_time);
exit (0);

Figure 4.3: Pseudocode of the instrumentation both phase capture and measurement

the previous step, the only thing it needed to do was to wait for the save point, and
when reached, call the checkpointing routine and go on as long as necessary.

This is not the case when running the Probe. Now it needs to

e restart the application and detect this state,

e warm up the architecture,

e measure start time of the phase,

e count the instructions until the phase’s end according to the interval size,

e interrupt the execution and count time again.

4.8.1 Phase save

Since there’s no way to fast-forward an execution up to a point we want - in our case,
to the beginning of a representative phase - we propose implementing the saving of
checkpoints of the execution while gathering their phases. The checkpoint brings

4.9. MEASUREMENT 39

the memory content along with execution context, thus is serves as a fast-forward
to the points in execution we want.

While clusters of workstations using the Linux operating systems are increas-
ingly common, many aspects of the software environments are steps behind those
provided by commercial supercomputer systems. One of its deficiencies is the lack
of an implementation of a checkpoint and restart implementation general enough to
support a variety of parallel scientific applications. Duell defines checkpoint as the
process of saving the entire state of a job to disk, than later restore it [19], and has
proposed an implementation, known as Berkeley Lab Checkpoint/Restart, or BLCR
[29].

The advantages of using BLCR over other checkpoint/restart implementations
is that its actively maintained, well documented and widely tested and available as
source code for GNU /Linux systems [20]. It is general enough that its requirements
must not restrict too much the kind of applications we are able to characterize.

As our probe will run only the relevant phases of an application, we need a
way to do this. Those relevant phases are spread across the whole application, and
there’s no way to simply jump to some point of a large execution. That’s why we
use checkpoints - while we are characterizing a machine, we will save checkpoints
at the beginning of each relevant phase. Each saved checkpoint will be used as the
starting point of its corresponding relevant phase on the probe.

The current limitations of BLCR is that TCP/UDP sockets are not restored,
and appears at restart time as closed. MPI implementations such as MPICH-V [I3],
that use BLCR as its underlying checkpointing system, implement the communica-
tion primitives themselves, for instance. Therefore, the applications we characterize
cannot communicate during its steady period.

This can limit the possibilities of the applications which we are able to char-
acterize. However, the master-worker programming model, for instance, where each
task is sent to a worker, is computed and it returns its results at the end of its compu-
tation, so it can receive another task [44], is a good example of an application model
that fits well for characterization. In this model, we can characterize a worker’s task
phases, allowing us to better select the machines for this master /worker application.

4.9 Measurement

All these tasks are performed by the instrumentation code when in “restart” mode.
Here, timing is crucial, so the instrumentation noise must be kept as low as possible.
We achieved that by writing it partially in inlined assembly, with as little memory
accesses as possible. Another strategy to minimize noise was to make the instruction

40 CHAPTER 4. PROBE

count updated only at the end of each basic block and inlined, instead of after each
instruction. This made the code almost 50 times faster (thus less intrusive) than
before. The instrumentation noise is one inlined branch instruction (the JE) and
one operator decrement (count—) per basic block, which is around 1% of it in our
experiments.

When restoring execution from a checkpoint, a side effect will happen. The
caches and predictors will not be in a consistent state with what would be done in
a full execution that happened from the beginning up to that point. The process of
putting the machine in a state similar of that from a full execution is called warmup
[30]. We use a warmup size of 7,000 instructions, as stated as enough by Laha [46].
On that time, caches were much smaller than today’s multi-megabyte caches of
modern processors, but still, we did not have any observable difference in prediction
precision when changing this value from 7,000 up to 50,000 instructions. In our
experiments, we used a phase length interval of 100 million instructions, which was
noted big enough to mitigate cache warmup effects.

After the number of instructions executed is the size of our interval (the in-
strumentation itself is not counted), instrumentation sends a signal (the Unix’s
SIGSTOP) to pause the application execution and measures the time, then it stops
the application execution (With SIGKILL). The reason for using SIGSTOP first
is that it pauses immediately, without taking any further action, so it’s immedi-
ate. After measuring the time, the instrumentation sends a SIGKILL, which frees
memory, sockets, handlers and so on, which takes a short, but perceptible and un-
determined time. When the process is terminated, the shell script regains control
and can proceed to restart/resume from the next phase.

In order to extrapolate the execution time, it is necessary to have a base value
for comparison. So, with the execution time of the full application uninstrumented
when compared to the instrumented one in the reference machine, we are able to
calculate instrumentation noise (see Figure , which tends to be a fixed portion
of execution time - i.e., it tends to keep the same amount of noise regardless of the
machine we are running our Probes at, so we consider it constant. So on our reference
machine we calculate the noise as the proportion between the time it takes to run the
whole application on the reference machine with the phase instrumentation ET Ref
and the uninstrumented execution time ETuninstRef.

ETRef
ETuninstRef

(4.3) Noise =

We calculate the proportion of each phase time and the total execution time,
instrumented, on the reference machine. This is given by the formula in equation

4.9. MEASUREMENT 41

A
»

“Clean” execution - i.e. No instrumentation

A

»

“Noisy” (instrumented) execution

Figure 4.4: Instrumentation noise. The dark dots are instrumentation instructions
inserted in the execution during runtime.

4.4 where ET'Ref is the full execution time with instrumentation in the reference
machine, Weight is this phase’s weight, and T'PhaseRef is the time this phase took
to run on the reference machine.

(ETRef % Weight)
T PhaseRef

(4.4) TimeUnitValue =

For example, if the application takes 120 seconds to run, and one phase takes
3 seconds, but this phase’s weight is 50% of the total execution, by substitution,
each second of this phase is worth (120 - 0,5)/3 = 20 seconds of the full execution
time.

With the time unit value, it is easy to extrapolate the execution time of the
phase probed regarding to the full execution

(4.5) PhasePredicted = TimeUnitV alue * T Probed

With all the data, we are able to predict our execution time as can be seen in
equation [4.6]

numPhases .

; PhasePredicted

(4.6) ET Predicted = (i 'ase redicted)
Noise

(2)

42 CHAPTER 4. PROBE

(49) Cperfavail = Z Pe’rfAvail

workers

As Noise itself is a fraction, we multiply the predicted execution time by its
inverse. The final result is given by equation (.7}

(4.7)
ETuninstRef
ETRef

numPhases)

ET ,

ETPredicted =(3\ ?;J;L * Vge}ghm)
aseRef;

1=

 T; Probed) *

4.10 How it fits in the multi-cluster model

In the multi-cluster performance model developed by [9], a methodology to improve
the execution time of master/worker applications in multi-clusters was developed.
The performance model can predict the execution of the whole applications pro-
vided it knows beforehand the network throughput and the time it will take for
completing a task in each and every of the available computing elements. The
steady performance model (that is, after initialization of all workers) is given by
Per fg;. in equation |4.8]

(4.8)

T
———, Oper x , Oper x

PutEc N * Tput[net[N N * TPUtInetOUT)
SC’omm STaskInter SResultInter

Per fsie = min (CPerwail, Oper

On this equation, CPer f 4,4 is given by equation [£.9, Oper is the number of
basic operations of a task, T'Putgc is the external cluster LAN average throughput,
Scomm 18 the total communication of a task, N is the number of the tasks of this exe-
cution, T Put v is the external cluster’s internet incoming throughput, S7askrmter
is the size of an inter-cluster task, T'Put,.;our is the the external cluster’s outgoing
throughput, and Sgeswirnter 18 the inter-cluster’s task size.

Every parameter of this equation is either a factor of the network throughputs,
which are straightforward to discover and problem size, which is known beforehand,
and that sub-cluster available performance, described in equation 4.9

On it, Perfapqei is the relative computation performance of a machine while
running a worker task. While every other parameter of these equations is discov-
erable or already known, this one is not, neither is trivial to be discovered. In this

4.10. HOW IT FITS IN THE MULTI-CLUSTER MODEL 43

4.000Mb

sweep 3d 50 n.Body bt.B sweep3d 150

B Probe sizes in megabytes

Figure 4.5: Probe sizes.

methodology, to determine the performance of the application, a whole long-running
task was sent to every available node on the whole multi-cluster. That may take
long times, according to the time of a single worker task.

What our Probe does is to fill this gap of the Perfa,.; value in Argollo’s
research in a way fast enough that the model can determine the value for this
variable to make dynamic adaptations to the performance of the multi-cluster. This
way it is possible to reschedule tasks and discard those computing elements not
fast enough to help with the computation efficiently during execution, with no need
for a previous setup stage for performance discovery, which greatly enhances the
usefulness of his model.

44

CHAPTER 4. PROBE

Chapter 5

Reduced Probe

Off with her head!— The Queen

5.1 Introduction

Chapter 4| described the basic concept of the probe, how to build it and what it does.
One issue with this methodology is that by generating a number of checkpoints in
order to characterize an application means that the Probes themselves can be pretty
large.

In previous experiments, we found Probes in order of gigabytes. In chapter [6]
one of the Probes is around 1.3 gigabyte. This means a transmission time of around
three hours in a 1Mbps connection, something not totally unusual on the Internet.
A strategy to reduce probe size was essential to make it useful in the multi-cluster
environment.

In order to make the program mimic the functionality of the original applica-
tion, two parameters are essential: memory access pattern and program flow.

5.1.1 Memory access pattern

Some researchers, as Toomula and Subhlok, for instance, go as far as to say that
replicating only the memory access pattern is enough to predict performance [83], as
access times for modern memories are orders of magnitude longer than computing
time, and a cache failure can account for hundreds of clock cycles spend with the
CPU being idle.

Other researchers, such as Weinberg et. al. [90], try to match the temporal and

45

46 CHAPTER 5. REDUCED PROBE

spatial locality of memory access patterns of HPC applications with those of some
benchmarks. Their insight is that it is possible to derive application performance in a
machine from metrics given by execution of such benchmarks and its correspondency.

Andrade et.al. even developed a method to guide the compiler optimization
process in respect to cache miss probability [4], [3], [6], [5].

Hollingsworth created a tool which is able to model memory patterns to predict
the performance of future computing systems [35]. So we can safely assert that the
memory access pattern is one of the important factors for performance prediction.

5.1.2 Program control flow

The other parameter relevant for performance prediction is the program control flow.
Modern processor cores have multiple pipelines and duplicated functional units for
thread parallelism, among other characteristics. To fully mimic a program behavior,
computation is important as well.

The control flow is closely associated to the memory access pattern, as the
decision flow is usually related to the contents of the memory in some moment.

Our initial research on mimicking only the memory access patterns to the
exclusion of all other factors did not produce the performance prediction precision
required to feed the multi-cluster scheduler with any useful informatio, so this line
was promptly abandoned. One outcome of the need to keep the computation and
the call path and decision flow of the application to be characterized is that the
memory contents must also be kept in the Probe. Which, as already stated, leads to
sizes big enough to diminish the usefulness of the probe on our target environment,
the Internet.

As our research advanced through the use of checkpoints, it became evident
that the sizes of the Probes were getting bigger with every iteration of applications.
Memory capacity is increasing steadily, so are the data sets of scientific applications.

However, our empirical observations suggests that the average internet speed is
not following suit. So these two factors: data sets already big (and therefore, Probes)
getting even bigger, and the network not becoming faster on the same proportion,
urged us to look to this issue of Probe size as a priority.

So we started to seek ways of reducing the Probe size, and this is further
explained in this chapter.

5.2. REDUCTION 47

5.2 Reduction

We investigated multiple ways to reduce Probe size. Currently, we use three different
methods.

They are:

e Removal of less-important phases,
e Compression, and

e Touched set approach.

They will be detailed on the following sections.

5.3 Removal of less-important phases

This approach is straightforward - it consists of selectively not carrying the check-
points of the less relevant phases. The tradeoff here lies between a possibly dramatic
reduction of the Probe’s size, with little complexity, as it is just the removal of check-
points of phases with lesser weights against the loss of precision.

With the weights in hand, we know exactly the remainder percentage of our
prediction stays. With a rule of three, we extrapolate that to the full execution.

This method is particularly useful in programs whose behavior is dominated
by a small number of functions. This seem to be the case in several scientific
applications, which perform transformations in data in very specific patterns.

Some example of extreme cases are those of workflow applications, where the
individual tasks that transform the data were already separated in the workflow’s
nodes. As current implementations of workflows’ nodes create separate executable
files for each node, so we must create separate probes for each of them, and experi-
ments shown us that these nodes are mostly dominated by one or two single phases,
so it is difficult to remove any of those phases from the Probe.

In all our experiments, we set Simpoint to output a maximum of 30 phases.
This is a number high enough to represent the whole application’s behavior in practi-
cally every application we tested, even those with varying behavior during execution.
The disadvantage is that it is also possible to come with a high number of phases,
meaning big amount of checkpoints, up to a maximum of 30. We also tell Sim-
point to automatically discard phases beforehand - those whose sum accounts for a
maximum 1% of the overall execution are automatically discarded.

48 CHAPTER 5. REDUCED PROBE

Sweep3d.150

2.608MB
100% |

Ao Ao A sy Ao
A7

2.195MB
75% % 1.785MB

50% | Aso

% 959MB
25%
402MB
7 6 5 4 3 2 I
A Number of remaining phases

N

Probe size

Figure 5.1: Prediction Quality x Probe Size.

In these cases, the Simpoint algorithm can output a number of phases that are
little to no relevant to the overall execution, such as initialization and end phases,
and during changes from important parts of the overall execution. Several of these
phases can be discarded with little loss of prediction.

One example of phase removal is that of Figure |5.1} It shows the checkpoint
sizes (thus, the phases) of the SWEEP3D application and the overall prediction
quality and how this quality degrades whenthe number of phases gets reduced. It
can also be seen how the Probe’s size is also reduced.

This example shows that SWEEP3D’s execution is dominated by two distinct
phases - and keeping only those two phases and discarding the remaining, less-
important ones, still gives us a prediction accuracy of more than 93%.

5.3. REMOVAL OF LESS-IMPORTANT PHASES 49

Sweep3d.50
99,9% 98,7% 97,9%
, 9% 96,7%
0 A A A AR ey
88,5%

329MB 83,4%

77,5%
A

69,5%

59,2%

50%
41,8%
24,3%
25%
52MB
7 2B
7
5 4 3 2 |

A Number of remaining phases

Figure 5.2: Prediction Quality x Probe Size in a smaller experiment.

The removal of little-relevant phases is valid, and in fact is necessary, as keeping
phases with little importance can greatly increase the total Probe size with little
gain in quality.

There is a tradeoff, however. The same application, but with a smaller problem
size, yielded a different result, as can be seen at Figure 5.2 As the problem size
is so much smaller, the two dominant functions have a smaller proportion on the
execution, as they are essentially what increase with data size, while the other parts
of the program are more or less static. So, in this case, keeping only the two most
important phases would let us with a degree of precision of less than 42% - even if
the Probe size was reduced in 83%. Therefore, how many phases are to be be kept
is up to the user.

50 CHAPTER 5. REDUCED PROBE
5.4 Compression

Compression itself is a widely studied subject in computer science for decades and
alien to the scope of this work, so it used only as a tool, as is. We use the gzip
compression tool, given its fast compression/decompression times, and its ubiquitous
presence in UNIX systems.

Compressing checkpoints as they were yielded different results according to
the workload and application, ranging from 20% to 35% of size reduction. So it
helps us achieve our goal of reducing the total Probe size, and it can - and is - used
altogether with other approaches.

Slightly higher rates were obtained using other compression algorithms, as
bzip2 and 7-zip, but the increase in compression/decompression times is dispropor-
tional to the reductions in size. In essence, the time taken to compress a file using,
say, bzip2, sending it to a remote cluster and decompressing it there is bigger than
gzip in all our tests except with pathologically slow networks under 30kbps, the
average speed of a dial-up connection in 1995. So we kept gzip for its simplicity,
availability and speed.

5.5 Touched set approach

The touched set approach is based on two simple ideas:

e A Probe’s phase runs for a very limited amount of time, and is improbable
that in this time the program will access all its memory contents, and

e Every compression algorithm can benefit of large sequences of repeated char-
acters, as all of them possess some form of run-length encoding [24].

A program’s phase basically consists in the application’s checkpoint in a spe-
cific moment of time, that will have its execution time measured after a given number
of instructions is ran. In our experiments, this number is whether 10, 50 or 100 mil-
lion instructions, but mostly 100 millions. In that interval - also known as tracking
window [52], it is probable that only a subset of the application’s memory contents
its accessed. If a considerable amount of memory is not going to be used during a
phase’s execution, this memory contents does not need to exist in the checkpoint.
That is what we call touched set approach.

Touched set, as defined by Yawei and Zhiling [51] is the memory contents
accessed during the interval - in our case, during a phase’s execution. All memory
not touched during the interval does not need to be present in the checkpoint.

5.5. TOUCHED SET APPROACH o1

(2)

(b)

\
|

(d)

Figure 5.3: Touched set approach

This means that the whole checkpoint is not necessary for running an interval,
but instead, only the memory contents effectively accessed during this interval, as
exemplified in Figure (a). On it, the memory accessed during the execution of a
given phase is marked with an “X”. As checkpoints have memory page granularity
level, on Figure (b) we mark the pages to which these contents belong to as
used, and on Figure c¢), we fill the remaining contents with zeros, with can be
compressed, as seen in Figure fig:touched-set(d). This means we can greatly trim
the checkpoints to carry as little information as possible, only the memory contents
that are going to be required for reproducing the phase.

Our idea was that this approach could reduce the Probe sizes drastically.

We implemented the touched set approach in our probe system by intersecting
information by modifying the code both for generating our Probes and that of the
checkpointing library kernel module, in the following way:

5.5.1 Probe generation

In the previous chapter, where we outlined the Probe generation process, the last
step was run the application to the end in our characterization machine, in order to
save the instrumented checkpoints.

The novelty we created to reduce the Probe size then is that now, in the
moment right after saving a checkpoint, a trace of every memory page accessed

52 CHAPTER 5. REDUCED PROBE

during its interval is recorded. That means, we still run the program thoroughly
and save the checkpoints, but during what would be the interval of this phase’s
execution, the address every single memory page accessed is recorded.

The reviewed algorithm of the probe becomes more or less like this:

The algorithm shown at figure saves the checkpoint just at the beginning
of the warmup period, as usual. However, the change comes when the warmup
interval has passed and the real phase point begins. On it, we dump the accesses
to every memory page. Pin gives us instrumentation for memory accesses at byte
level, but this precision is not necessary, and makes the trace files of memory accesses
unreasonably large without any real need for it, as the checkpointing library maps
memory pages and not individual bytes.

Which means that we either keep or remove one entire page at a time. If a
single byte in a page was touched, the whole page will be kept on the checkpoint.
This reduces the possible compression gains, but it was necessary because not doing
it made the instrumentation and the trace so heavy it did not fit the machines tested
(some traces were estimated in the regions of dozens of terabytes for each phase).

So, in order to reduce trace file granularity, we perform the following binary
shift:

(5.1) memory_page = memory_access >> 12 << 12;

This effectively zeroes the twelve less-significant bits of the address, giving us
a granularity of 4096 bytes, the standard page size of the Linux operating system.
This greatly reduces the size of the trace, as an array transposition, for instance,
would generate a single line for every 4096 positions, instead of one for each element
accessed.

Besides this trace, additional information is required, which is discussed on
the next session:

5.5.2 Checkpointing library kernel module

The memory access trace must be matched with the contents on the checkpoints.
The problem was that BLCR’s checkpoint file structure is not documented, and the
headers are of variable size.

In order to know the offset where a given memory page is recorded on this file,
we had to modify the checkpoint kernel module to also create a trace of the tuple
[memory page address / file offset].

5.5. TOUCHED SET APPROACH 53

phases=[simpoint output];
MAX_INSTRUCTIONS=100000000; // This is actually an argument
WARMUP=7000; // Instructions for warmup
inscounter=0; // Instruction counter
counter=MAX_INSTRUCTIONS; // Negative counter of one phase
if (mode==MONITORING) :
switch(inscounter):
case phases[x]*MAX_INSTRUCTIONS - WARMUP): // Point to checkpoint
make checkpoint;
X++;
break;
case phases[x]: // Point to start monitorin memory accesses:

// Instrument only the instructions that touch main memory
mem_address=instrument (instr_mem_access, memory_effective_address);

// Granularity is at byte level, but checkpoint works at
// memory pages level, so only stores page addresses.
mem_page=mem_address >> 12 << 12;

break;

default:
inscounter++;

else if (mode==RESTART_FROM_CHECKPOINT):
start_time=time.now();
loop: if(counter--==0): // JE in asm
stop_execution;
end_time=time.now();
printf(start_time, end_time);
exit (0);

Figure 5.4: Pseudocode for monitoring memory page addresses

o4 CHAPTER 5. REDUCED PROBE

With the touched set and the information given by the kernel module in hands,
the only data required to stay in the checkpoint file is:

e File header,
e Process information required for restoring (pid, uid, gid, etc.),
e Part of the code segment (the one being used in this phase),

e The touched set.

The memory not accessed during the execution of the Phase interval is effec-
tively discarded.

The touched set £ in the checkpoint file is given by the set definition [5.2}

(5.2) = 0Ny

And the set of pages ¢ to be removed from the checkpoint file is in definition
[B.3k
(5.3) (=(0Up)—¢

Where 6 is the touched set as recorded when running the phase, and ¢ is the
offset of those pages in the checkpoint file. Everything else can then be removed
from the checkpoint file, thus reducing its size drastically.

Our first approach was to simply trim ¢ from the checkpoint file, and change
the headers accordingly, in order to denote where each memory page part of £ is,
directly reducing checkpoint’s file size, as the non-used portions were not recorded
at all, making it a densely-populated file. This presented some major drawbacks:

e Implementation cost: the checkpointing library needed to be extensively changed
in the restart code, in order to accommodate the “jumps” we created on the
pages’ sequence, and

e Binary compatibility: as the checkpoint restart code was changed, we had a
checkpointing library kernel module that needed to be installed in every system
we would test our probe, which would break with the premise for the election
of BLCR as the checkpointing library of choice given its availability in several
different clusters, and we would not be able to restore “regular” checkpoint
files on that, either, breaking functionality for other users.

5.5. TOUCHED SET APPROACH 95

For that reason, we created a simpler approach:

The memory pages present in the set (, that, for our purposes, can be discarded
are instead filled with zeros, so the file can be now considered sparse.

The implementation of that is a Python program that reads all addresses
of memory pages from the kernel module output for this specific checkpoint and
transforms it into a vector of tuples containing the memory page and file offset.
Then, it reads the trace of memory pages accessed during the execution of this
interval, and excludes the pages read from the trace file from its vector. The positions
that remain on the vector are those which were not accessed during this phase, and
are therefore zeroed out in the checkpoint file.

The biggest advantages are:

e [t keeps binary compatibility with standard BLCR installations in other clus-
ters - which was really welcome by these clusters’ administrators, our check-
points are binary-compatible with the standard BLCR;

e Although the checkpoint file itself does not change, compression ratios increase
greatly, as the memory pages that were discarded now are just big sequences
of zeroes, which even the most primitive run-length encoding compression
algorithm is able to take advantage of.

In resume, the steps are:

e The program is executed, instrumented;
e Simpoint runs over the BBV file and discovers the phases;

e The program is run again, instrumented, and makes checkpoints at the moment
of a phase warmup with information about the memory pages’ offset in the
file dumped from the kernel module;

e The program keeps running. When it passes the warmup phase, it starts
dumping the memory page addresses until the end of the phase;

e The program keeps running and doing the two previous points until all phases
are checkpointed and traced;

e With the memory trace and checkpoint offsets matched, the memory pages ¢
are zeroed from the checkpoint by a special utility;

e Previous point is made for all checkpoints;

56 CHAPTER 5. REDUCED PROBE

e Probe can be compressed now, with the sparse checkpoint files, which reduces
them significantly.

So, after the program was characterized, its phases discovered, the phases
saved, a special program gathers the data coming from the kernel and that from the
memory trace for each phase.

Then it creates the set ¢ and zeroes it from that checkpoint’s phase and com-
presses this now sparse file. Then it proceeds to the next phase, up to when there
are no more phases to reduce.

The final output is a set of gzipped files. One further idea to reduce probe size
is one characteristic of gzip compression: it can be decompressed before the whole
file is present. So a probe could be sent through the network and uncompressed on
the fly, with a pipe from the process receiving the byte stream to the gunzip utility.
This eliminates the need to receive the whole file and then start the uncompression
process, masking the time required for it, as it is done while receiving the file.

The resulting file on the other end is a checkpoint file containing only the
memory contents required for running the original application’s phase from the
warmup to the phase’s size plus a very light instrumentation required to measure
phase execution time. After the phase reaches its designated number of instructions,
time is registered and the execution is interrupted, allowing the execution of the next
phase.

The combination of the aforementioned methods: removal of little-relevant
phases, touched set approach and compression is what allows us to achieve great
reductions in probe size, up to 95% smaller when compared to the original set of
checkpoints, as we will show in the next chapter.

Several characteristics that can be seen in our method are not from the method
per se, but instead it reflects those from the tools used to build this prototype. Some
of them are:

e The application’s binary and its open files must be present in the same loca-
tions on the machine to be characterized: This is a characteristic of BLCR,
not of our method.

e Instrumentation library’s .so files must be present on the machine to be char-
acterized, on the same location: same as again, a requirement from BLCR. As
BLCR does not “see” the instrumentation library, but instead thinks that it
is part of the application itself, it requires them to be on the same location on
the file system.

5.5. TOUCHED SET APPROACH o7

e Sockets are not restored by default: special support from, for instance, MPI
libraries, must be present for restoring network connections. As we are char-
acterizing the worker during its steady state, this is not really important at
this moment.

58

CHAPTER 5. REDUCED PROBE

Chapter 6

Experimental study

Begin at the beginning and go on till you come to the end: then stop.— The King

6.1 Introduction

As we seen on the previous chapters, this work studies the problem of characterizing
the performance of a given application running on a machine in a fraction of the
time required to run this application thoroughly.

The goal is to create knowledge of this application performance, so Argollo’s
method can use it to decide if this machine is worthy or not for execution according
to an efficient threshold.

To reach this objective, we adopted the concept of a software probe that will
run only representative parts of an application. Those parts will provide us with
performance knowledge similar to the one which would be possible running the same
application entirely on the given machine and we can then predict execution time.

To prove the concept of the Probe, we did some experiments, both regarding
the accuracy of the probe as well as the possible gains in reductions. We charac-
terized the applications and created the Probes in our reference machine. Then we
ran these Probes on another machine or machines, predicted the execution time and
compared with the real execution time on this machine.

On them, phases’ times were compared, and weights were applied to each of
those phases. The weights are given to us by Simpoint, and they mean the number
of executions of that phase over the number of executions of all phases, i.e. it
describes how important a phase is. This comparison made possible to extrapolate
the execution time on the probed machine.

29

60 CHAPTER 6. EXPERIMENTAL STUDY

The first experiment was done with a double-nested loop matrix multiplica-
tion. Being a program with a well known behavior, we could verify if the method
and our tool worked as expected. Being so simple and with a known memory access
pattern (stride), Simpoint correctly found only one phase representative of 99,9%
of program’s behavior. and the Phase found was close to the middle of the execu-
tion. This proved that the general system works and that we might proceed to test
execution time of more complex applications.

6.2 Experimental results

We realized a series experiments to verify the quality of our prediction.

We ran and characterized the worker in Master/Worker versions of the ASC’s
Sweep3d [33], a Matrix Multiplication, a n-Body problem, the NAS Benchmarks
[T1] BT and DC, class B. We show these specific experiments because these specific
problem sizes took roughly similar execution times, although providing very distinct
phase behavior. These are average results for the execution of a single worker. This
probing would be done on each and every node available for execution in the parallel
environment.

The testbed consisted of one Intel Pentium4 2.6ghz“Northwood” with 1 giga-
byte of RAM as reference machine, and the Probes were sent to a cluster of seven
Intel Pentium4 “Prescott” 2.88ghz machines with 512 megabytes of RAM, and a
cluster of Intel Pentium4 “Cedar Mill” 3.0ghz machines with 1024 megabytes of
RAM, all in a switched Fast Ethernet network.

Although Pentium 4 indicates the same technology, they are different proces-
sors, with different manufacturing methods and transistor sizes. It is worth noting
that the comparisons is not only among CPUs, but instead the whole computer - a
small amount of memory may affect an application’s performance as much (or more,
in extreme cases) than the number of pipeline stages or cache sizes.

In this work’s experiments, each cluster was homogeneous, although they were
heterogeneous among themselves. It means that we would be able to further speed
characterization time by running different phases in different machines in parallel.
If the clusters were heterogeneous, we also would gain time, as the Probe would
be sent just once for the whole cluster, and each machine would be able to run it
without having to download it again from our location.

6.2. EXPERIMENTAL RESULTS 61

Time(s)(log)
10000,00

99,7%

94.006% 64%

96,8% 9502% 9%

1000,00

10,00

s il

MM Sweep NAS' BT DC 100000 n-Body NAS UA

1,00

Figure 6.1: Execution time, prediction and probing time in log scale.

62 CHAPTER 6. EXPERIMENTAL STUDY

6.2.1 Precision

Figure |6.1f summarizes the prediction quality of our Probes. The bar in white is the
execution time taken by the Probe to run. The bars in light grey are the predicted
execution time calculated from these Probes’ executions, and the dark grey bars
are real executions of the same applications on these machines. The graph is in log
scale, because the Probes took orders of magnitude less time to run than the actual
application and would not appear there at all otherwise.

We chose problem sizes who took similar execution times for the sake of pre-
sentation. For the tested applications, the precision stood above 92%, while the
probing time was around 0.2% of the original application’s execution time for this
set of experiments, with the exception of NAS” UA (more on that later). Longer
applications in general yields even better reductions, consequence of a higher num-
ber of repetitions of the same phase. The probing time doesn’t take into account
checkpoint transmission and checkpoint loading, instead focus on its phase execution
time.

The Matrix Multiplication is an obvious case, with a single phase that correctly
represented the execution time.

The Sweep3d application, using a grid of 150x150x150 units, possesses a mem-
ory usage around 436 megabytes in most of its execution, except for the startup.
Simpoint detects between 7 and 13 phases for it (according to the random dimension
projection, the results can vary), with the behavior dominated in more than 90% by
two phases, as shown in the previous chapter. In the case of ten phases, the Probe
able to represent 99,7% of its total behavior actually predicted the execution time
with 96% accuracy with all phases. On the next section, we show the reductions in
size and prediction for this experiment.

The NAS’ BT has three main phases that dominate more than 60% of the
execution time, but in total, it produced 17 different phases for the problem size
category B. The phases ran in less than ten seconds, but were able to predict the
execution time of the full execution, which took around two hours, with an error of

less than 5%.

The NAS’ DC had our worst prediction quality with the exception of UA. The
time predicted from its Probe was 8% less than the real application. Yet, this is still
enough to show differences between execution times between different machines in
orders of magnitude faster than the executions themselves.

The n-Body Probe was able to predict the execution time of the original ap-
plication, with a correctness of 94%. Interestingly, this Probe had the smallest size
of them all, keeping the state of the program around four megabytes throughout
the whole execution. However, it was the probe that took longer to execute, close

6.2. EXPERIMENTAL RESULTS 63

to ten seconds for its ten phases. I suppose this has to do with a badly projected
application with a pathological number of cache misses. More studies on the imple-
mentation and with other tools could give us some answers on this case. Still, the
prediction information is enough for our purposes.

The UA case is special. It has a much worse prediction quality than any
other experiment. Turned out that the Simpoint found 16 phases for it, but our
reduced probes from phases 11 to 16 failed to execute, as the checkpoint segfaults
immediately after restarting on such phases, so it was a forced reduction in quality
which accounts to 38% of the execution, so our method was able to measure only
about 62% of the program’s behavior.

Upon further investigation, we realized that it might be a bug in the Pin toolkit
itself or in our instrumentation code: specifically where we trace individual memory
accesses. It seems that some bytes accessed were not recorded by the trace, which
then reported them as not used, prone to further trimming.

We suspect that it can be some data type very close to the border of a memory
page, which means that only the parts pertaining to the page where this data began
were recorded, but not the bytes on the next memory page. Further research is
necessary.

However, when we took into account that the 62% was the remaining behavior
and extrapolated from it, the prediction still was over 91%, which indicates that the
computation behavior, time-wise, of these phases was not that different from the
previous ones.

If we considered only the first ten phases as being representative of the whole
program and proceeded to reduce it using the techniques explained in the previous
chapter, we would end up with a prediction quality of 53,4%, which, when extrapo-
lated to the full execution, led us to predict the execution time of the UA benchmark
on this machine with an accuracy of 89,5%. This reduced probe was 87% percent
smaller than the one comprised by the original ten checkpoints, being reduced from
around 221 megabytes to 27 megabytes.

6.2.2 Probe Transmission Time

As different programs have distinct number of phases, the number of checkpoints
is evidently different. For the sake of illustration, we ran the Sweep3d application
with a smaller problem size. The first group used a 50-unit cube, which took about
40 seconds to run. Our characterization method found 19 distinct phases in this
execution, and the Probe comprised the application and these 19 checkpoints. The
sum of checkpoints’ sizes was more than 372 megabytes. Consequently, a set of files

64 CHAPTER 6. EXPERIMENTAL STUDY

this big would take a little bit over an hour to transmit over a 1 mbps network link,
in the case the transmission is perfect. Also this specific case, our Probe would not
worth the effort, as this is just an example of a very short execution where it took
longer to be produced and sent than the execution time of the application itself.
The obvious conclusion is that the longer the application’s execution time, the more
useful the Probes become.

However, when looking at the n-Body example, its state was kept constant
around 4.2 megabytes, and the whole Probe had approximately 43 megabytes. This
program took more than two hours to run, but the Probe’s transmission time would
be of only 5 minutes in the same hypothetic 1mbps network link. The time in our
multi-cluster, with a fast network, is negligible.

When Sweep 3d used the 150-unit cube, the total Probe size was around 2.8
gigabytes, while BT.B was around 1.8 gigabytes. Sending both of them would
be overkill, so now we experiment with reduced probes while trying to maintain
prediction quality with the techniques explained on the previous chapter.

6.2.3 Reducing Probe size

Are those checkpoints really necessary? We set our characterization to reflect 99%
of the execution, because we noted that this extra one percent gave us nothing in
prediction quality while increasing enormously the number of checkpoints. But can
we go even further? Can we discard phases on purpose, while maintaining quality
on our precision? How much would the prediction quality loose while reducing the
Probes to their bare minimum?

To answer to this question, we selectively verified our prediction quality with
less and less phases. Figure [6.2] shows some of those results, We now proceed to
discuss them individually.

Sweep3d.50

Figure 6.3 shows us a short execution, therefore there’s no dominant behavior. This
means that phases are, in general, equally important, and the curve is smooth.

Although this makes easier to choose the prediction precision, it makes bigger
Probe size reductions more difficult. We experimented with keeping the five most
relevant phases. Before extrapolation with a rule of three, this kept the prediction
quality in about 78% of the execution. But in this experiment, the original Probe
had more than 400 megabytes; Reducing it with keeping only the five most relevant
phases, trimming the probes using the touched-set approach and compressing the

2 < % . .
77777

66 CHAPTER 6. EXPERIMENTAL STUDY

Sweep3d.50

91,6%
89,5%
27 g7 50,
A A 855% g3 49,
79,4%
A 75,3%
) 71,2%
75% A o
61,0%
54,9%
X 48,8%
50% A L
34,6%
26,5%
25%
20 19 18 17 16 I5 14 I3 12 I1I 10 9 8 7 6 5 4 3 2 |

A Number of remaining phases

Figure 6.3: Prediction quality (without extrapolation) of the Sweep3D application
with the cube sized as 50 units

resulting files let the probe with 19,2 megabytes. Still, this execution is so short
that there is little point in making this process for this application/data size pair.

Sweep3d.150

Interestingly, we had two wildly different executions of the Sweep3d during our tests.
In Figure 6.4, we see that Simpoint gave us seven phases, where execution is highly
dominated by two of them, being others of little relevance. With this data in hand,
we can selectively remove the less important phases while maintaining the desired
prediction quality.

We decided to keep only the three most relevant phases in this experiment. Its
quality should be around 97%, which held true by the experiments. However, even
after trimmed down to one third of its original size by discarding the less-relevant
phases, the Probe is still a behemoth of 959 megabytes. It would take about 2h20m
to be transferred in a 1mbps network link. The communication time is almost as

6.2. EXPERIMENTAL RESULTS 67

Sweep3d.150
2 12\/{9:6% A3y A Y. Ao
% 1.785MB
%
% % 13%\4 ’ A5
_ / / / s
/ / / / / :
/ / / / / .
7 6 5 4 3 2 I

A Number of remaining phases
Probe size

Figure 6.4: Prediction quality (without extrapolation, touched-set or compression)
of the Sweep3D application with the cube sized as 150 units, versus probe size

68 CHAPTER 6. EXPERIMENTAL STUDY

big as the execution itself.

After using the touched-set approach and standard gzip compression, the
Probe had 151 megabytes, a reduction of 94% from its original size of 2608 megabytes.
In the 1mbps network link, this would take circa 20 minutes to be transferred.

A different execution of the same test gave us a totally different result. In
Figure[6.5], the same application when run under our characterization method yielded
14 phases, with around 87% of its behavior in the first nine phases, with no dominant
behavior.

This is caused by the random dimension projection algorithm in Simpoint.
As the number of Basic Block Vectors and of Basic Blocks itself is huge, Simpoint
projects those dimensions in a matrix of 15 dimensions in order to be computa-
tionally feasible. As the selection algorithm uses a random seed, behavior like that
can appear. We noticed that several of those phases with a weight about 10% of
the execution are in the same steady state of the execution, which means that they
are actually similar. Their measured execution times and the checkpoint sizes was
similar as well.

In this experiment, we kept the six most significant phases, which by itself
would give us a quality of 70% of prediction of the total execution time. With
extrapolation, this value was 93% of the actual execution time on the probed ma-
chines, so the methodology worked, even in this case. From the 5440 megabytes
of the original Probe, the reduced version ended up with 330 megabytes, which is
about 6% of its original size. In a slow network of 1mbps, it would take close to 40
minutes to send this Probe, so perhaps, a more drastic reduction is required in the
presence of such a slow network, sacrificing prediction.

BT.B

The case shown in Figure is a typical case of a benchmark, whose behavior is
dominated by a small number of phases. In this case, 3. With these three phases,
after extrapolating the behavior from 61% to the entirety of this execution, we
arrived to a prediction quality of 91% of the original execution time, in average,
with a reduction of 93% of the Probe size.

t-Coffee

T-Coffee is a multiple sequence alignment package, used to align Protein, DNA
and RNA sequences and to combine sequence information with protein structural
information, profile information or RNA secondary structures [56]. As seen in figure

69

6.2. EXPERIMENTAL RESULTS

Sweep3d.150

76,2%
A

60,3%

A

49,8%
A

39,1%
A

A
680MB
v
?
%

1.372MB

7 6

8
A Number of remaining phases

7%

9

10

13

14

Probe size

Figure 6.5: Prediction quality (without extrapolation, touched-set or compression)

of the Sweep3D application with the cube sized as 150 units, versus probe size

CHAPTER 6. EXPERIMENTAL STUDY

70

NAS’ BT

41,4%
A

3.053MB

N
D~
: -
maA & ©
— —
ee) ({9}
B —
<
=4 g
3 =~
-
=R
O
=g
[e's}
m
N =
S | g
R =
® (g}
N =
= £
2N &
S
=}
X N
> %
(o)) ¢
@ [V}
:d >
X 8
o) (9]
<
2 q & s
/0/ O
(9]
S
OA
N
32
o
o

A Number of remaining phases

Figure 6.6: NAS’ Bt.B

6.2. EXPERIMENTAL RESULTS 71

T-coffee 50

Aosso Ao A

-~
1
)
<
(o<}

A51,9%

300MB

143MB

7
|

> DO
TH A\
~ N

A Number of remaining phases
Probe size

Figure 6.7: Prediction quality (without extrapolation, touched-set or compression)
of the t-coffee application.

6.7, about 94% of its execution time is dominated by two phases. During these
two phases, the application was working over a really small segment of data, so
our reduction techniques left us with a Probe of a mere 5,6 megabytes, able to be
transferred in under a minute even under our 1mbps network. This is a reduction
of 98% from the original Probe, that was of 857 megabytes.

72

CHAPTER 6. EXPERIMENTAL STUDY

Chapter 7

Conclusion and future work

What is the use of repeating all that stuff, if you don’t explain it as you go on? It’s by far
the most confusing thing I ever heard!— The Mock Turtle

7.1 Work contribution

This research started in order to complement previous research of [9] on the multi-
cluster model, where one of the parameters of the equation for performance predic-
tion in such model was left out as future work.

One of the ways to characterize the performance of a worker to finalize such
research is what we call the software Probe.

Our Probe methodology is able to fill this gap and find the Per f4,q,; param-
eter necessary for equation mentioned in chapter [d] which is itself one of the
parameters of the whole model, depicted as equation in the same chapter.

The Probe is able to predict the execution time of a worker in a matter of
seconds, instead of much longer times took by running the whole worker, and much
more precisely than trying to correlate the application with benchmarks.

Initial research demonstrated that the checkpoints’ sizes made the Probes too
big to be transported over the internet in feasible time. Further research reduced
the Probes to a fraction of their original sizes, making them small enough to be
transported to remote clusters in order to characterize their machines in viable
time.

One characteristic of the current Probe model is that the prediction depends
on the original application’s input data. This is not exactly a defect, but a inherent
characteristic of the application to be characterized. If the application is data-

73

74 CHAPTER 7. CONCLUSION AND FUTURE WORK

dependent, so will the Probe be.

There are two aspects of the data-dependency “issue” that should be observed:

e Even when a data-dependent application yields wildly different results from
one execution to another with different data sets of equivalent sizes, the Probes
still fulfill their objective of give performance information to the scheduler, in
the sense that the same Probe while run in different machines gives different
results - so it is still an useful result for the matter of machine selection.

e Being the Probes as fast as they are, it is possible to construct a set of pre-
defined probes with different input data that correlates to the spectrum of
possible performances. There is ongoing research on characterizing these dif-
ferent input data sets started by Fritzsche, Rexachs and Luque [22], and the
union of both lines of research stands as a promising future work (see next
section).

7.2 Publications

This research has had as outcome the publication of the following Papers:

e Software Probes: Towards a Quick Method for Machine Characterization and
Application Performance Prediction [80], which received the awards of best
paper and best presentation on the 7th International Symposium on Parallel

and Distributed Computing (ISPDC) in 2008,

e Software Probes: A Method for Quickly Characterizing Applications’ Perfor-
mance on Heterogeneous Environments [79], presented on the Workshop on
Design, Optimization and Management of Heterogeneous Networked Systems
of the 38th International Conference on Parallel Processing (ICPP) in 2009,

e Improving Probe Usability [78], presented on the Cloud Computing and Ser-
vices Workshop of the 25th IEEE International Conference on Advanced In-
formation Networking and Applications (AINA), in 2011.

7.3 Future Work

Probes are useful enough in a series of other models, not only in master/worker
applications in hierarchical multi-clusters. In fact, any scheduling logic that needs
information about how a given computing element will perform while running an

7.3. FUTURE WORK 75

application can benefit from the use of Probes. Selection algorithms such as [2] and
[12] can be simplified with the performance prediction given by our Probes.

Environments such as grids and clouds can use our Probes directly to replace
the “benchmark” parameter of the schedulers, as it is way more related to the real
application.

Different application models, such as workflows [41] may also benefit from
Probes, as we may run Probes for every node of the workflow on every machine
available, and run the workflow nodes where they run best.

Although the applicability of our methodology in such environments seems
obvious, experiments to prove the usefulness of the Probes on them are necessary.

As already stated on the previous section, the work of Fritzsche, Rexachs and
Luque [22] correlates input data sets with their performance characteristics, and
it is able to predict the execution time of applications where the input data may
change it radically, such as the parallel traveling salesman problem (TSP) [54], of
the parallel clustering and classification of large number of documents [63]. It uses
clustering techniques to correlate the position of the cities in a 2d map and the city
where the travel starts with the time taken for the TSP to find the solution.

Fritzsche’s solution for the specific problem of the TSP can be generalized
to different kinds of applications. Their limitation was that to correlate different
input data, the execution time for the thousands of experiments required was not a
feasible task. Our proposal of fast Probes can make that research more general to
encompass any kinds of applications, and their research can improve ours in the case
of data-dependent applications, using a collection of probes of the same application
with different characteristics.

76

Bibliography

1]
2]

[10]

The top 500 supercomputers list - http://www.top500.org, June 2011.

I Al-Furiah, S Aluru, S Goil, and S Ranka. Practical algorithms for selec-
tion on coarse-grained parallel computers. IEEE Transactions on Parallel and
Distributed Systems, Jan 1997.

D Andrade, M Arenaz, B Fraguela, and J Tourino. Automated and accurate
cache behavior analysis for codes with irregular access patterns. In Proceedings
of Workshop on Compilers for Parallel ..., Jan 2006.

D Andrade, B Fraguela, and R Doallo. Analytical modeling of codes with arbi-
trary data-dependent conditional structures. Journal of Systems Architecture,
Jan 2006.

D Andrade, B Fraguela, and R Doallo. Precise automatable analytical modeling
of the cache behavior of codes with indirections. portal.acm.org, Jan 2007.

Manuel Diego Andrade. Automated and accurate cache behavior analysis for
codes with irregular access patterns. Concurrency and Computation: Practice
and Ezperience, 19(18):2407-2423, 2007.

Murali Annavaram, Ryan Rakvic, Marzia Polito, Jean-Yves Bouguet,
Richard A. Hankins, and Bob Davies. The fuzzy correlation between code
and performance predictability. pages 93-104, 2004.

E Argollo, A Gaudiani, D Rexachs, and E Luque. Tuning application in a
multi-cluster environment. Proceedings of the Furo-Par 2006, pages 78-98, Jan
2006.

Eduardo Argollo and Emilio Luque. Performance prediction and tuning in a
multi-cluster environment. Ph.D. Dissertation, Oct 2006.

D Bailey. Unfavorable strides in cache memory systems (rnr technical report
rnr-92-015). Scientific Programming, Jan 1995.

7

http://www.top500.org

[11]

[12]

[13]

[19]

[20]

[21]

DH Bailey, E. Barszcz, JT Barton, DS Browning, RL Carter, L. Dagum, and
et al. Fatoohi. The nas parallel benchmarks. International Journal of High
Performance Computing Applications, 5(3):63-73, Jan 1991.

J Barbosa, J Tavares, and A.J Padilha. Linear algebra algorithms in heteroge-
neous cluster of personal computers. hcw, 00:147, 2000.

A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello.
MPICH-V project: A multiprotocol automatic fault-tolerant MPI. Interna-
tional Journal of High Performance Computing Applications, 20(3):319, 2006.

Doug Burger and Todd M Austin. The simplescalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3):13-25, 1997.

M Cierniak, M Zaki, and W Li. Compile-time scheduling algorithms for a
heterogeneous network of workstations. The Computer Journal, 40(6):356-372,
1997.

H Curnow and B Wichmann. A synthetic benchmark. The Computer Journal,
Jan 1976.

A.S Dhodapkar and J.E Smith. Comparing program phase detection techniques.
Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM In-
ternational Symposium on, pages 217— 227, 2003.

Jack Dongarra. The linpack benchmark: An explanation. In E. Houstis, T. Pa-
patheodorou, and C. Polychronopoulos, editors, Supercomputing, volume 297
of Lecture Notes in Computer Science, pages 456-474. Springer Berlin / Hei-
delberg, 1988.

J Duell. The design and implementation of berkeley labs linux check-
point /restart. Tr, Lawrence Berkeley National Laboratory, 2000.

J Duell, PH Hargrove, and ES Roman. Requirements for linux check-
point/restart. 2002.

B Fraguela, R Doallo, and E Zapata. Probabilistic miss equations: evaluating
memory hierarchy performance. IEEE Transactions on Computers, Jan 2003.

P. Fritzsche. Podemos Predecir en Algoritmos Paralelos no Deterministas?
Ph.D. dissertation, 2007.

C Glasner and J Volkert. Adaps-a three-phase adaptive prediction system
for the run-time of jobs based on user behaviour. CISIS °09. International
Conference on Complex, Intelligent and Software Intensive Systems, 2009., Jan
2010.

78

[24]

[25]

[20]

[27]

[29]

[30]

[34]

S Golomb. Run-length encodings (corresp.). Information Theory, IEEE Trans-
actions on, 12(3):399 — 401, 1966.

J Goux, J Linderoth, and M Yoder. ... Metacomputing and the master-worker
paradigm. Preprint MCS/ANL-P792-0200 ..., Jan 2000.

G Griem, L Oliker, J Shalf, and K Yelick. Identifying performance bottlenecks
on modern microarchitectures using an adaptable probe. Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th International, 2004.

G Hamerly, E Perelman, and B Calder. How to use simpoint to pick simula-
tion points. ACM SIGMETRICS Performance Fvaluation Review, 31(4):25-30,
2004.

Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism, Sep 2005.

P.H. Hargrove and J.C. Duell. Berkeley lab checkpoint/restart (blcr) for linux
clusters. Journal of Physics: Conference Series, 46(1):494-499, 2006.

J.W Haskins and K Skadron. Memory reference reuse latency: Accelerated
warmup for sampled microarchitecture simulation. Performance Analysis of
Systems and Software, 2003. ISPASS. 2003 IEEE International Symposium
on, pages 195— 203, 2003.

Kim Hazelwood, Dan Connors, David Kaeli, and Vijay Janapa Reddi. Using pin
for compiler and computer architecture research and education. ACM Sigplan
2007, PLDI Tutorial 2007, Jun 2007.

A Hoisie, O Lubeck, and H Wasserman. Scalability analysis of multidimensional
wavefront algorithms on large-scale smp clusters. Frontiers of Massively Parallel
Computation, Jan 1999.

A Hoisie, O Lubeck, and H Wasserman. Performance and scalability analysis
of teraflop-scale parallel architectures using multidimensional wavefront appli-
cations. International Journal of High Performance Computing Applications,
pages 330-346, Jan 2000.

JK Hollingsworth, BP Miller, and J Cargille. Dynamic program instrumen-
tation for scalable performance tools. Scalable High-Performance Computing

Conference, 199/. Proceedings of the, pages 841-850, 1994.

79

[35]

[42]

[43]

[44]

[45]

[46]

JK Hollingsworth, A Snavely, S Sharaglia, and K Ekanadham. Emps: An en-
vironment for memory performance studies. Parallel and Distributed Process-
g Symposium, 2005. Proceedings. 19th IEEE International, pages 223b—223b,
2005.

K Hoste and L Eeckhout. Microarchitecture-independent workload characteri-
zation. IEFE Micro, Jan 2007.

L John. Spec cpu2000: Measuring cpu performance in the new millennium.
IEEE Computer, Jan 2000.

A Joshi, L Eeckhout, and L John. The return of synthetic benchmarks. spec.oryg.

A Joshi, L Eeckhout, L John, and C Isen. Automated microprocessor stressmark
generation. Proceedings of International Symposium on High Performance ...,
Jan 2008.

Ajay Joshi, Lieven Eeckhout, Robert Bell, Jr, and Lizy John. Distilling the
essence of proprietary workloads into miniature benchmarks. Transactions on
Architecture and Code Optimization (TACO, 5(2), Aug 2008.

DS Katz, JC Jacob, E. Deelman, C. Kesselman, G. Singh, M.H. Su, GB Ber-
riman, J. Good, AC Laity, and TA Prince. A comparison of two methods for
building astronomical image mosaics on a grid. In Parallel Processing, 2005.
ICPP 2005 Workshops. International Conference Workshops on, pages 85-94,
2005.

Junghwan Kim, Jungkyu Rho, Jeong-Ook Lee, and Myeong-Cheol Ko. Cpoc:
Effective static task scheduling for grid computing. High Performance Com-
puting and Communcations, pages 477-486, 2005: Springer.

W Korn and P Teller.... Just how accurate are performance counters? Per-
formance, Jan 2001.

V Kumar, A Grama, and A Gupta. Introduction to parallel computing: design
and analysis of algorithms. cs.umn.edu, Jan 1994.

Lizy Kurian and Lieven Eeckhout. Performance evaluation and benchmarking.
Jul 2007.

S Laha, JH Patel, and RK Iyer. Accurate low-cost methods for perfor-
mance evaluation of cachememory systems. Computers, IEEE Transactions
on, 37(11):1325-1336, 1988.

80

[47]

[48]

[49]

[50]

[51]

[54]

[55]

[56]

[57]

J Lau, E Perelman, G Hamerly, T Sherwood, and B Calder. Motivation for
variable length intervals and hierarchical phase behavior. IEEE International
Symposium on Performance Analysis of Systems and Software, 2005.

J Lau, J Sampson, E Perelman, G Hamerly, and B Calder. The strong cor-
relation between code signatures and performance. Performance Analysis of
Systems and Software, 2005. ISPASS 2005. International Symposium on Per-
formance Analysis of Systems and Software, pages 236-247, 2005.

J Lau, S Schoemackers, and B Calder. Structures for phase classification. Per-
formance Analysis of Systems and Software, 2004 IEEFE International Sympo-
stum on - ISPASS, pages 57— 67, 2004.

C Lee, C DeMatteis, and J Stepanek. ... Cluster performance and the implica-
tions for distributed, heterogeneous grid performance. hcw, Jan 2000.

Y Liand Z Lan. Frem: A fast restart mechanism for general checkpoint /restart.
Computers, IEEE Transactions on, PP(99):1 — 1, 2010.

Yawei Li and Zhiling Lan;. A fast restart mechanism for checkpoint/recovery
protocols in networked environments. Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, pages
217 — 226, 2008.

J McCalpin and CA Oakland. An industry perspective on performance charac-
terization: Applications vs benchmarks. Proceedings of the Third Annual IEEE
Workshop Workload Characterization, keynote address, Sept, 2000.

J Mohan. Experience with two parallel programs solving the traveling salesman
problem. osti.gov, Jan 1983.

R Murphy and P Kogge. On the memory access patterns of supercomputer ap-
plications: Benchmark selection and its implications. Computers, IEEE Trans-
actions on, 56(7):937 — 945, Jul 2007.

C Notredame, D G Higgins, and J Heringa. T-coffee: A novel method for fast
and accurate multiple sequence alignment. J Mol Biol, 302(1):205-17, Sep 2000.

L Pastor and J.L. Bosquwe Orero. An efficiency and scalability model for het-
erogeneous clusters is -. Cluster Computing, 2001. Proceedings. 2001 IEEFE
International Conference on AB -, pages 427-434, 2001.

H Patil, R Cohn, M Charney, R Kapoor, A Sun, and A Karunanidhi. Pin-
pointing representative portions of large intel itanium programs with dynamic
instrumentation. MICRO-37 200/. 37th International Symposium on Microar-
chitecture, pages 81— 92, 2004.

81

[59]

E Perelman, G Hamerly, and B Calder. Picking statistically valid and early
simulation points. Parallel Architectures and Compilation Techniques, 2003.
PACT 2003. Proceedings. 12th International Conference on, pages 244— 255,
2003.

A Petitet, R Whaley, J Dongarra, and A Cleary. A portable implementation
of the high-performance linpack benchmark for distributed-memory computers.
Innovative Computing Laboratory, Jan 2004.

A Phansalkar and L John. Performance prediction using program similarity.
Proceedings of the 2006 SPEC Benchmark Workshop, Jan 2006.

George A. Reis, Jonathan Chang, David I. August, Robin Cohn, and Shub-
hendu S. Mukherjee. Configurable transient fault detection via dynamic binary
translation. In IN: PROCEEDINGS OF THE 2ND WORKSHOP ON ARCHI-
TECTURAL RELIABILITY. Citeseer, 2006.

A Ruocco and O Frieder. Clustering and classification of large document bases
in a parallel environment. Journal of the American Society for Information
Science, Jan 1997.

I Sharapov, R Kroeger, G Delamarter, and R Cheveresan. A case study in top-
down performance estimation for a large-scale parallel application. ... ACM
SIGPLAN symposium on Principles and practice of parallel ..., Jan 2006.

T Sherwood, E Perelman, and B Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. International
Conference on Parallel Architectures and Compilation Techniques, Jan 2001.

T Sherwood, S Sair, and B Calder. Phase tracking and prediction. Proceedings
of the 30th Annual International Symposium on Computer Architecture, 2003,
pages 336 — 347, 2003.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-
matically characterizing large scale program behavior. SIGPLAN: Proceedings
of the 10th international conference on Architectural support for programming
languages and operating systems, 37(10):45-57, 2002.

Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad
Calder. Discovering and exploiting program phases. IEEE Micro, Jan 2004.

H Siege, L. Wang, J So, and M Maheswaran. Data parallel algorithms.
docs.lib.purdue. edu.

82

[70]

[71]

[76]

[77]

[78]

A Snavely, L Carrington, N Wolter, and J Labarta. A framework for perfor-
mance modeling and prediction. Supercomputing, Jan 2002.

A Snavely, X Gao, C Lee, N Wolter, J Labarta, J Gimenez, and P Jones.
Performance modeling of hpc applications. Parallel Computing (ParCo2003),
2003.

S Sodhi and J Subhlok. Skeleton based performance prediction on shared net-
works. Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE Interna-
tional Symposium on, pages 723-730, 2004.

S Sodhi and J Subhlok. Automatic construction and evaluation of performance
skeletons. Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), pages 88-98, Apr 2005.

S Sodhi, J Subhlok, and @ Xu. Performance prediction with skeletons. Cluster
Computing, Jan 2008.

E Strohmaier and H Shan. Architecture independent performance character-
ization and benchmarking for scientific applications. Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, 2004.(MASCOTS
2004). Proceedings. The IEEE Computer Society’s 12th Annual International
Symposium on, pages 467-474, 2004.

E Strohmaier and H Shan. Apex-map: A synthetic scalable benchmark probe
to explore data access performance on highly parallel systems. LECTURFE

NOTES IN COMPUTER SCIENCE, 3648:114, 2005.

E Strohmaier and H Shan. Apex-map: a parameterized scalable memory ac-
cess probe for high-performance computing systems: Concurrency and
Computation: Practice ¢ Ezxperience, Jan 2007.

Alexandre Strube, Emilio Luque, and Dolores Rexachs. Improving probe us-
ability. Cloud Computing and Services Workshop, The 25th IEEE International
Conference on Advanced Information Networking and Applications (to appear),
2011.

Alexandre Otto Strube, Dolores Rexachs, and Emilio Luque. Software probes:
A method for quickly characterizing applications’ performance on heteroge-
neous environments. Parallel Processing Workshops, International Conference
on, 0:262-269, 2009.

83

[30]

[88]

AO Strube, Dolores Rexachs, and Emilio Luque. Software probes: Towards a
quick method for machine characterization and application performance pre-
diction. Parallel and Distributed Computing, 2008. ISPDC' °08. International
Symposium on Parallel and Distributed Computing, pages 23-30, 2008.

J Subhlok, P Lieu, and B Lowekamp. Automatic node selection for high per-
formance applications on networks. Proceedings of the seventh ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 163-172,
1999.

H Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. DobbOs Journal, 30(3):202-210, 2005.

A Toomula and J Subhlok. Replicating memory behavior for performance pre-
diction. Proceedings of the 7th workshop on Workshop on languages, compilers,
and run-time support for scalable systems, pages 1-8, 2004.

Haluk Topcuouglu, Salim Hariri, and Min-you Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE Transac-
tions on Parallel and Distributed Systems, 13(3):260-274, 2002.

Helmut Wanek, Erich Schikuta, and Irfan Ul Haq. Grid workflow optimization
regarding dynamically changing resources and conditions. In GCC' ’07: Proceed-

ings of the Sixth International Conference on Grid and Cooperative Computing,
pages 757-763, Washington, DC, USA, 2007. IEEE Computer Society.

V Weaver and S McKee. Can hardware performance counters be trusted?
Workload Characterization, Jan 2008.

V.M. Weaver and S.A. McKee. Using dynamic binary instrumentation to gen-
erate multi-platform simpoints: Methodology and accuracy. Proceedings of the
3rd international conference on High performance embedded architectures and
compilers, 4917:305-309, 2008.

VM Weaver and SA McKee. Using dynamic binary instrumentation to gener-
ate multi-platform simpoints: Methodology and accuracy. Proceedings of the
3rd international conference on High performance embedded architectures and
compilers, 4917:305-319, 2008.

R Weicker. Dhrystone: a synthetic systems programming benchmark. Com-
munications of the ACM.

J Weinberg. Quantifying locality in the memory access patterns of hpc appli-
cations. 2005.

84

[91] A. Wong, D. Rexachs, and E. Luque. Parallel application signature. In Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEFE International Confer-
ence on, pages 1 —10, aug. 2009.

85

	Preface
	Contents
	Introduction
	Some history
	Objectives
	Proposal and Outcomes
	Related Work
	Work Organization

	The multi-cluster environment
	Introduction
	The free ride
	Clusters of workstations
	The master/worker paradigm
	Multi-clusters
	The hierarchical multi-cluster

	Basic Block Vector Distribution Analysis
	Introduction
	Metrics

	Basic Block Vector Analysis

	Probe
	Introduction
	The alternatives
	Thorough executions
	Comparison of hardware characteristics
	Benchmarks

	Our alternative: the Probes
	Creation methodology
	Overview

	Data Collection
	Phase discovery
	Binary generation
	Probe execution
	Phase save

	Measurement
	How it fits in the multi-cluster model

	Reduced Probe
	Introduction
	Memory access pattern
	Program control flow

	Reduction
	Removal of less-important phases
	Compression
	Touched set approach
	Probe generation
	Checkpointing library kernel module

	Experimental study
	Introduction
	Experimental results
	Precision
	Probe Transmission Time
	Reducing Probe size

	Conclusion and future work
	Work contribution
	Publications
	Future Work

	Bibliography

