
Science and Supercomputing in Europe, HPC-Europa Transnational Access re-
port 2007, pp. 453–461, CINECA Consorzio Interuniversitario, Bologna, Italy.
ISBN 978-88-86037-21-1

Scalable performance analysis
of large-scale parallel applications

on MareNostrum

Brian J.N. Wylie
Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

Abstract

The scalasca toolset was readily ported to Mare Nostrum and its measurement and
automated analysis scalability verified to 2,048 processes with the smg2000 benchmark
and wrf numerical weather prediction application. It was subsequently compared
with the local Paraver/MPItrace tools, albeit with difficulty due to their quite different
modes of operation, and found to be complementary: scalasca is able to rapidly gener-
ate automated analysis summaries from the largest configurations, which can be used
to direct much more extensive Paraver trace analyses to particularly significant per-
formance issues. A previously unexpected problem with exiting MPI communication
collectives was identified and codified in a new scalasca “N x N Completion” property,
allowing its significance to be investigated and instances to be examined with Paraver.

1 Introduction

The visit to Barcelona Supercomputer Centre funded by HPC Europa allowed
the collaboration between the groups developing trace-based parallel program
performance analysis tools in Barcelona and Jülich to be extended. Collabo-
ration was initiated in spring 2006 with a port of the KOJAK toolkit measure-
ment system to the IBM JS21-blade cluster ‘MareNostrum’ and development
of a converter enabling KOJAK traces to be visualised and analysed by Par-
aver [1, 4]. Specifically addressing the scalability requirements of long-running
applications on large-scale systems of thousands of processes/processors, the
scalasca toolset [2] builds on and extends the KOJAK toolkit [3].

scalasca development to date has focussed primarily on MPI-1 applications
consisting of thousands of processes. A new streamlined measurement system
can collect traces from each process rank for distributed analysis based on par-
allel replay of message-passing events, and has demonstrated good scalability
to tens of thousands of processes on IBM BlueGene/L and Cray XT systems
(as well as a variety of smaller-scale platforms). At such scales, unique chal-
lenges of functionality, reliability and scalability are encountered which are
generally not repeatable with smaller configurations. Fundamental operating
system, message-passing system, memory system and filesystem limitations
encountered porting scalasca match similar challenges experienced by applica-
tion developers scaling their codes to these largest scales.

Although the merits of event tracing have been demonstrated for perfor-
mance analysis and tuning parallel applications at large scale, the approach is

1



16 32 64 128 256 512 1024 2048 4096 8192
Processes

1

10

100

1000

10000

Total trace size [GB]
Trace unify & flush [s]
Trace replay analysis [s]
Summary analysis (PRV1) [s]

SMG2000 [64b] Mare Nostrum measurement and analysis scalability

Figure 1: scalasca measurement/analysis scaling for MareNostrum smg2000.

prone to measurement perturbation and excessive trace volume when instru-
mentation is inappropriately configured or measurement continues for pro-
longed periods. These issues can be avoided by carefully-directed instrumen-
tation and bounded measurement intervals, however, it is often difficult to
determine these in advance. In this respect, runtime summarisation of key ex-
ecution performance characteristics in an initial measurement execution can be
a basis for directing instrumentation (both statically compiled and configured
at runtime) in subsequent measurements which can comprise both overview
summaries and selective event traces. Runtime summarisation is also often a
more effective approach for hardware counter measurements that can easily
result in voluminous traces.

2 Preparation and Validation

Configuration and building the scalasca toolset on MareNostrum required a
little customisation to the local system environment, particularly to handle
code-generation inconsistency: by default, 64-bit code is generated by the
MPI compilers versus 32-bit for the non-MPI compilers. After basic instal-
lation testing, measurement and analysis scalability was validated with the
communication-intensive smg2000 benchmark [5] up to 2,048 processes (which
was the maximum accessible during the visit): the benchmark was configured
to run 5 solver iterations of a 64×64×32 problem size per process for weak scal-
ing behaviour. Figure 1 shows total trace size (corresponding to the number of
execution events) growing slightly more than linearly up to over 400GB, with
trace writing following suit, while both summary and trace replay analyses
both scale less than linearly with increasing numbers of processors. (Traces

2



16 32 64 128 256 512 1024 2048
Processes

1

10

100

1000

Total trace size [GB]
Trace unify & flush [s]
Trace replay analysis [s]
Summary analysis (PRV1) [s]

WRF-NMM [64b] (Eur-12km) Mare Nostrum measurement and analysis scalability

Figure 2: scalasca measurement/analysis scaling for MareNostrum wrf-nmm.

were collected without hardware counter measurements, whereas the runtime
summaries contain an additional set of 8 hardware counter metrics.) Timings
quoted are representative, however, all measurements and analyses were un-
dertaken on shared systems, where considerable run-to-run variation in I/O
and filesystem performance is unavoidable.

This was followed by application of scalasca to measure and analyse one of
the local ‘production’ applications, the wrf-nmm numerical weather predic-
tion code [6]. The application and its analysis are discussed in the following
section, however, an example analysis report is shown in Figure 3. Despite
its significantly greater complexity, not limited to building an executable and
its runtime configuration, scalasca measurement and analysis was similarly
validated with wrf-nmm using a fixed-size Eur-12km dataset for strong scal-
ing up to 2,048 processes: Figure 2 shows the total trace size growing less
than linearly to 38GB, with trace writing following the same curve, runtime
summary analysis time grows also less than linearly, while trace replay analy-
sis time reduces to approximately one minute (for all but the largest process
configuration).

Although scalasca trace collection and analysis were limited by MareNos-
trum I/O bandwidth of 150MB/s writing and reading back large trace files,
particularly cumbersome trace merging and rewriting were avoided. This is
not the case with MPItrace/Paraver (Figure 4), where trace processing was
found to take many hours (rather than minutes), even when a distributed,
hierarchical merge was employed: it also uses a separate follow-on batch job,
whereas scalasca trace analysis efficiently re-uses the processes of the measure-
ment batch job.

For an initial overview analysis, a prototype of scalasca runtime summari-
sation of event measurements was demonstrated to avoid event buffering and

3



Figure 3: scalasca analysis report presentation of 400-process wrf-nmm execu-
tion experiment. The point-to-point communication time metric chosen from
the metric hierarchy (left pane) is shown for call-paths of the solver (central
pane) and its associated severity distribution per process (right pane).

Figure 4: Paraver presentation of timestep 25 of 400-process wrf-nmm trace
with MPI Allreduce depicted orange: imbalanced entry results in 2.8s of Wait

at N x N, dwarfed by problem with staggered exit (10.8s N x N Completion).

4



tracefile handling, rapidly delivering a summary profile of the application ex-
ecution. Although lacking detailed analysis that is only possible from traces,
the summary report is produced in the same format as the trace analysis
reports, so that the same presentation and postprocessing tools can be used.

MareNostrum PowerPC-970MP processor hardware counters, in groups of
up to 8 counters, could also be recorded with measured events and included in
the summary reports. The associated metrics can then be combined (from one
or more measurement experiments) into hierarchies of derived metrics, e.g., for
types of data accesses, instructions and cycles. By processing the names of the
compute nodes recorded in measurement experiments, they could be converted
into server, chassis, blade and processor indices and analyses then presented
graphically according to system hardware topology. Notably, applications are
typically allocated non-contiguous blades, though this is not known to degrade
performance.

While scalasca and Paraver/MPItrace offer largely comparable functional-
ity, direct comparison is complicated by their different default configurations.
For example, Paraver/MPItrace typically dynamically interposes on MPI li-
brary calls, and makes little use of application callstack information to relate
performance to application source code. Although it also provides support
for application function instrumentation, and measurement configuration to
control the user functions and amount of associated callstack recorded with
MPI events, to produce detailed traces comparable to those with scalasca, the
resulting traces rapidly become huge and awkward to handle. Despite these
limitations, it was possible to directly compare scalasca and Paraver/MPItrace
traces and analyses from short small-scale executions, and verify that they
matched (to within run-to-run measurement variation). Previously-developed
utilities were also employed to convert a scalasca trace into Paraver format for
more direct comparison of the analyses of the same measurement experiment.

3 Analysis of WRF-NMM on MareNostrum

wrf-nmm is a public domain numerical weather prediction code developed
by the U.S. National Oceanic and Atmospheric Administration (NOAA) Na-
tional Centers for Environmental Prediction (NCEP), consisting of the Non-
hydrostatic Mesoscale Model (NMM) within the Weather Research and Fore-
casting (WRF) system [6]. Version 2.1.2 (released January 2006) is a flexible,
state-of-the-art atmospheric simulation system designed to be portable and
efficient on parallel computing platforms. It consists of some 530+ source files
amounting to over 300 thousand lines of code (75% Fortran, 25% C).

Simulations on MareNostrum were analysed which used the Eur-12km
dataset with a default configuration, apart from varying the duration of the
forecast and disabling intermediate checkpoints: it was not determined how
to disable dumping the initial state, which resulted in an unnecessarily costly
start-up. The simulations used a two-dimensional (squarish) decomposition
and mapping to processors, and by running a fixed problem size and the
same length of forecast on varying numbers of processors strong scaling was
investigated. Notably, each simulation timestep has its own characteristics,
determined by the configured physics and its implementation, such that some

5



are relatively quick while others take many times longer (even when excluding
I/O).

scalasca runtime summarisation (with trace collection disabled) determined
that 1,972 distinct instrumented callpaths were executed (with a maximum
stack depth of 20 frames), of which 272 (14%) were in the simulation timestep
phase. 85 of the total callpaths included instrumented MPI functions, of which
8 (9%) were in the simulation timestep phase. Producing the integrated profile
(including 8 hardware counter metrics) at the end of measurement collection
took 250 seconds (for the 2,048-process case).

As well as providing a basic profile of the wrf-nmm execution time and
message-passing characteristics, base hardware counter metrics and associated
derived metrics are structured into hierarchies [7]. The top of Figure 5 shows
the profile summary presented by the scalasca analysis report browser, with the
metric hierarchy partially expanded, the callpath hierarchy expanded to the
solver, and the MPI process topology distribution. The colour scale presents
metric severity values according to the mode chosen for each panel.

Having selected the metric for data loads that miss both levels of cache and
must come from memory (LOAD HIT MEM=PM DATA FROM MEM), the
values for this metric are shown as percentages for a section of the callpath tree
down to the solver, solve nmm, where 98% occur, and then the distribution of
solver values per process shown using the application’s MPI virtual topology.
Although the variation is small, it may be indicative of imbalance with a
significant performance penalty.

From the callpath and message statistics in the summary, the buffering re-
quirements for a complete trace of this execution were estimated to be 133MB
per process (not including tracing hardware counters). Due to the limited
I/O capabilities of MareNostrum, and to avoid the overhead and perturbation
of small, uninteresting functions, a short blacklist of functions to be ignored
during measurement was prepared, and specified during trace collection.

Flushing the 6.4GB of buffered trace data to disk at the end of 10 min-
utes of execution measurement collection took 3 minutes, and this was subse-
quently analysed in another 3 minutes. With this new report (at the bottom
in Figure 5), it becomes possible to investigate the origins of the various com-
munication and synchronisation times. Most of it is due to the master process
broadcasting the initial data to the others, and its relative importance is an
artifact of the shortness of the traces. Focusing on the solver itself, signif-
icant amounts of time are identified in point-to-point operations where the
receiver was blocked waiting for the sender to initiate the message transfer
(Late Sender) and there is also a significant amount of imbalance when pro-
cesses enter NxN collectives (Wait at N x N) and must wait on others.

Of particular interest is the highlit N x N Completion time, a newly incor-
porated metric which indicates an unusual imbalance exiting MPI Allreduce

in the advection module of the solver. Generally this time would be negligi-
ble, and was initially thought to be due to limitations of the schemes employed
to determine clock offsets and correct clock drifts. From closer examination
of the traces with Paraver, however, it was determined that in this case it
is significant because it shows a single occurrence where a few of the pro-
cesses were over 1.25 seconds late exiting. Furthermore, these processes are
in groups of three or four of those sharing a JS21 blade. While this is a rela-

6



Figure 5: scalasca analysis reports of 1,024-process wrf-nmm (Eur-12km)
simulation on MareNostrum. Runtime summary showing LOAD HIT MEM

hardware counter metric in solver (top) and trace analysis showing N x N

Completion time in solver advection step (bottom).

7



tively small amount of wasted time in total, it imbalances the other processes
who attempt to exchange data immediately afterwards, and is the origin of
the bulk of the Late Sender instances and subsequent Wait at N x N for the
next MPI Allreduce. Occurrences of this uncoordinated exit from collective
operations are sporadic and relatively infrequent, affecting slightly more than
1% of collectives (irrespective of the number of processes involved), but result
in serious disruption of the smooth execution of the wrf-nmm application.

It appears that the MPI(CH) implementation for Myrinet is responsible,
and no fix or workaround has yet been found. Since the impact of this dis-
ruption grows proportionally with the number of processes, it makes the use
of larger MareNostrum processor configurations unproductive for afflicted ap-
plications. With the incorporation of the N x N Completion metric, scalasca

is now able to quantify its impact on applications.

4 Integration Prototype

Paraver includes an experimental capability for reading a command file when
signalled, which allows a specified interval of the trace to be presented on
demand. An alternate mechanism is for intervals to be specified within Paraver
configuration files, such that Paraver can provide a menu of intervals each
with descriptive comments. With these means, trace intervals identified from
automated analysis as having particularly significant performance issues can
be presented with Paraver and subsequently investigated in greater detail.
Figure 4 shows the Paraver presentation of one wrf-nmm simulation timestep,
showing several of the 400 processes delayed more than 0.25s exiting from
MPI Allreduce: this problem and others identified by scalasca automatic trace
analysis are described in specially-prepared Paraver window configuration files.

Several difficulties must be addressed in realising this process. Firstly,
the scalasca traces are typically much larger than can be conveniently con-
verted into Paraver format, and also too large for Paraver to manage directly.
Appropriate trace extracts, containing the intervals of interest, can therefore
be prepared and converted to reduce size problems. During conversion it is
important that the timebase is retained, so that events and intervals in the
original trace can be located in the converted trace (extract).

The scalasca trace analyser was modified to log problem time-stamped
instances with associated severities in a textual report for each process rank
which could subsequently be merged into a complete problem instance severity
report. For the most severe instances, Paraver configuration files for presenting
the associated intervals and performance problem descriptions were prepared,
and could then be examined with Paraver. If desired, thresholds were provided
so that only the most significant individual events could be selected.

While this approach was adequate for some performance problems, par-
ticularly those for global collective communications, it was unsatisfactory for
situations where multiple distinct events impact upon each other. Most point-
to-point wait events are individually insignificant, however, they are found
to frequently cascade into large groups of related events. This was investi-
gated by grouping together individual problem instances that overlapped in

8



time, and summarising the resulting groups in Paraver configuration files. Al-
though related events are now shown together for analysis with Paraver, the
groups were unfortunately found to rapidly grow to many thousands of events,
within which it becomes difficult to identify the most significant individuals.
Furthermore, thresholding which eliminates less significant events also reduces
the fidelity of grouping.

Prototyping this potential integration of scalasca and Paraver has there-
fore been very helpful in identifying a range of issues that need further inves-
tigation. There is also engineering work required to complete the necessary
infrastructure functionality, however, it appears to be worth considering in
future product development.

Acknowledgements This work was carried out under the HPC-Europa
project (RII3-CT-2003-506079), with the support of the European Commu-
nity Research Infrastructure Action under the FP6 “Structuring the European
Research Area” programme. The author is grateful for the assistance and guid-
ance provided by his host, Prof. Jesus Labarta, the Paraver group, and the
support and scientific staff of Barcelona Supercomputer Centre, that made the
visit both extremely productive and enjoyable.

References

[1] B. Mohr: Transnational Access – Success Story at BSC. HPC-Europa
newsletter 4 (2005) //www.hpc-europa.org/Newsletter4.pdf

[2] M. Geimer, F. Wolf, B. J. N. Wylie, B. Mohr: Scalable Parallel Trace-
based Performance Analysis. Proc. 13th European PVM/MPI User’s
Group Meeting (Bonn, Germany), Lecture Notes in Computer Science
4192, Springer (2006) 303–312

[3] F. Wolf, B. Mohr: Automatic Performance Analysis of Hybrid
MPI/OpenMP Applications. J. Systems Architecture, 49(10–11). Else-
vier (2003) 421–439

[4] J. Labarta, S. Girona, V. Pillet, T. Cortes, L. Gregoris: DiP: A Parallel
Program Development Environment. Proc. 2nd Int’l EuroPar Conf. on
Parallel Processing (Lyon, France), Lecture Notes in Computer Science
1124, Springer (1996) 665-674

[5] Advanced Simulation and Computing Program: The ASC SMG2000
benchmark code. (2001) //www.llnl.gov/asc/purple/benchmarks/limited/smg/

[6] Weather Research Forecast code. //www.wrf-model.org/

[7] B. J. N. Wylie, B. Mohr, F. Wolf: Holistic Hardware Counter Performance
Analysis of Parallel Programs. Proc. 12th Parallel Computing (ParCo
2005, Málaga, Spain), John von Neumann Institute for Computing Series
Vol. 33 (2006) 187–194

9


