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Abstract. Wait states in parallel applications can be identified by scanning event
traces for characteristic patterns. In our earlier work, we have defined such in-
efficiency patterns for MPI-2 one-sided communication, although still based on
a serial trace-analysis scheme with limited scalability. In this article, we show
how wait states in one-sided communications can be detected in a more scalable
fashion by taking advantage of a new scalable trace-analysis approach based on a
parallel replay, which was originally developed for MPI-1 point-to-point and col-
lective communication. Moreover, we demonstrate the scalability of our method
and its usefulness for the optimization cycle with applications running on up to
32,768 cores.
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1 Introduction

Remote memory access (RMA) describes the ability of a process to access all or parts
of the memory belonging to a remote process directly, without explicit participation
of the remote process in the data transfer. Since all parameters for the data transfer
are determined by a single process, it is also called one-sided communication. This
programming model is made available to the programmer often in the form of platform-
or vendor-specific libraries, such as SHMEM (Cray/SGI) or LAPI (IBM). In 1997, one-
sided communication was added to the portable MPI standard with version 2 [9], and
since then has been adopted by the majority of the available MPI implementations.

Although it has been shown that the use of MPI-2 RMA can improve application per-
formance [10], it has not yet been widely adopted among the MPI user community. On
the other hand, we believe that the availability of suitable programming tools, in partic-
ular for performance analysis, can encourage more developers to exploit the benefits of
this model. However, since increasing demand for compute power in combination with



recent trends in microprocessor design towards multicore chips forces applications to
scale to much higher processor counts, such tools must be scalable as well in order to
be useful.

A non-negligible fraction of the execution time of MPI applications can often be at-
tributed to wait states, which occur when processes fail to reach synchronization points
in a timely manner, for example, due to load imbalance. Especially when trying to scale
communication-intensive applications to large processor counts, such wait states can
present severe challenges to achieving good performance. In our earlier work [8], we
have shown how wait states related to MPI-2 one-sided communication can be identi-
fied by searching event traces for characteristic patterns. However, the search algorithm
applied was sequential and intended to operate on a single global trace file, offering
only limited scalability. In the meantime, we developed a general framework to make
the pattern search in event traces more scalable [3]. Instead of sequentially analyzing
a single global trace file, the framework analyzes multiple process-local trace files in
parallel while performing a replay of the target application’s communication behavior.
In this article, we present a synthesis of the two approaches, making the search for
wait states in the context of MPI-2 RMA more scalable by enacting a parallel replay of
one-sided operations, which had previously only been tried for two-sided and collective
operations. The new scalable detection scheme for one-sided communication has been
integrated into Scalasca [12], a performance analysis toolset specifically designed for
large-scale systems.

The remainder of this article is organized as follows. Section 2 gives a brief overview
of the work done on this topic so far. Afterwards, the semantics of the MPI one-sided
programming model are explained in Section 3, before specifying the supported MPI
RMA inefficiency patterns and their replay-based detection algorithms in Section 4.
Moreover, results with two RMA-based applications running on up to 32,768 cores
demonstrate the scalability of our method and its usefulness for the optimization cy-
cle in Section 5. Finally, Section 6 concludes this article and gives a brief outlook on
future work.

2 Related Work

The number of portable performance-analysis tools supporting MPI-2 RMA is quite lim-
ited. The Paradyn tool, which conducts an automatic on-line bottleneck search, supports
several major features of MPI-2 [11]. To analyze RMA operations, it collects process-
local statistical data (i.e., transfer counts and time spent in RMA functions). Yet, it does
not take inter-process relationships into account. By contrast, the TAU performance sys-
tem [13] supports profiling and tracing of MPI-2 one-sided communication, though only
by monitoring the entry and exit of RMA functions. Therefore, it neither provides RMA
transfer statistics nor does it record the transfers in tracing mode. Recently, the trace
collection and visualization toolset VampirTrace/Vampir [7] was extended to provide
experimental support for MPI-2 one-sided communication [6].

In our previous work, we defined a formal event model [5] as well as a number of
characteristic patterns of inefficient behavior that can arise in the context of MPI-2 RMA
communication [8]. The detection of these patterns was implemented as an extension of



the serial trace analyzer KOJAK [15] and constitutes the foundation for our new, scalable
bottleneck detection algorithms.

One-sided communications are also closely related to partitioned global address
space (PGAS) languages, which provide the abstraction of shared memory to the user
while internally converting all remote accesses to one-sided communication calls. Some
PGAS languages such as UPC also support explicit one-sided communication. In this
context, the Parallel Performance Wizard (PPW) [14] is an automatic performance tool
specifically designed for PGAS languages. PPW supports the performance analysis of
programs written in such languages by providing so-called generic operation types that
are defined on top of an RMA event model.

3 MPI-2 Remote Memory Access

The interface for RMA operations defined by MPI differs from vendor-specific APIs in
many respects. This is to ensure that it can be efficiently implemented on a wide variety
of computing platforms, even if a particular platform does not provide any direct hard-
ware support for RMA. The design behind the MPI RMA API is similar to that of weakly
coherent memory systems: correct ordering of memory accesses has to be specified by
the user with explicit synchronization calls; for efficiency, the implementation can delay
communication operations until the synchronization calls occur.

MPI does not allow RMA operations to access arbitrary memory locations. Instead,
they can access only designated parts of the memory, which are called windows. Such
windows must be explicitly initialized with a call to MPI Win create and released with
a call to MPI Win free by all processes that either want to expose or to access this
memory. These calls are collective between all participating partners and may include
an internal barrier operation. By origin MPI denotes the process that performs an RMA
read or write operation, and by target the process the memory of which is accessed.

There are three RMA communication calls in MPI: MPI Get to read from and MPI Put
and MPI Accumulate – a variant of MPI Put with the possibility of using a reduction
operator – to write to the target window. MPI-2 RMA synchronization falls in two cate-
gories: active target and passive target synchronization. In active mode both processes,
origin and target, have to participate in the synchronization, whereas in passive mode
explicit synchronization occurs only on the origin process. MPI provides three RMA
synchronization mechanisms:

Fences: The function MPI Win fence is used for active target synchronization and is
collective over the communicator used when creating the window. RMA operations
need to occur between two fence calls.

General Active Target Synchronization (GATS): In this scheme, synchronization oc-
curs between a group of processes that is explicitly supplied as a parameter to
the synchronization calls. A so-called access epoch is started on an origin pro-
cess by MPI Win start and terminated by a call to MPI Win complete. The start
call specifies the group of targets for that epoch. Similarly, an exposure epoch is
started on a target process by MPI Win post and completed by MPI Win wait or
MPI Win test. Again, the post call specifies the group of origin processes for that
epoch.



Locks: Finally, shared and exclusive locks are provided for the so-called passive tar-
get synchronization through the MPI Win lock and MPI Win unlock calls, which
enclose the access epoch for this window on the origin.

It is implementation-defined whether some of the above-mentioned calls are block-
ing or non-blocking. For example, in contrast to other shared memory programming
paradigms, the lock call may not be blocking. In the remainder of this article, we exclu-
sively focus on active target synchronization. However, as part of our future work, we
plan to address also passive target synchronization.

4 Automatic Detection of RMA Inefficiency Patterns

In this section, we describe how the MPI RMA-related inefficiency patterns defined in
[8] as well as three new patterns, two of them time-based and one of them counter
based, can be automatically detected in a scalable way within the framework of the
Scalasca performance-analysis toolset. Scalasca is an open-source toolset that can be
used to analyze the performance behavior of parallel applications and to identify op-
portunities for optimization. As a distinctive feature, Scalasca provides the ability to
identify wait states in a program by searching event traces for characteristic patterns.
Such wait states occur, for example, as a result of unevenly distributed workloads. To
make the trace analysis scalable, process-local traces are analyzed in parallel without
prior merging. This implies that there is no knowledge about when in time a specific
remote event occurred locally available. This information is transferred to the location
where it is needed during the analysis process. The central idea behind Scalasca’s par-
allel trace analyzer is to reenact the application’s communication and synchronization
behavior recorded in the trace, analyzing communication operations using operations of
similar type. For example, to detect wait-states related to point-to-point message trans-
fers, the events necessary to analyze such a communication are exchanged between the
participating processes in point-to-point mode as well. This technique relies on reason-
ably synchronized timestamps between the different processes. On platforms without
synchronized clocks, a software correction mechanism is applied post mortem [2]. The
scalability of the parallel replay mechanism has already been demonstrated for up to
294,912 cores [4].

Here, we apply the same methodology to MPI RMA operations, that is, RMA trans-
fers are used to exchange the data required for the analysis. For this purpose, for each
window tracked during measurement of the original application, our analysis creates a
window exposing a small memory buffer during replay. The buffers are used by ori-
gin and target processes to exchange data relevant to the specific performance met-
rics. Specifically, these buffers comprise four double-precision floating-point entries
for timestamps, as well as a bitfield large enough to accommodate a bit for every pro-
cess having this window defined. The ith bit in this bitfield being set indicates at least
one RMA access (put or get) by the ith process in the corresponding communicator dur-
ing the ongoing epoch. Earlier, during trace acquisition (i.e., at application runtime),
Scalasca’s measurement layer keeps track of all windows being created and records the
window definitions plus all synchronization and communication operations acting on
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Fig. 1: The Early Transfer and Late Post (in two variants) inefficiency patterns. The
waiting time attributed to each pattern is marked in dark gray. Origin and target roles
are isolated in different processes—process C is the target for processes A, B, and D.

these windows. When the replay is performed during the analysis step, all those win-
dows can be recreated using the same set of processes based on the recorded window
definitions. The information needed for the analysis is subsequently transferred using
MPI Get and MPI Accumulate operations.

To ensure that the access and exposure epochs are available at the time when the an-
alyzer processes the corresponding part of the event trace, the synchronization pattern
used by the original application is reconstructed during the replay. That is, synchro-
nization on the exchange window is triggered by the exit events recorded for the RMA
synchronization calls involved. The exit event for MPI Win fence collectively synchro-
nizes the exchange window, whereas the exit of MPI Win start opens an access epoch
for the recorded group of processes, which is closed whenever the exit event of the cor-
responding MPI Win complete call is found. Similarly, an exposure epoch is opened
with the exit event of MPI Win post and closed with the exit events of MPI Win wait or
MPI Win test. Please note that the analysis relies on correctly applied synchronization,
which is why it may deadlock in cases of erroneous synchronization by the application.

During the replay, specific call backs are triggered for RMA-related events to detect
the different inefficiency patterns, as described below. For the sake of simplicity, the
individual actions taken are described in the context of the respective pattern. However,
not to transfer the same data twice, our implementation actually combines all these
actions using a sophisticated notification and call-back mechanism, thereby minimizing
the communication costs of the analysis.

Late Post. The Late Post inefficiency pattern refers to waiting time occurring during
general active target synchronization (GATS) operations of an access epoch that block
until access is granted by the corresponding exposing process as depicted in Figure 1.
Depending on the MPI implementation, this may happen either during MPI Win start
(variant involving process B and C) or MPI Win complete (variant involving process



D and C). However, the exact blocking semantics are usually not known. Therefore, we
use a heuristic to determine which calls are blocking. If and only if the enter event of the
call to the latest MPI Win post on the exposing processes (15) occurs within the time in-
terval of the MPI Win start call on the accessing process (8,9), we assume that the call
to MPI Win start is blocking, and the waiting time is determined by the time difference
between entering the MPI Win post operation (15) and entering MPI Win start (8), to
which the waiting time is finally ascribed. Likewise, waiting time during the call to
MPI Win complete is determined by the accessing process, where the enter event of
the complete call (24) is used to calculate the waiting time. In the case one of these
calls is falsely assumed to be blocking, the overall time spent in the call will be very
small, resulting in a negligible inaccuracy with respect to the overall severity of this
pattern.

To detect the Late Post pattern, the following MPI RMA operations occur during
the replay: The exit event of the MPI Win post call (16) triggers the start of the expo-
sure epoch on the target process after initializing the exchange buffer with the times-
tamp of the post enter event (15) and default values for all other fields. On the ori-
gin processes, the exit events of the call to MPI Win start (2,9,20) trigger the start
of the access epochs for the exchange window and the post enter timestamp of each
target process is retrieved using MPI Get. Accordingly, the exit events of the calls to
MPI Win complete (7,14,25) close the access epoch and the post enter timestamps can
be accessed to locally determine the latest post. This timestamp can then be compared
to the timestamps of the locally available events to determine the Late Post variant and
finally calculate the waiting time if applicable. On the target processes, the end of the
exposure epoch is ensured by calling MPI Win wait when reaching the corresponding
exit event (18).

Early Transfer. The Early Transfer pattern occurs when an RMA operation blocks be-
cause the relevant exposure epoch has not yet been started (Fig. 1, proc. A and C). It is
therefore similar to Late Post, and in fact requires exactly the same data to be transferred
(i.e., the post enter timestamps), but the waiting time is attributed to the remote access
operation and therefore appears in the communication subtree of the time metrics in the
analysis report (Fig. 2). As before, it can not easily be determined whether the origi-
nal RMA transfer call was actually blocking. However, we assume this to be the case
if the corresponding MPI Win post (15) call was issued on the target side within the
time interval of the remote access in question (3,5). Since the post enter timestamps are
only accessible after closing the access epoch, a backward traversal of the local event
data is required, comparing the timestamps recorded for each RMA operation with the
post enter timestamp of the corresponding target process. If the RMA operation was
non-blocking in the original run of the application, the time falsely classified as waiting
time would again be very small.

Early Wait. This pattern refers to the situation where the exposing process is waiting
for other processes to complete the remote accesses of their access epoch (Fig. 3). As
the call to MPI Win wait cannot return until all access epochs have been finished, the
time span between the enter event of the call to MPI Win wait and the latest enter event



Fig. 2: Screenshot of the CUBE analysis result browser. The Early Transfer inefficiency
pattern is selected. This pattern is similar to the Late Post pattern. However, it appears
in the communication subtree of the metric tree, as it indicates waiting time of RMA
operations, here MPI Put.

of the corresponding calls to MPI Win complete on the accessing processes is counted
as waiting time.

To detect the Early Wait pattern, the timestamps of the enter events of calls to
MPI Win complete (6,13) are transferred to the target processes via MPI Accumulate
using the MPI MAX operator just before closing the access epoch, thereby storing the
latest enter timestamp of a corresponding complete call in the target’s exchange buffer.
The waiting time can then be determined by subtracting the timestamp of the wait enter
event (17) from the latest complete enter timestamp (6) stored in the exchange buffer. As
can be seen, the one-sided model naturally lends itself to perform this type of analysis.

Late Complete. Depending on whether an MPI implementation can achieve commu-
nication/computation overlap or not, access epochs should be as compact as possible
in the latter case. As the target process can close the exposure epoch only after all ac-
cess epochs have been completed, waiting time in the Early Wait pattern that occurs
between the last RMA operation and the completion of the respective access epoch is
attributed to the Late Complete pattern (Fig. 3, hatched area), a sub-pattern of Early
Wait. As this waiting time occurs on the target of the access epoch, one solution to re-
duce waiting time can be moving the call of MPI Win complete closer to the last RMA
operation. This may, however, prevent communication/computation overlap on the ori-
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Fig. 4: The Wait-at-Fence (dark gray+hatched) and Early Fence (hatched) inefficiency
patterns.

gin. The user must therefore weight the benefits of reducing waiting time on the target
against loosing overlap on the origin. Alternatively, the user can also reduce the encap-
sulating Early Wait pattern by moving the call to MPI Win wait on the target to a later
point in time, which would address both the Early Wait and the Late Complete patterns.

During the detection, each origin caches the exit event of the latest RMA opera-
tion (5,12) separately for each target. If no RMA operation is present in the access
epoch, the exit timestamp of the MPI Win start call is taken. Then, all the origins
of a given target transfer their cached timestamp to the target via MPI Accumulate us-
ing the MPI MAX operator just before closing the access epoch while processing the exit
events of the calls to MPI Win complete (7,14). There the maximum value obtained
can then be subtracted from the timestamp of the latest complete enter event, which is
already available from the Early Wait detection algorithm.

Wait at Fence. This pattern refers to a wait state during the completion of a fence op-
eration, as shown in Figure 4. Although MPI Win fence is a collective call, it may not
be synchronizing, depending on given assertions or MPI-internal window status infor-
mation. However, as potentially all processes of the communicator may access the local
window, a confirmation is needed from the remote processes that their access epoch



on this window has ended. This could be prevented, if the implementation supports it,
during some calls where an assertion is given that no put or accumulate calls have to be
handled. We assume a collective call of MPI Win fence to be globally synchronizing
if the timestamps of all associated enter events occur before any exit event of the same
fence call.

To detect the Wait at Fence pattern, the latest enter and earliest exit timestamps of
the fence (4,7) are determined with a single MPI Allreduce call using a user-defined
operator. If the above-mentioned overlap criterion is met, the difference between the
latest enter event across all participating processes (4) and the local enter event (6) is
counted as waiting time.

Early Fence. Waiting time for entering a fence before all remote accesses have finished
is attributed to the Early Fence pattern, a sub-pattern of Wait at Fence (Fig. 4, hatched
area). Here, all processes locally determine the latest exit timestamp of their remote
accesses (3) for each target and transfer them to the matching target processes via accu-
mulate, again using the MPI MAX operator. These transfers are surrounded by two calls
to fence to ensure correct synchronization. In this way, the earliest possible completion
of the latest RMA operation of all accessing origin processes is determined and used
to calculate the waiting time of this pattern as the time difference between leaving the
latest RMA operation (3) and the local enter event of the fence (6).

Unneeded Pairwise Synchronizations. In MPI-2 RMA active target synchronization, the
user explicitly synchronizes with a set of processes. The results of RMA operations
issued before this synchronization become visible only thereafter. Logically, every po-
tential origin for a target process has to inform the target process that no further RMA
operation will be issued for the current epoch. In calls to MPI Win fence, an MPI imple-
mentation needs to synchronize each process internally with every other process in the
communicator corresponding to the window the call is issued on. There is no possibility
for a process to derive this information from local data other than the above-mentioned
assertion. This creates an internal synchronization between origin and target, where the
target has to wait for an acknowledgement from potential origin processes for the cur-
rent exposure epoch. In cases where the origin process issues no RMA operation for a
target, this synchronization still has to be done and will consume application time. How
much time is spent on these synchronizations cannot be explicitly measured, so the costs
of unneeded synchronizations can only be estimated by the user interpreting the perfor-
mance data. The Unneeded Pairwise Synchronizations pattern provides a count for all
synchronizations in MPI-2 RMA active target synchronization without preceding RMA
operation. It is a subset of all synchronizations done during those synchronization calls.
In this way, the user can then investigate this pattern if MPI-2 RMA synchronization in
general consumes a major fraction of the application time.

To calculate the number of unneeded synchronizations, the exchange buffer associ-
ated with every window contains a bitfield, where the ith bit represents a remote access
of the process with rank i in the communicator associated with the window to the local
process. This bitfield is initialized with all bits set to zero before each exposure epoch is
started, and then set by the accessing processes using MPI Accumulate with the binary-
or operator MPI BOR to set the bit corresponding to its rank on the target process. At the



Table 1: Event statistics and analysis times for the red-black SOR Poisson solver mea-
sured on the IBM Blue Gene/P system “Jugene”. The last column shows the analysis
time in percent of the application runtime.

# cores # events execution time [s] analysis time [s] analysis time [%]

128 12.682.656 40.7 2.37 5.82
256 26.133.376 42.7 2.41 5.64
512 53.034.816 83.9 2.48 2.96

1,024 107.605.760 86.9 2.61 3.30
2,048 216.747.648 204.0 2.91 1.43
4,096 436.567.552 230.0 3.38 1.47
8,192 876.207.360 375.0 4.47 1.19

16,384 1.758.559.232 397.0 8.61 2.17
32,768 3.523.262.976 793.0 14.73 1.86

end of the exposure epoch, the target process then evaluates the bitfield, counting the
number of bits set and storing the difference of the expected origin count and the actual
origin count in this epoch as the severity of this pattern. The origin processes accumu-
lating the bit count cache each target location and perform the actual accumulation only
once at the end of the access epoch.

5 Results

In this section, we present results for two different MPI-2 RMA codes. We took our
measurements on the IBM Power6 575 cluster “Jump” and the IBM Blue Gene/P system
“Jugene” located at the Jülich Supercomputing Centre. The results collected with up
to 32,768 processes using 8 racks of the 72-rack Blue Gene/P so far confirm that our
approach scales well even at very large processor configurations.

5.1 SOR Solver

With the first code, SOR, we verified the scalability of our analysis. SOR solves the Pois-
son equation using a red-black successive over-relaxation method. The two main com-
munication steps are halo-exchange and scalar reduction operations. The former was
adapted to use MPI RMA instead of the original non-blocking point-to-point communi-
cation. The latter still uses MPI collective communication as before. The global domain
is a three-dimensional grid of the size Nhoriz ×Nhoriz ×Nvert , which is partitioned along
the two horizontal dimensions using a 2D process mesh. The communication pattern of
this application is typical for grid-point codes used in earth and environmental science.

The solver was configured to create measurements with roughly the same number
of events per process, and specifically not to converge within the defined maximum
number of 1000 iterations. This enabled us to evaluate the weak-scaling behavior of
our analysis approach. The key numbers are given in Table 1. As can be seen, the total
number of events increases linearly with the number of cores. The jumps in execution
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Blue Gene/P system “Jugene”. The analysis time (red line with squares) stays within
one order of magnitude lower than the measured application (blue line with circles).

time of the application reflects different numbers of grid points per process in each di-
mension. Increasing the workload in the horizontal dimension therefore had a different
impact on overall computation than increasing the workload in the vertical dimension.
However, as this only influenced the communication/computation ratio of the measure-
ment, and neither the number of per-process events nor the applications communication
patterns, these effects are irrelevant for our evaluation.

The time exclusively needed for the replay analysis (i.e., without loading the traces
and writing the results, which together took less than 55 seconds for the 32,768-core
run) is reasonably low. As seen in Figure 5 it roughly mimics the overall scaling behav-
ior of the application itself, which is to be expected using our replay approach.

5.2 BT-RMA

To evaluate the usefulness of our analysis for application optimization and to verify that
the inefficiency patterns described earlier appear in practice, we incrementally devel-
oped a version of the BT benchmark from the NAS Parallel Benchmark Suite 2.4 [1],
which we called BT-RMA, that uses one-sided instead of non-blocking point-to-point



Table 2: Performance metrics for different variants of BT-RMA running on 256 cores
of the IBM Power6 575 system “Jump”. The first number in each column shows time
in CPU seconds or a count, respectively. The second number shows the percentage of
the total time or total count. All values are inclusive, that is, they include the time for
sub-patterns (indicated through indentation).
Metric fence only GATS/fence GATS only GATS only (opt)
Total time 109,361.7 100.0 61,888.9 100.0 61,248.7 100.0 60,504.0 100.0
MPI time 51,252.5 46.9 7,156.5 11.6 6,882.5 11.3 6,284.3 10.4
RMA sync. 48,703.8 44.5 2,585.9 4.2 2,177.9 3.6 3,476.0 5.8

Wait at Fence 6,080.0 5.7 805.9 1.3 0.0 0.0 0.0 0.0
Early Wait 0.0 0.0 568.5 0.9 950.1 1.6 1,923.8 3.2

Late Complete 0.0 0.0 1.2 0.0 289.6 0.5 2.0 0.0
Late Post 0.0 0.0 2.9 0.0 4.4 0.0 0.9 0.0

RMA comm. 1,324.9 1.2 3,246.6 5.3 3,507.4 5.7 1,603.2 2.7
Early Transfer 0.0 0.0 980.5 1.6 2,299.6 3.8 848.6 1.4

P.w. sync. for RMA 5.98789e9 100.0 7.76264e7 100.0 1.23402e7 100.0 1.23402e7 100.0
Unneeded 5.97555e9 99.8 6.52861e7 84.1 0 0.0 0 0.0

communication. The BT benchmark solves three sets of uncoupled systems of equa-
tions in the three dimensions x, y, and z. The systems are block tridiagonal with 5 × 5
blocks. The domains are decomposed in each direction, with data exchange in each di-
mension during the solver part, as well as a so-called face exchange after each iteration.
Those exchanges are implemented using non-blocking point-to-point communication
in the original BT. Initial evaluations were conducted on the IBM Power6 575 cluster
“Jump” using the “class D” problem size on 256 cores in ST mode. For measurement,
five purely computational subroutines were excluded from instrumentation, lowering
the runtime intrusion to about 1% and keeping the trace size manageable.

From a user’s perspective, the simplest form of synchronization with the MPI one-
sided interface is using fences. Thus we developed our initial version of BT-RMA using
fence synchronization for both data exchanges. The analysis results (Tab. 2) showed that
more than 44% of the overall runtime was spent in active target synchronization calls,
that is, MPI Win fence. Approximately 6% of the total time was found to be waiting
time attributable to the Wait at Fence pattern, that is, a major fraction of synchronization
time was actually spent synchronizing the individual processes and not in any particular
inefficiency pattern.

Further investigation of the initial measurement revealed that most of the synchro-
nization time was spent in synchronizing the solver exchanges. Additionally, the per-
formance metric Pairwise synchronizations for RMA showed that 98.1% of all pairwise
synchronizations counted are in the same synchronization calls that exhibit the exces-
sive use of time. Even more, 99.8% of those pairwise synchronizations were unneeded
as no data is exchanged between the processes involved. We therefore subsequently
modified the code to use GATS synchronization in the solver, while still using fences in
the face exchange. This version showed a dramatic reduction of the overall execution
time to only 57% of the runtime of the fence-only variant. Although significantly faster,



Table 3: Performance metrics for different variants of BT-RMA running on 1,024 cores
of the IBM Blue Gene/P system “Jugene”. The first number in each column shows time
in CPU seconds or a count respectively. The second number shows the percentage of
the total time or total count. All values are inclusive, that is, they include the time for
sub-patterns (indicated through indentation).
Metric fence only GATS/fence GATS only GATS only (opt)
Total time 862,852.5 100.0 235,560.8 100.0 233,595.0 100.0 234,458.7 100.0

MPI time 642,459.6 74.4 21,356.8 9.1 19,726.4 8.4 20,399.2 8.7
Collective sync. 246.8 0.0 1,686.3 0.7 2,088.6 0.9 2,938.6 1.3

Wait at Barrier 238.6 0.0 1,674.8 0.7 2,076.3 0.9 2,926.0 1.3
RMA sync. 639,439.8 74.1 16,901.9 7.2 13,675.9 5.9 14,115.9 6.0

Wait at Fence 16,302.5 1.9 187.8 0.1 0.0 0.0 0.0 0.0
Early Wait 0.0 0.0 2,656.2 1.2 2,661.1 1.1 2,824.4 1.2

Late Compl. 0.0 0.0 43.5 0.0 40.9 0.0 41.9 0.0
Late Post 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RMA comm. 1920.8 0.2 3,246.6 0.8 1,972.2 0.8 1,981.5 0.9
Early Transfer 0.0 0.0 980.5 0.0 0.0 0.0 0.0 0.0

P.w. sync. for RMA 1.96872e11 100.0 1.15257e09 100.0 9.87095e07 100.0 9.87095e07 100.0
Unneeded 1.96822e11 99.9 1.05386e09 91.5 0 0.0 0 0.0

active target synchronization still accounts for about 4.2% of the application runtime,
with Wait at Fence requiring 1.3% and Early Wait about 0.9%. In addition, this variant
uses 2.5 times more time for remote access operations compared to the fence-only ver-
sion, now spending 1.6% of the total time in the Early Transfer wait state. This indicates
that in the version using fence synchronization the MPI implementation is progressing
more of the overall RMA communication during the fence calls themselves.

As a next step, we completely eliminated the calls to MPI Win fence by adapting
the face exchange to also use GATS synchronization with individual windows for each
of the six neighbors. Although the Wait at Fence wait state disappeared, the waiting
time almost entirely migrated to the Late Complete (mostly in the face exchange) and
Early Transfer patterns (predominantly in the solver), thus only providing an additional
speedup of approximately one percent.

Based on these analysis results, we finally rearranged the GATS synchronization
calls slightly, starting the exposure epochs as early as possible and shortening the access
epochs by moving the start/complete calls close to the RMA transfers, decreasing the
overall runtime again. BT-RMA is now almost 45% faster than the first fence-based
version.

In addition to our initial evaluation of the BT-RMA code on the Power6 575 cluster
“Jump”, we also investigated its behavior at a slightly larger scale of 1,024 cores on
the Blue Gene/P system “Jugene” at the Jülich Supercomputing Centre. Unfortunately,
we encountered an issue with general active target synchronization, which is currently
under investigation by IBM. The skew in processes moving from one to the other dimen-
sion in the solver steps left the runtime system exiting unexpectedly. As a workaround,
we inserted a barrier call after each solver step in the dimension x, y, and z when chang-



ing the synchronization mechanism to GATS, yet knowing that this might impair overall
performance of the solver. When using fence synchronization in the solver step (fence
only) the inserted barrier calls hardly have any effect on the application behavior, as the
fence calls implicitly synchronize the processes.

As can be seen in Table 3, the skew in processes between the dimensions while
using GATS in the solver part is now consumed by the Wait at Barrier pattern, as ex-
pected. However, we still observed a dramatic decrease in time spent in active target
synchronization. This insight adds to the overall hypothesis that the synchronization
itself is not only costly in terms of waiting time, as these costs are attributed to the Wait
at Barrier pattern. It also involves, at least in the measurement under consideration, a
significant amount of CPU time to execute the synchronization mechanism itself. It can
be seen that while the amount of needed pair-wise synchronizations increases only by
the expected factor of four going from 256 to 1,024 processes, the amount of unneeded
pair-wise synchronizations has increased much more dramatically.

Another interesting aspect of our performance investigation on a second platform
is that one can see whether one or the other performance property shows up in the
overall application behavior also depends on the MPI implementation. For example, the
Late Post pattern is non-existent in our measurements of BT-RMA on the Blue Gene/P,
which indicates different progress strategies compared to the MPI implementation on
the Power6 575 cluster.

6 Conclusion

MPI-2 remote memory access is a portable interface for one-sided communication on
current large-scale HPC systems. To better support developers in using this interface,
we have presented a scalable method for identifying wait states in event traces of RMA
applications. A particular challenge to overcome was the availability of the communi-
cation parameters on only one side of an interaction between two processes, requiring
one-sided transfers of analysis data during the parallel replay. We have shown the scal-
ability of our method using one application kernel with up to 32,768 cores and incre-
mentally optimized a second and more complex code guided by results of our analysis.

Future research will incorporate additional information into the pattern search, such
as the assertions given to various MPI calls by the application. In addition, we plan to
investigate further inefficiency patterns for MPI-2 RMA such as passive target lock com-
petition. Moreover, we also consider leveraging our method for the scalable automatic
analysis of applications written in PGAS languages such as UPC.
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5. Marc-André Hermanns, Bernd Mohr, and Felix Wolf. Event-based measurement and anal-
ysis of one-sided communication. In Proc. of the 11th Euro-Par Conference, volume 3648
of Lecture Notes in Computer Science, pages 156–165, Lisboa, Portugal, August-September
2005. Springer.
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