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ABSTRACT
Partitioned global address space (PGAS) languages com-
bine the convenient abstraction of shared memory with the
notion of affinity, extending multi-threaded programming
to large-scale systems with physically distributed memory.
However, in spite of their obvious advantages, PGAS lan-
guages still lack appropriate tool support for performance
analysis, one of the reasons why their adoption is still in
its infancy. Some of the performance problems, for which
tool support is needed, occur at the level of the underlying
one-sided communication substrate, such as the Aggregate
Remote Memory Copy Interface (ARMCI). One such exam-
ple is the waiting time in situations where asynchronous data
transfers cannot be completed without software intervention
at the target side. This is not uncommon on systems with
reduced operating-system kernels such as IBM Blue Gene/P
where the use of progress threads would double the number
of cores necessary to run an application. In this paper, we
present an extension of the Scalasca trace-analysis infras-
tructure aimed at the identification and quantification of
progress-related waiting times at larger scales. We demon-
strate its utility and scalability using a benchmark running
with up to 16,384 processes.
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tion, remote memory access

1. INTRODUCTION
The evolution of high-performance computing (HPC) sys-
tems in the last decade has shown an exponential increase
in parallelism. Computing systems among the top ten of
the 500 fastest supercomputers in the world today feature
an average of more than 150,000 cores [18]. Currently the
largest system in terms of the number of cores offers a to-

tal of 294,912 cores on 72,728 distributed-memory nodes. At
larger scales, even small waiting times can propagate and ac-
cumulate throughout the application and significantly pre-
vent acceptable application performance [4]. Performance
analysis tools for HPC platforms are designed to aid the de-
veloper in the often overwhelming task of investigating and
understanding the application’s behavior at such large scale.
However, they are often focussed only on the prevalent pro-
gramming paradigm—message passing using the Message
Passing Interface (MPI) [20].

With the advent of partitioned global address space (PGAS)
languages, purely one-sided communication libraries gain
more momentum, as these are employed in the communi-
cation runtime of those languages. In one-sided communi-
cation, all communication parameters, such as source and
destination memory locations, are provided by one of the
communication partners only—the origin. The second com-
munication partner—the target—does not explicitly call a
communication function to match the origin’s communica-
tion call. Seen from the programmer’s view, one-sided data
transfers complete without active participation of the target.
Among such one-sided communication libraries is the Aggre-
gate Remote Memory Copy Interface (ARMCI) [23], used as
the communication back-end of Global Arrays [22], a PGAS-
style library. The efficiency of the communication relies
much on whether the data exchange can be completed with-
out the active participation of the other process. This is of-
ten provided through the communication hardware’s remote
direct memory access (RDMA) support. When this support
is unavailable either for the entire platform or only for a
specific type of communication construct, a software com-
ponent provides this progress. While sometimes this compo-
nent can be executed by a helper thread, large-scale archi-
tectures with reduced kernels such as IBM’s Blue Gene/P
require an extra core to run it, effectively doubling the re-
quired hardware. Interrupt-driven progress, an alternative
to a dedicated thread, on the other hand, introduces the cost
of an interrupt for every communication call and may pollute
the cache. Without a separately scheduled progress engine,
however, progress can only occur when the application calls
the communication library directly. Yet, one of the inher-
ent characteristics of PGAS applications is that individual
processes do not necessarily communicate at the same time.
Significant waiting times can therefore occur at the origin



of a one-sided operation, while it is waiting for progress at
the target side. In addition, inter-process dependencies may
induce further waiting times on remote processes via propa-
gation, even if the original waiting times are small [4]. The
impact of absent remote communication progress on applica-
tion performance has not been studied before, but knowing
it is crucial to assess the costs of alternatives such as extra
threads or interrupts.

To assist in performance tuning at larger scale, performance-
analysis tools must be scalable as well. Event tracing is
a widely-used method for performance analysis of parallel
applications, and it has been successfully applied by sev-
eral performance-analysis tools [7,15,17,21,24] available on
typical HPC platforms. We have shown in previous work
that trace-based performance analysis can be successfully
employed at large scale [26]. The main advantage of event
tracing comes from the richness of the inter-process informa-
tion that can be captured, allowing the analysis of extremely
complex inter-process relationships.

Waiting time implied through insufficient message progress
on the remote side is an example of such an inter-process
relationship, where event data from multiple processes have
to be taken into account. The waiting time on the remote
process can only be quantified by knowing start and end
time of the communication call on the origin, as well as of
the progress function on the target.

The number of performance analysis tools supporting one-
sided communication libraries is currently rather small. The
Parallel Performance Wizard (PPW) [17] supports the anal-
ysis of general one-sided communication constructs. How-
ever, it relies on the GASP interface [16], which, although
specifically designed for the analysis of PGAS applications
and one-sided communication, is unfortunately not yet widely
supported by current one-sided communication libraries. To
the best of our knowledge, only GASNet [5] and Quadrics
SHMEM [2] support this measurement interface so far. The
Charm++ parallel-programming framework [13] supports
the investigation of one-sided communication through its
proprietary performance tool Projections. MPI PERUSE [12]
allows implementation-internal events related to MPI one-
sided implementations to be captured, and could be used to
obtain the neceassry internal information. Yet, it is limited
to MPI and to the best of our knowledge is only supported by
OpenMPI [19]. The Cray Pat and Apprentice performance
tools [25] support measurement of Cray SHMEM [1] using
a mixture of instrumentation and sampling. The TAU per-
formance toolkit [24] has recently been extended to support
measurement and analysis of Global Arrays and ARMCI
calls [9], however, it records only time profiles and the com-
munication matrix. In their study of system-specific waiting
times, Balaji and colleagues have investigated overheads re-
lated to the communication of non-data in the MPI imple-
mentation on Blue Gene/P [3], focussing on another archi-
tecture characteristic of these systems—the comparatively
low clock rate of the compute elements.

In our earlier work in the context of the Scalasca perfor-
mance analysis tool [8], we have shown how large-scale par-
allel trace analysis can be facilitated using parallel message
replay. Until now, supported communication constructs in-

clude MPI point-to-point, collective, and one-sided opera-
tions with active target synchronization. The latter can be
easily accomplished [10] because the active target synchro-
nization following the one-sided exchange, which involves
both parties, provides a welcome opportunity to exchange
relevant information during the replay.

However, ARMCI one-sided communication provides only
passive target synchronization, which does not actively in-
volve the target process. During the replay, the origin pro-
cess, where the progress-related waiting time occurs, would
not know the location of relevant information on the target
processes, and the target process would not know how to
locate this information on behalf of the origin process. The
missing opportunity for data exchange poses serious chal-
lenges for Scalasca’s trace-based performance-analysis ap-
proach. In this work, we present two advanced techniques for
data exchange during the reply of one-sided communication
that overcome the absence of triggering events on the target
side. We describe how we use these techniques to detect
and quantify the waiting times caused by untimely remote
progress in one-sided communication. We demonstrate this
functionality using a Global Arrays matrix-multiplication
benchmark on multiple scales up to 16,384 processes.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the Aggregate Remote Memory
Copy Interface (ARMCI), which is the one-sided library sub-
ject to our investigation. We present the event model that
we use to model ARMCI communication in Section 3. Based
on this model, we define the Wait for Progress inefficiency
pattern in Section 4. Section 5 gives a short introduction
to Scalasca’s message-replay driven analysis and presents
our extension to the replay-mechanism in detail, followed
by results of analyzing a Global-Arrays-based application in
Section 6. Concluding this paper, Section 7 summarizes our
work and makes a suggestion for future applications of our
technique.

2. ARMCI
The Aggregate Remote Memory Copy Interface (ARMCI) is
a library that provides one-sided communication function-
ality on distributed memory architectures. It is a portable
library optimized for most major communication substrates,
including Sockets, Infiniband, Portals, Gemini, DCMF, and
the MPI two-sided API. It forms the basis of the Global Ar-
rays library, GPSHMEM, and an earlier version of the Rice
University’s Co-Array Fortran compiler.

ARMCI is compatible with MPI and shares its process model.
The remote memory used as a target of communication is
collectively allocated by all processes through the ARMCI
API. ARMCI supports a variety of communication idioms
that correspond to copying data between local and remote
memory regions. This includes blocking and non-blocking
communication of contiguous, strided, and vector data, re-
mote atomic operations, and memory synchronization prim-
itives. In addition to the put and get primitives, ARMCI
supports the accumulate primitive to atomically add a value
to a remote location.

ARMCI provides blocking and non-blocking variants for a
subset of communication primitives. The blocking variants



time

p
ro
ce
ss
es A

B

C

D

E

F

G

Barrier NbGet Wait

Barrier Put Fence

Barrier Get Acc

Barrier

Barrier Rmw Notify

Barrier Notify Wait

Barrier Lock Unlock

G G

P P

G G P P

R R

C

C

C

C

C

C

C

S

ENTER EXIT C COLLEXIT S RMA EXIT SYNC

P PUT START P PUT END G GET START G GET END

R RMW START R RMW END NOTIFY OUT NOTIFY IN

LOCK UNLOCK

Figure 1: Type and location of events used to model
ARMCI communication.

return after the operation completed locally at the origin.
The non-blocking variants return to the application as soon
as possible after initiating the operation. To ensure local
completion at the origin, a separate test or wait function
has to be called. It is the developer’s responsibility to en-
sure that the communication buffer remains valid between
initiation and completion of the operation.

ARMCI has been developed in close collaboration with ap-
plication domains, and the design of its functionality has
been directed by usage modes in higher-level libraries em-
ployed in applications. While the supported base function-
ality, such as contiguous put and get operations, can be han-
dled on many systems by the network interface card (NIC),
extended functionality, such as accumulate operations, often
requires computation at the remote side for efficient imple-
mentation. ARMCI has been designed to support a parti-
tioned global address space view that is closely aligned with
distributed shared memory (DSM). In the spirit of DSM
systems, one-sided access to remote data does not require
any participation from the remote process. For operations
that cannot be supported by the NIC, a data server thread
is launched on each SMP node to satisfy incoming request.
This simplifies programming with the user not having to
reason about periodic invocation of calls to the runtime to
ensure progress of incoming communication. However, this
additional data server thread incurs a performance overhead
by consuming computational resources. Architectures with
reduced threading support, such as IBM Blue Gene/P, either
do not support data server threads in certain configurations
or require an extra core to be reserved for every progress
thread, doubling the required number of cores per process.

3. EVENT MODEL
The current version of Scalasca is based on direct instrumen-
tation, which means that extra code is inserted at specific
points in the code—typically at routine entries and exits and
inside wrappers around communication routines. The latter
is necessary for the acquisition of communication metrics.
Whenever the control flow passes one of these instrumenta-

tion points, an event is triggered and with it the associated
measurement logic. The types and attributes of these events
together with their usage constraints are defined in an event
model. Direct instrumentation as opposed to statistical sam-
pling not only ensures that all performance-relevant events
are properly captured but also simplifies access to param-
eters of communication routines, an important ingredient
of parallel performance data. If needed, the resulting run-
time dilation, which is highly application dependent, can be
lowered by filtering irrelevant events such as those around
many frequently called but otherwise very short functions
(e.g., getters and setters). In tracing mode, Scalasca simply
collects all encountered events along with a timestamp and
their event-type-dependent attributes in a memory buffer,
which is later flushed to disk. At the end of the execution,
the events of every process are stored in a separate file. The
whole set of files is then subjected to an automatic pattern
search, which is outlined in Section 5.

In our earlier work [11], we introduced an event model to
record MPI one-sided communication. Here, we reuse this
event model, and extend it to accommodate the additional
features provided by ARMCI, namely the notify-wait1 and
read-modify-write constructs. Figure 1 illustrates the se-
mantics of the different event types in a timeline diagram.
Each call to the ARMCI application programming interface
(API) creates an enter event after entering a function, and
an exit event before leaving the function. Collective calls,
such as ARMCI_Barrier, use the special collective exit event
collexit to indicate that the function call has collective se-
mantics, which can be exploited during analysis. The call to
ARMCI_Fence uses a another special exit event called RMA
exit sync to mark its explicit synchronization with another
process.

For remote memory operations, the start of the individual
operation is recorded directly after signaling the function en-
try. The model distinguishes among put events for put and
accumulate, get events for get, and RMW events for read-
modify-write operations. For each of these operations, two
distinct events are defined to mark their beginning and their
end. For the blocking interface, start and end event are both
contained in the same region instance. For the non-blocking
interface, the start event is recorded during the initiating call
(e.g., get from D to C), whereas the event marking the end of
the operation is recorded during the completion call that ac-
tually completes the operation (e.g., non-blocking get from B
to A). This effectively models the operation to occur within
its completion interval at the origin. For put and accumu-
late calls this might denote the time when the operation is
also completed at the target. Completion at the target is
currently not explicitly modeled. However, when reasoning
about the performance of put and accumulate calls, only the
completion at the origin is relevant. The call to fence gener-
ates its own events along with the necessary synchronization
information.

4. THE WAIT-FOR-PROGRESS PATTERN
The Wait for Progress pattern describes the waiting time
on the origin process due to untimely progress on the target

1The analysis of waiting times using notify-wait synchro-
nization is not the subject of this paper, and is mentioned
here only for completeness’s sake.
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Figure 2: Wait for Progress inefficiency pattern.

process. We define the waiting time for calls with a single
target (as shown in Figure 2a) as the timespan between the
enter event of the ARMCI call on the origin and the en-
ter event of the first potentially advancing function call on
the target side. For the Blue Gene/P platform, we assume
any call to ARMCI and MPI to be capable of advancing an
ongoing communication.

For non-collective calls with multiple targets such as the syn-
chronization call ARMCI_AllFence, as shown in Figure 2b, we
define the waiting time to be the time on the origin process
that has no overlap with the first potentially progressing
call on one of the targets it communicates with. The wait-
ing time is therefore not necessarily a contiguous interval at
the beginning of the function call, but can consist of multiple
parts.

We assume that the target performs a complete advance on
the pending communication. That is, it will not split the
advancement of a communication between several calls to
the API on the target. Thus, for our progress detection
heuristic, only the first occurrence of a region potentially
progressing the communication is included in the evaluation.

5. REPLAY METHODOLOGY
The Scalasca trace analyzer [7] searches a distributed ap-
plication event trace in parallel for predefined inefficiency
patterns and quantifies their performance impact, such as
the amount of waiting time incurred. This impact is called
the severity of the pattern in Scalasca terminology. The pat-
tern definition is usually based on the relationships between
events on two or more processes. To ensure the scalability
of the parallel analysis, it is conducted at the same scale
(i.e., the same number of processes) as the measurement
run. This enables each analyzing process to load a single
local trace into memory and to traverse it simultaneously
along with the other processes using a replay infrastructure
called PEARL [6], a parallel C++ library for high-level event
trace access. Forming the backbone of many of the parallel
tools in the Scalasca toolset, it provides random access to
the local event trace and abstractions such as links between
related events through its event access API. Furthermore,
it supplies a sophisticated callback subscription mechanism
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R

(1) Sender notifies callback

(3) Transfer of timestamps

(2) Receiver notifies callback

(4) Receiver computes severity

Figure 3: Data exchange for point-to-point commu-
nication during trace analysis.

to trigger actions when seeing specific events during trace
traversal. Such triggering events include basic events as de-
fined in the event model as well as higher-level events trig-
gered from within another callback.

The general idea of the replay-based analysis is to traverse
the trace file in parallel and to reenact the recorded com-
munication based on the information available in the trace.
When reaching a communication event, information relevant
to the detection and quantification of inefficiency patterns
potentially associated with this communication is exchanged
using a communication operation of similar type. That is,
an MPI point-to-point communication is analyzed using an
MPI point-to-point communication, but not necessarily us-
ing precisely the same call that was recorded in the trace.
This is an important detail to keep in mind when we discuss
the analysis of ARMCI operations.

For all communication constructs previously supported by
the pattern search [7, 10], both processes of the data ex-
change are able to rely on local events on both sides of the
inter-process relation to trigger the communication needed
for the analysis. Even the active target synchronization of
MPI one-sided communication involves both processes in
each RMA epoch, and therefore enables data exchange re-
garding the communication within such an epoch.

As an example, Figure 3 shows how the point-to-point com-
munication pattern Late Sender is analyzed using this replay
infrastructure. The Late Sender pattern describes waiting
time at the receiver due to an belated start of the corre-
sponding transfer at the sender. The send event (S) with
the recorded parameters of this transfer is stored in the
sender’s local trace, while the receive event (R) is stored
in the receiver’s local trace. Both local traces are traversed
from beginning to end (left to right in the figure). Upon
reaching the send event, the analysis process representing
the sender invokes a callback that sends local timestamp
information to the receiver. Likewise, upon reaching the re-
ceive event, the analysis process representing the receiver
invokes a callback that accepts the timestamp information
from the sender. After the data has been exchanged (3), the
receiver can compute the pattern severity (4) from remote
and local timestamp information.

Unfortunately, in the case of one-sided communication con-
structs that do not involve active participation of the target
process, the target trace does not contain any events related
to the exchange that could be used to trigger the collection
of local information required to compute the pattern sever-
ity. After all, only the communication parameters stored at
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Figure 4: The two one-sided data exchange schemes.
The decoupled data exchange is used for a single tar-
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the origin of a one-sided operation are present in the trace.

Another notable characteristic of the Scalasca trace analyzer
is that the measured pattern severity needs to be saved at
the process where it occurred. This requirement is motivated
by the reduced memory footprint possible if the process co-
ordinate of severity data is merely implied. This means that
waiting times, regardless of where they are calculated during
the replay analysis, have to be communicated to the pro-
cess where they occur before the analysis report is written.
For one-sided communication constructs this is the origin
process. The complete data needed to calculate the inter-
process behavior, however, is not always locally available at
the origin, and the target lacks events to efficiently trigger
the exchange of data needed at the origin.

To enable this data exchange in the context of purely one-
sided communication, we implemented two request-response
schemes as an extension of Scalasca’s replay engine, which
are selected depending on the number of target processes
involved in the pattern to be analyzed. In the case of a
single target, the analyzer employs a light-weight approach,
where a single put operation is needed to send the times-
tamp information of the origin to the target process. In the
case of two or more target processes, the analyzer employs
a full request-response message exchange with more than
two communication partners. The latter imposes a stricter
synchronization between the origin and its targets. In the
following, we elaborate on these data exchange schemes and
the necessary infrastructure to enact them.

5.1 Decoupled data exchange
For patterns that involve only a single target process, such
as the Wait for Progress pattern inside get (as depicted in
Figure 2a) and accumulate calls, the computation of the pat-
tern severity can be split into two parts: the request and an

aggregated response. As shown in Figure 4a, the origin pro-
cess (1) deposits a request with the enter timestamp of the
get and accumulate call in the memory of the target pro-
cess. Once the request is discovered by the target process,
it (2) searches for a local progress region overlapping with
the get or accumulate call, and (3) directly computes the
waiting time from the available information, which is then
saved and aggregated on a per call-path basis. At the end
of the replay, all aggregated severities are transferred back
to their respective origin to be saved in the final analysis
report.

5.2 Direct data exchange
Figure 2b in Section 4 shows the Wait for Progress pattern
for calls with multiple target processes, such as the syn-
chronization call ARMCI_AllFence. In this case, the pattern
severity cannot be computed remotely, as no process can
obtain the complete view of the pattern with a single data
transfer. All necessary timespans are therefore collected at
the origin, which then performs the severity computation.
Thus, in the direct data exchange (as depicted in Figure 4b),
the origin process (1) sends requests to all targets involved,
which (2) conduct the local search as they would do in the
decoupled case. However, instead of computing the severity,
each target (3) sends its corresponding timestamp informa-
tion to the requesting process. When all remote timestamps
have been received by the origin, it can compute the overall
waiting time.

To ensure timeliness of the overall analysis and to reduce
propagation of waiting times in the analysis process itself,
the origin process continues its local replay. The progress
callback, discussed in greater detail later on, takes care of
tracking whether all replies to a request have arrived and
eventually computes the pattern severity.

5.3 Replay infrastructure
To enable the above-mentioned data exchange schemes, the
existing replay infrastructure of our toolset had to be ex-
tended. First, timely and correct handling of requests and
responses had to be ensured in the absence of appropriate
triggers on the target side. Secondly, communication buffers
had to be provided for use with one-sided communication.
Finally, a finalization of the data exchange had to be imple-
mented.

Analogous to the data server in ARMCI, a progress call-
back was added to Scalasca’s replay infrastructure. This
callback serves as the analysis’s own progress engine—a vir-
tual progress thread—and is multiplexed into the standard
replay mechanism, by registering it for all available basic
event types. This ensures that the progress callback is called
at least once for each event encountered during the local re-
play. In case the local analysis process is required to wait,
it can do so by repeatedly triggering the progress callback,
to ensure request-response completion, and then checking
the condition it is waiting for again. The main advantage
of using a callback instead of periodically calling a specific
function to ensure progress of the local analysis is that it
enables the support of multiple one-sided communication li-
braries at the same time. As long as all of these libraries im-
plement and register their progress callbacks appropriately,
their progress is ensured. An example for such a combina-



tion would be a one-sided library layered on top of another.
An implementation of the progress callback needs to fulfill
the following tasks: (1) provide progress for the one-sided
library it is used to analyze, (2) check for and process re-
quests and responses available in the local buffers, and (3)
check previously cached requests and send appropriate re-
sponses.

For point-to-point and collective communication, the buffer
space can be created ad-hoc during the analysis. In ARMCI,
as with many one-sided communication libraries, communi-
cation buffers need to be allocated collectively. This implies
that all buffers used to exchange performance relevant data
have to be allocated in advance. Alas, the optimal buffer
sizes can not be computed in advance. Moreover, it is not
trivial to reallocate additional communication buffers once
the local replay is started, as all processes are potentially at
different points in their local replay.

The performance advantage of one-sided communication can
only be leveraged when all communication parameters are
known to the origin process in advance. Additional queries
by the origin process to obtain a remote address that can be
used to exchange the relevant information are usually too
costly. Likewise, using a single buffer on the target to be
used by multiple remote processes will require locks to en-
sure data integrity. This will again result in degraded com-
munication performance, as it serializes otherwise unrelated
communication operations.

To minimize communication and synchronization among the
processes, every process initially performs a single atomic
read-modify-write operation per remote communication part-
ner to obtain an exclusive memory location to exchange
data. With exclusive memory locations, expensive locking
can be completely avoided. In the current implementation,
it is guaranteed that each process has an exclusive memory
location on every remote process to hold a single request.

To ensure data integrity, a process may only send data to
the remote buffer if it can be guaranteed that the remote
process has finished processing the data currently residing
in the buffer. Therefore, each process has a local array of
flags registered for one-sided communication, with one entry
for each remote process. As this flag resides on the origin, it
can be queried with low cost prior to any data transfer. The
remote process updates the flag through a one-sided opera-
tion (put) after it has processed the data in its buffers. De-
pending on the flag a request or response is sent or buffered
(or remains buffered). Each call to the progress callback
checks the flags of processes with pending communication,
and eventually sends the data.

As soon as an analyzer process reaches the finalization of
the ARMCI replay, it has to ensure that no other remote
processes will send requests before it can start with its local
finalization. This is facilitated through a non-blocking bar-
rier, implemented using ARMCI communication. Instead
of directly disabling request handling, it initiates the non-
blocking barrier, and then continues to alternately notify
the progress callback and check for barrier completion. Once
the barrier is completed, every process is guaranteed to have
reached the finalization phase, and no additional request will
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be made. Therefore, all processes can then collectively en-
gage in the finalization of the replay.

6. RESULTS
We evaluated our infrastructure and the impact of wait for
progress on Jugene, a 72-rack IBM Blue Gene/P system at
the Jülich Supercomputing Centre in Germany. It is the in-
stallation with the highest number of cores and ranks nine
in the current Top500 list (Nov 2010) [18]. It is composed
of 73,728 four-way SMP PowerPC 450d compute nodes, re-
sulting in a total of 294,912 cores. The compute nodes run a
reduced kernel—the compute node kernel (CNK)—with lim-
ited system call functionality. As mentioned previously, one
of these limitations is that only a single thread per core can
be executed. The Blue Gene/P system provides three dif-
ferent execution modes: virtual node, dual node, and SMP.
The virtual node mode spawns one process per core, leaving
no room for additional threads. The dual node mode spawns
two processes, leaving room for two more threads, and the
SMP mode spawns just a single process per compute node,
and three additional threads can be spawned. We performed
our test in the virtual node mode, with interrupts disabled,



to investigate the influence of remote progress in the absence
of additional progress threads on application behavior.

We used the SRUMMA algorithm [14] for scalable matrix-
matrix multiplication as a test case. The procedure, which
is based on remote memory access, is implemented in Global
Arrays to support the multiplication of global arrays. This
algorithm, invoked as the ga_dgemm call, employs an owner-
computes model with each process computing a block of the
output matrix. The relevant blocks of the input matrices are
obtained through non-blocking get operations. The differ-
ent block-block products are structured so as to avoid con-
tention from numerous simultaneous get requests directed
at a target process.

We performed strong scaling experiments for our measure-
ments. The initial problem size for the application was the
multiplication of two 1024×1024 matrices. When the appli-
cation showed a slowdown above 1024 processes, hitting the
point where further strong scaling ceases to produce bene-
fits, as displayed in Figure 5, we increased the matrix size by
a factor of 4 for further tests from 512 to 16,384 processes.
The square property of the matrix, coupled with the blocked
data distribution of the global arrays, results in all processes
performing the same number of floating-pointing operations
between communication calls. The symmetry is only broken
by the differences in the cost of communication due to topo-
logical asymmetries. Such regular calculations with seem-
ingly co-ordinated communication are typically not expected
to incur much wait for progress penalty.

Another interesting aspect of Figure 5 is the scaling behav-
ior of the analysis time, which seems (a) to be independent
of the applications scaling behavior, and (b) to increase at
larger scales. Figure 6 reveals that the scaling behavior of
the analysis depends on the number of one-sided operations
performed by the application, or to put in in other words, the
number of requests that need to be handled in the system.
The number of communication calls is growing exponentially
as the scale is increased, leading to the observed growth in
analysis time. Figure 6 also reveals that, even as the overall
time to complete the analysis increases, the analysis perfor-
mance in terms of analyzed operations per second improves
at higher scales. This speedup is owed to the fact that the
more communication events need to be processed, the higher
is the probability of the target process of a request currently
performing communication—possibly requesting data from
yet another process. As the analyzer itself is also influenced
by the absence of remote progress, the increased probability
of a communication partner performing communication will
lead to reduced waiting times.

The benchmark application has a balanced load of remote-
memory-access operations. For the analyzer, this means the
requests it needs to post to analyze the complete behavior
are also quite balanced, and even though the number of com-
munication events is very high it reaches a processing speed
of over 2 million requests per second in total and over 130
requests per second per process with 16,384 processes. Com-
munication patterns that overburden a single process with
data accesses are susceptible to have an impact on the over-
all performance of the parallel analysis, as the overburdened
process will dominate the overall analysis time. We plan on
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Figure 7: Breakdown of the time spent within
ARMCI during the execution of the SRUMMA
benchmark.

further optimizing the local processing speed, yet, patholog-
ical communication patterns may continue to influence the
analysis performance.

Figure 7a shows an excerpt of the application’s performance
metrics, indicating that with the decomposition of the matri-
ces across more processes, the execution is increasingly dom-
inated by synchronization. This can be explained with the
complexity of the all-fence operations. However, since our
main focus is the waiting time inside the communication, we
abstained from plotting this graph beyond 4096 processes.
Additionally, the figure shows a significant amount of wait-
ing time in the Wait for progress pattern, which we contrast



with actual communication in Figure 7b at different scales.
The dominance of waiting time in comparison to true com-
munication is significant. Nonetheless, the overall fraction
of waiting time is still low enough not to justify the use of an
dedicated core to run a helper thread. The severity of the
pattern is attenuated slightly at larger scales, as more overall
communication increases the probability of a target process
to immediately provide progress. Figure 7c confirms this
observation also for the larger matrix size with up to 16,384
processes.

7. CONCLUSION
We extended the Scalasca trace-analysis infrastructure to
investigate the performance of purely one-sided applications
using a scalable trace replay methodology. We presented two
novel techniques to efficiently exchange relevant information
during the replay of one-sided communication traces, over-
coming the problem of communication operations not being
reflected in the target-local trace.

We demonstrated the usability and scalability of our ex-
tended infrastructure using an application benchmark imple-
mented with Global Arrays, a global address space library
based on the ARMCI one-sided communication substrate.
We were able to measure a previously unstudied inefficiency
pattern related to the absence of remote progress, which can
occur in some configurations of today’s massively parallel
systems, with up to 16,384 processes.

Our findings revealed a significant impact of the absence of
remote progress on the overall application behavior. They
encourage us to intensify the study of this phenomenon with
larger applications, such as NWChem, where the severity is
expected to be even greater due to more irregular commu-
nication patterns. Furthermore, we plan to optimize our
implementation, focusing on higher throughput of analyzed
one-sided operations to compensate for the effects of uneven
analysis workloads. Finally, we intend to use our measure-
ment technique to better understand under which circum-
stances alternatives such as a progress thread running on a
dedicated core or interrupt-driven progress will deliver bet-
ter or worse performance.

Acknowledgment
This work was supported in part by the Extreme Scale Com-
puting Initiative, a Laboratory Directed Research and De-
velopment Program at Pacific Northwest National Labora-
tory. The Pacific Northwest National Laboratory is operated
for the U.S. Department of Energy by the Battelle Memorial
Institute under Contract DE-AC06-76RLO-1830.

8. REFERENCES
[1] The Cray SHMEM man pages. Electronically available

at http://docs.cray.com/.

[2] The Quadrics SHMEM manual. Electronically
available at http://downloads.hpc.vega.co.uk/

documentation/ShmemMan_6.pdf, 2004.

[3] P. Balaji, A. Chan, W. Gropp, R. Thakur, and
E. Lusk. The importance of non-data-communication
overheads in MPI. International Journal of High
Performance Computing Applications, 24:5–15,
February 2010.
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