
Reducing the overhead of direct application
instrumentation using prior static analysis?

Jan Mußler1, Daniel Lorenz1, and Felix Wolf1,2,3

1 Jülich Supercomputing Centre, 52425 Jülich, Germany
2 German Research School for Simulation Sciences, 52062 Aachen, Germany

3 RWTH Aachen University, 52056 Aachen, Germany

Abstract. Preparing performance measurements of HPC applications
is usually a tradeoff between accuracy and granularity of the measured
data. When using direct instrumentation, that is, the insertion of extra
code around performance-relevant functions, the measurement overhead
increases with the rate at which these functions are visited. If applied in-
discriminately, the measurement dilation can even be prohibitive. In this
paper, we show how static code analysis in combination with binary re-
writing can help eliminate unnecessary instrumentation points based on
configurable filter rules. In contrast to earlier approaches, our technique
does not rely on dynamic information, making extra runs prior to the
actual measurement dispensable. Moreover, the rules can be applied and
modified without re-compilation. We evaluate filter rules designed for the
analysis of computation and communication performance and show that
in most cases the measurement dilation can be reduced to a few percent
while still retaining significant detail.

1 Introduction

The complexity of high-performance computing applications is rising to new
levels. In the wake of this trend, not only the extent of their code base but
also their demand for computing power is rapidly expanding. System manu-
facturers are creating more powerful systems to deliver the necessary compute
performance. Software tools are being developed to assist application scientists
in harnessing these resources efficiently and to cope with program complexity. To
optimize an application for a given architecture, different performance-analysis
tools are available, utilizing a wide range of performance-measurement method-
ologies [17,13,21,18,7]. Many performance tools used in practice today rely on
direct instrumentation to record relevant events, from which performance-data
structures such as profiles or traces are generated. In contrast to statistical sam-
pling, direct instrumentation installs calls to measurement routines, so-called
hooks, at function entry and exit points or around call sites. This can be done
on multiple levels ranging from the source code to the binary file or even the

? This material is based upon work supported by the US Department of Energy under
Award Number DE-SC0001621.

Published in “Proc. of Europar 2011”, LNCS 6852, pp. 65–76, Springer, 2011.
The original publication is available at www.springerlink.com

http://dx.doi.org/10.1007/978-3-642-23400-2_7


memory image [20]. Often the compiler can inject these hooks automatically
using a profiling interface specifically designed for this purpose.

Of course, instrumentation causes measurement intrusion – not only dilating
the overall runtime and prolonging resource usage but also obscuring measure-
ment results – especially, if the measurement overhead is substantial. If applied
indiscriminately, the measurement dilation can render the results even useless.
This happens in particular in the presence of short but frequently-called func-
tions prevalent in C++ codes. In general, the measurement overhead increases
with the rate at which instrumentation points are visited. However, depending
on the analysis objective, not all functions are of equal interest and some may
even be excluded from measurement without loosing relevant detail. For exam-
ple, since the analysis of message volumes primarily focuses on MPI routines
and their callers, purely local computations may be dispensable. Unfortunately,
manually identifying and instrumenting only relevant functions is no satisfactory
option for large programs. Although some automatic instrumentation tools [6,21]
offer the option of explicitly excluding or including certain functions to narrow
the measurement focus, the specification of black and white lists usually comes
at the expense of extra measurements to determine suitable candidates.

To facilitate low-overhead measurements of relevant functions without the
need for additional measurement runs, we employ static analysis to automati-
cally identify suitable instrumentation candidates based on structural properties
of the program. The identification process, which is accomplished via binary in-
spection using the the Dyninst library [3], follows filter rules that can be config-
ured by refining and combining several base criteria suited for complementary
analysis objectives. The resulting instrumentation specification is then immedi-
ately applied to the executable via binary re-writing [22], eliminating the need
for re-compilation. Our methodology is available in the form of a flexible stand-
alone instrumentation tool that can be configured to meet the needs of various
applications and performance analyzers. Our approach significantly reduces the
time-consuming work of filter creation and improves the measurement accuracy
by lowering intrusion to a minimum. An evaluation of different filter criteria
shows that in most cases the overhead can be reduced to only a few percent.

Our paper is structured as follows: After reviewing related work in Section 2,
we present the design of the configurable instrumentation tool in Section 3.
Then, in Section 4, we discuss the base filter criteria and the heuristics involved in
their implementation. A comprehensive experimental evaluation of these criteria
in terms the number of instrumented functions and the resulting measurement
dilation is given in Section 5. Finally, we draw conclusions and outline future
work in Section 6.

2 Related Work

To generally avoid the overhead of direct instrumentation, some tools such as
HPCToolkit [13] resort to sampling. Although researchers recently also started
combining sampling with direct instrumentation [19], the choice between the two



options is usually a trade-off between the desired expressiveness of the perfor-
mance data and unwanted measurement dilation. Whereas sampling allows the
latter to be controlled with ease, just by adjusting the sampling frequency, it de-
livers only an incomplete picture, potentially missing critical events or providing
inaccurate estimates. Moreover, accessing details of the program state during the
timer interrupt, such as arguments of the currently executed function, is techni-
cally challenging. Both disadvantages together make direct instrumentation the
favorite method for capturing certain communication metrics such as the size
of message payloads. This insight is also reflected in the current design of the
MPI profiling interface [14], whose interposition-wrapper concept leverages di-
rect instrumentation. However, to avoid excessive runtime overhead, the number
of direct instrumentation points need to be selected with care, a task for which
our approach now offers a convenient solution. If only the frequency of call-path
visits is of interest, also optimizations such as those used by Ball and Larus for
path profiling can be chosen [2].

Among the tools that rely on direct instrumentation, the provision of black
lists to exclude functions from instrumentation (or white lists to include only a
specific subset) is the standard practice of overhead minimization. In Scalasca [7]
and TAU [21], the specification of such lists is supported through utilities that
examine performance data from previous runs taken under full instrumentation.
Selection criteria include the ratio between a function’s execution time and its
number of invocations or whether the function calls MPI – directly or indirectly.
Yet, in malign cases where the overhead of full instrumentation is excessive, the
required extra run may be hard or even impossible to complete in the first place.
The selection lists are applied either statically or dynamically. The latter is the
preferred method in combination with compiler instrumentation, which can be
configured only at the granularity of entire files. In addition to user-supplied
filter lists, TAU provides a runtime mechanism called throttling to automatically
disable the instrumentation of short but frequently executed functions. A gen-
eral disadvantage of runtime selection, whether via filter lists or automatically,
however, is the residual overhead caused by the dynamic inspection of function
identifiers upon each function call. Our solution, in contrast, neither requires
any extra runs nor performs any dynamic checks.

Another generic instrumenter was designed by Geimer et al. [6]. Like ours, it
can be configured to support arbitrary measurement APIs. Whereas we analyze
and modify the binary, their instrumenter identifies potential instrumentation
points in the source code. While allowing the restriction of target locations ac-
cording to file and function names, the lack of static source-code analysis func-
tionality prevents it from providing suggestions as to which functions should be
instrumented. Moreover, changing the instrumentation always entails an expen-
sive re-compilation.

An early automatic filter mechanism was developed as an extension of the
OpenUH compiler’s profiling interface [8]. Here, the compiler scores functions
according to their estimated number of executions and their estimated dura-
tion, which are derived from the location of their call sites and their number



Fig. 1. The basic instrumentation workflow.

of instructions, respectively. Based on this assessment, the compiler skips the
instrumentation of those functions that are either short or called within nested
loops. However, generally not instrumenting small functions was criticized by
Adhianto et al.[1]. They argue that small functions often play a significant role,
for example, if they include synchronization calls important to parallel perfor-
mance. In our approach, providing rules that explicitly define exceptions, for
example, by forcing the instrumenter to include all functions that call a cer-
tain synchronization primitive, can avoid or mitigate the risk of missing critical
events.

If measurement overhead cannot be avoided without sacrificing analysis ob-
jectives, overhead compensation offers an instrument to retroactively improve the
accuracy of the measured data. Initially developed for serial applications [10],
it was later extended to account for overhead propagation in parallel applica-
tions [11]. The approach is based on the idea that every call to the measurement
system incurs a roughly constant and measurable overhead with a deterministic
and reversible effect on the performance data. However, variations in memory
or cache utilization may invalidate this assumption to some degree.

3 A Configurable Instrumenter

Figure 1 illustrates the different steps involved in instrumenting an applica-
tion and highlights the functional components of our instrumenter. As input
serves a potentially optimized application executable, which is transformed into
a ready-to-run instrumented executable, following the instructions embodied by
user filters and adapter specifications. The instrumentation process starts with
the extraction of structural information from the binary program, a feature sup-
ported by the Dyninst API. Although the inclusion of debug information into the
executable during compilation is not mandatory, it tends to enrich the available
structural information and can help formulate more sophisticated filter rules. As
a next step, the instrumenter parses the provided filter specifications and deter-
mines the functions to be instrumented. Optionally, the instrumenter can print
the names of instrumentable functions to simplify the creation of filter lists. The
instrumentation itself is applied using Dyninst’s binary rewriting capabilities.

The raw instrumenter can be configured in two different ways: First, devel-
opers of performance tools can provide an adapter specification (top right in



Figure 1) to customize the instrumenter to their tool’s needs. This customiza-
tion includes the specification of code snippets such as calls to a proprietary
measurement API to be inserted at instrumentation points. In addition, the
adapter may include a predefined filter that reflects the tool’s specific focus.
Second, application developers can augment this predefined filter by specifying
a user filter (top center in Figure 1) to satisfy application- or analysis-specific
requirements. Below, we explain these two configuration options in detail.

3.1 Adapter Specification

The adapter specification is intended to be shipped together with a performance
tool. It consists of a single XML document, which is both human readable (and
editable) and at the same time accessible to automatic processing through our
instrumenter. The format provides four different element types:

– The description of additional dependencies, for example, to measurement
libraries that must be linked to the binary.

– The definition of optional adapter filter rules. These adhere to the same
syntax as the user filter rules, which are introduced further below. The filter
rules allow the exclusion of certain functions such as those belonging to the
measurement library itself or those known to result in erroneous behavior.
For example, when using Scalasca, which requires the measurement library
to be statically linked to the application, the adapter filter would prevent
the library itself from being instrumented.

– The definition of global variables.
– The definition of a set of code snippets to be inserted at instrumentation

points.

The instrumenter supports instrumentation on three different levels: (i) func-
tion, (ii) loop, and (iii) call site. There are up to four instrumentation points
associated with each level, plus two for initialization and finalization:

– before: Immediately before a call site (i.e., function call) or loop.
– enter : At function entry or at the start of a loop iteration.
– exit : At function exit or at the end of a loop iteration.
– after : Immediately after a call site (i.e., function call) or loop.
– initialize: Initialization code which is executed once for each instrumented

function, call site, or loop.
– finalize: Finalization code which is executed once for each instrumented func-

tion, call site and loop.

The initialization and finalization code is needed, for example, to register
a function with the measurement library or to release any associated resources
once they are no longer in service.

To access an instrumentation point’s context from within the inserted code,
such as the name of the enclosing function or the name of the function’s source
file, the instrumenter features a set of variables in analogy to [6]. These variables



<adapter>

<functions>

<variables><var name="i" size="4" /></variables>

<init>i = 0;</init>

<enter>i = i + 1;

printf("entering %s for the %d time\n",@ROUTINE@,i);

</enter>

</functions>

</adapter>

Fig. 2. Example adapter specification that counts the number of visits to an instru-
mented function and during each invocation prints a message which contains the func-
tion name and the accumulated number of visits.

are enclosed by @ and include, among others, the following items: ROUTINE, FILE,
and LINE. To concatenate strings, we further added the . operator. At instrumen-
tation time, a single const char* string will be generated from the combined
string. In addition to specifying default code snippets to be inserted at the six
locations listed above, an adapter specification may define uniquely named al-
ternatives, which can be referenced in filter rules to tailor the instrumentation
to the needs of specific groups of functions. An example adapter specification is
shown in Figure 2. So far, we created adapter specifications for Scalasca, TAU
and the Score-P measurement API [15]. The latter is a new measurement infras-
tructure intended to replace the proprietary infrastructures of several production
performance tools.

3.2 Filter Specification

While the adapter customizes the instrumenter for a specific tool, the user filter
allows the instrumenter to be configured for a specific application and/or analysis
objective such as communication or computation. It does so by restricting the
set of active instrumentation points of the target application.

The filter is composed of include and exclude elements, which are evalu-
ated in the specified order. The exclude elements remove functions from the set,
whereas include elements add functions to the set. A filter element consist of a
particular set of properties a function must satisfy. The properties can be com-
bined through the use of the logical operators and, or, and not. The properties
are instances of base filter criteria, which are described in Section 4. For each
instrumentable function, every rule is evaluated to decide whether the function
matches the rule or not. An example for a filter definition is given in Figure 3.
In addition to defining whether a function is instrumented or not, the user can
also change the default code to be inserted by selecting alternative code snippets
from the adapter specification, referencing them by the unique name that has
been assigned there. Separate snippets can be chosen depending on whether the
instrumentation occurs around functions, call sites, or loops.



<filter name="mpicallpath" instrument="functions=function" start="none">

<include>

<property name="path">

<functionnames match="prefix">MPI mpi</functionnames>

</property>

</include>

</filter>

Fig. 3. Example for a filter definition that instruments all functions that appear on a
call path leading to an MPI function.

4 Filter Criteria

The purpose of our filter mechanism is to exclude functions that either lie out-
side our analysis objectives or whose excessive overhead would obscure measure-
ment results. To avoid instrumenting any undesired functions, the instrumenter
supports selection criteria (i) based on string matching and/or (ii) based on the
program structure. String matching criteria demand that a string (e.g., the func-
tion name) has a certain prefix or suffix, contains a certain substring, or matches
another string completely. String matching can be applied to function names,
class names, namespaces, or file names. It is a convenient method, for example,
to prevent the instrumentation of certain library routines that all start with the
same prefix. In contrast, structural criteria take structural properties of a given
function into account.

The first group of structural properties considers a function’s position in the
call tree, that is, its external relationships to other functions. This is useful to
identify functions that belong to the context of functions in the center of our
interest. For example, if the focus of the analysis are MPI messaging statistics,
the user might want to know from where messaging routines are called but at
the same time may afford to skip purely local computations in the interest of
improved measurement accuracy.

Call path: Checks whether a function may appear on the call path to a specified
set of functions, for example, whether the function issues MPI calls – either
directly or indirectly. Unfortunately, since the decision is based on prior static
analysis of the code, virtual functions or function pointers are ignored.

Depth: Checks whether a function can be called within a certain call-chain
depth from a given set of functions. Relying on static call-graph analysis,
as well, this property suffers from the same restrictions as the call-path
property.

The second group of structural properties considers indicators of a func-
tion’s internal complexity. This is motivated by short but frequently called func-
tions that often contribute little to the overall execution time but cause over-
proportional overhead.

Lines of code: Checks whether the number of source lines of a function falls
within a given range. Using available debug information, the instrumenter



computes the number of source lines between the first entry point and the
last exit point of a function. Note that the number of source lines may depend
on the length of comments or the coding style. Moreover, inlining of macros
or compiler optimizations may enlarge the binary function compared to its
source representation.

Cyclomatic complexity: Checks whether the cyclomatic complexity [12] of a
function falls within a given range. The cyclomatic complexity is the number
of linearly independent paths through the function. We chose the variant
that takes also the number of exit points into account. It is defined as E −
N + P , with N representing the number of nodes in the control flow graph
(i.e., the number of basic blocks), E the number of edges between these
blocks, and P the number of connected components in the graph, which is 1
for a function. Again, inlining and compiler optimizations may increase the
cyclomatic complexity in comparison to what a programmer would expect.

Number of instructions: Checks whether the number of instructions falls
within a given range. Since the number of instructions is highly architecture
and compiler dependent, it is challenging to formulate reasonable expecta-
tions.

Number of call sites: Checks whether the function contains at least a given
number of function calls. Note that the mere occurrence of a call site does
neither imply that the function is actually called nor does it tell how often
it is called.

Has loops: Checks whether a function contains loops. Here, similar restrictions
apply as with the number of call sites.

Of course, it is also possible to combine these criteria, for example, to instru-
ment functions that either exceed a certain cyclomatic complexity threshold or
appear on a call path to an MPI function.

5 Evaluation

In this section we evaluate the effectiveness of selected filter rules in terms of the
overhead reduction achieved and the loss of information suffered (i.e., the number
of functions not instrumented). The latter, however, has to be interpreted with
care, as not all functions may equally contribute to the analysis goals. Since
all of our filter criteria are parameterized, the space of filter rules that could
be evaluated is infinitely large. Due to space and time constraints, we therefore
concentrated on those instances that according to our experiences are the most
useful ones. They are are listed below. Criteria not considered here will be the
subject of future studies.

– MPI Path: Instrument only functions that appear on a call path to an MPI
function. This filter allows the costs of MPI communication to be broken
down by call path, often a prerequisite for effective communication tuning.

– CC 2+: Instrument all functions that have at least a cyclomatic complexity
of two. This filter removes all functions that have only one possible path of
execution.



Application Language Full CC 2+ CC 3+ LoC 5+ MPI Path

104.milc C 261 51% 38% 71% 43%
107.leslie3d Fortran 32 78% 66% 75% 28%
113.GemsFDTD Fortran 197 62% 58% 81% 12%
115.fds4 C/Fortran 238 80% 74% 88% 0.4%
121.pop2 C/Fortran 982 65% 53% 77% 16%
122.tachyon C 342 35% 27% 61% 5%
125.RAxML C 313 77% 65% 85% 25%
126.lammps C++ 1378 56% 43% 64% 39%
128.GAPgeomfem C/Fortran 36 61% 53% 72% 31%
130.socorro C/Fortran 1331 50% 41% 74% 24%
132.zeusmp2 C/Fortran 155 84% 80% 89% 46%
137.lu Fortran 35 66% 60% 77% 43%
Cactus Carpet C++ 3539 35% 29% 50% 6%
Gadget C 402 62% 52% 26% 21%

Table 1. Number of functions instrumented under full instrumentation and percentage
of functions instrumented after applying different filter rules.

– CC 3+: Instruments all functions that have a cyclomatic complexity of three
or higher. Compared to the CC 2+ filter, functions need an additional loop
or branch not to be removed.

– LoC 5+: Instrument all functions with five or more lines of code. This filter
is expected to remove wrapper functions as well as getters, setters, or other
one liners.

As test cases, we selected the SPEC MPI2007 benchmark suite [16], a collec-
tion of twelve MPI applications from various fields with very different characteris-
tics; Gadget [5], a simulation that computes the collision of two star clusters; and
Cactus Carpet [4], an adaptive mesh refinement and multi-patch driver for the
Cactus framework. A full list of all applications can be found in Table 1 together
with information on their programming language. We built all applications using
the GNU compiler with optimization level O2 enabled. All measurements were
performed on Juropa [9], an Intel cluster at the Jülich Supercomputing Centre.
Our instrumenter was linked to version 6.1 of Dyninst. To improve interoper-
ability with the GNU compiler, we added GCC exception handling functions
to the list of non-returning functions in Dyninst. We ran our test cases using
the Scalasca measurement library in profiling mode, which instruments all MPI
function by default through interposition wrappers.

Table 1 lists the number of instrumented functions when applying differ-
ent filter rules including full instrumentation. The numbers do not include MPI
functions, which are always instrumented. Also, the instrumenter was configured
not to instrument the Scalasca measurement system itself. Otherwise, all func-
tions Dyninst identified in the binary, which do not include dynamically linked
libraries, were potential instrumentation candidates. The number of functions
varies greatly among the fourteen applications, with 107.leslie3d having only 32
compared to the two C++ codes with 1378 and 3539 functions, respectively.
Judging by the fraction of eliminated functions, the MPI Path filter seems to



Fig. 4. Runtime overhead of the fully instrumented binary and after applying different
filters. The values are given in percent compared to an uninstrumented run. Values
exceeding 26% are clipped. Missing bars imply zero overhead. In general, measure-
ment inaccuracies prevented a precise representation of values around zero, sometimes
resulting in negative overhead figures.

be the most aggressive one, in one instance (115.fds4) leaving only the main
function instrumented. The LoC 5+ filter, by contrast, leads only to relatively
mild eliminations, with most codes loosing less then 40%. Finally, the difference
between the two cyclomatic filters, which together occupy a solid middle ground
in terms of their aggressiveness, is significant but not too pronounced.

The measurement overheads observed for the individual combinations of ap-
plications and filters are presented in Figure 4. Seven of the fourteen applications
show less than 8% overhead even under full instrumentation, indicating that full
instrumentation is not generally impracticable. Among the remaining applica-
tions, three including the C++ code Cactus Carpet exhibit extreme overheads
above 50% without filters. The worst case is clearly 122.tachyon with more than
1,000% overhead, which, however, contains functions with only two binary in-
structions. In almost all cases, with the exception of 121.pop2, at least one filter
exists that was able to reduce the overhead to 2% or less – within the limits of
our measurement accuracy. For 121.pop2, we achieved only a moderate reduc-
tion, although with 13% the lowest overhead of 121.pop2 was not alarming. As
a general trend, the MPI Path filter resulted in the lowest overhead. Again, the
only exception is 121.pop2, where many functions contain error handling code
that may call MPI functions such as MPI Finalize and MPI Barrier. Thus, many
functions were instrumented that actually do not call MPI during a normal run.
Whereas the LoC 5+ filter did often enough fail to yield the desired overhead
decrease, CC 3+ can be seen as a good compromise, often with higher although
still acceptable overhead below 10% – but on the other hand with less functions
removed from instrumentation and, thus, with less loss of information.

Finally, the ratio between the fraction of filtered functions and the overhead
reduction can serve as an indicator of how effective a filter is in selecting functions
that introduce large overhead. Ignoring the codes with initial overheads below



5%, for which this measure might turn out to be unreliable, LoC 5+ shows vary-
ing behavior: In the cases of 104.milc, 115.fds4, 130.socorro, and Cactus Carpet
very few functions are removed compared to the achieved overhead reduction.
For the other applications, the filter is largely ineffective. The cyclomatic filters,
by contrast, yield high returns on their removal candidates in the majority of
cases. Exceptions are 121.pop2, 122.tachyon, and 125.RAxML. Finally, the ef-
fectiveness of MPI Path roughly correlates with the number of functions still
instrumented. However, although it removes many functions, it still retains crit-
ical information. For example, the detection of MPI call paths that incur waiting
time is not affected because all functions on such paths remain instrumented.

6 Conclusion and Future Work

In this paper, we presented an effective approach to reducing the overhead of di-
rect instrumentation for the purpose of parallel performance analysis. Based on
structural properties of the program, including both a function’s internal struc-
ture and/or its external calling relationships, we are able to identify the most
significant sources of overhead and remove them from instrumentation. Our solu-
tion, which was implemented as a generic and configurable binary instrumenter,
requires neither any expensive extra runs nor re-compilation of the target code.
We demonstrated that, depending on the analysis objective, in almost all of our
test cases the overhead could be reduced to only a few percent. Overall, the
MPI Path filter was most effective, allowing low-overhead measurements of the
communication behavior across a wide range of applications – except for one
malign case with MPI calls in rarely executed error handlers. Moreover, if the
focus lies on computation, CC 3+ offers a good balance between the number of
excluded functions and the overhead reduction achieved. Finally, the union of
MPI Path and CC 3+ seems also promising and should be tried if investigating
correlations between the computational load and the communication time is an
analysis goal. Whereas this study only considered parallelism via MPI, future
work will concentrate on filter rules also suitable for OpenMP applications. A
particular challenge to be addressed will be the non-portable representation of
OpenMP constructs in the binary.

Acknowledgment. We would like to thank the developer team of the Dyninst
library, especially Madhavi Krishnan and Andrew Bernat, for their continuous
support.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2009)

2. Ball, T., Larus, J.R.: Efficient path profiling. In: Proc. of the 29th ACM/IEEE In-
ternational Symposium on Microarchitecture. pp. 46–57. IEEE Computer Society,
Washington, DC, USA (1996)



3. Buck, B., Hollingsworth, J.: An API for runtime code patching. Journal of High
Performance Computing Applications 14(4), 317–329 (2000)

4. Cactus code (2010), http://www.cactuscode.org
5. Gadget 2 (2010), http://www.mpa-garching.mpg.de/gadget
6. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A generic and configurable

source-code instrumentation component. In: Proc. of the International Conference
on Computational Science (ICCS). LNCS, vol. 5545, pp. 696–705. Springer (May
2009)

7. Geimer, M., Wolf, F., Wylie, B., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Ex-
perience 22(6), 702–719 (Apr 2010)

8. Hernandez, O., Jin, H., Chapman, B.: Compiler support for efficient instrumen-
tation. In: Proc. of the ParCo 2007 Conference. Advances in Parallel Computing,
vol. 15, pp. 661–668 (2008)

9. JuRoPA (2010), http://www.fz-juelich.de/jsc/juropa
10. Malony, A.D., Shende, S.S.: Overhead compensation in performance profiling. In:

Proc. of the 10th International Euro-Par Conference. pp. 119–132. LNCS, Springer
(2004)

11. Malony, A.D., Shende, S.S., Morris, A., Wolf, F.: Compensation of measurement
overhead in parallel performance profiling. International Journal of High Perfor-
mance Computing Applications 21(2), 174–194 (2007)

12. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering
2, 308–320 (1976)

13. Mellor-Crummey, J., Fowler, R., Marin, G., Tallent, N.: HPCView: A tool for top-
down analysis of node performance. The Journal of Supercomputing 23(1), 81–104
(August 2002)

14. Message Passing Interface Forum: MPI: A message-passing interface standard, ver-
sion 2.2 (September 2009), chapter 14: Profiling Interface

15. an Mey, D., et al.: Score-P – A unified performance measurement system for
petascale applications. In: Proc. of Competence in High Performance Computing,
Schloss Schwetzingen, Germany (2010), (to appear)

16. Müller, M., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kumaran,
K., Baron, J., Brantley, W., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC
MPI2007 – An application benchmark suite for parallel systems using MPI. Con-
currency and Computation: Practice and Experience 22(2), 191–205 (Feb 2010)

17. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)

18. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open|SpeedShop: An open source infrastructure for parallel performance analysis.
Scientific Programming 16(2-3), 105–121 (2008)

19. Servat, H., Llort, G., Giménez, J., Labarta, J.: Detailed performance analysis using
coarse grain sampling. In: Euro-Par 2009 - Parallel Processing Workshops, LNCS,
vol. 6043, pp. 185–198. Springer (2010)

20. Shende, S.S.: The role of instrumentation and mapping in performance measure-
ment. Ph.D. thesis, University of Oregon (August 2001)

21. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

22. Williams, C., Hollingsworth, J.: Interactive binary instrumentation. IEEE Seminar
Digests 2004(915), 25–28 (Jan.)

http://www.cactuscode.org
http://www.mpa-garching.mpg.de/gadget
http://www.fz-juelich.de/jsc/juropa

