
Specification of Inefficiency Patterns for MPI-2
One-Sided Communication

Andrej Kühnal, Marc-André Hermanns, Bernd Mohr, and Felix Wolf

Forschungszentrum Jülich,
Zentralinstitut für Angewandte Mathematik,

52425 Jülich, Germany
{a.kuehnal, m.a.hermanns, b.mohr, f.wolf}@fz-juelich.de

Abstract. Automatic performance analysis of parallel programs can be accom-
plished by scanning event traces of program execution for patterns representing
inefficient behavior. The temporal and spatial relationships between individual
runtime events recorded in the event trace allow the recognition of wait states
as a result of suboptimal parallel interaction. In our earlier work [1], we have
shown how patterns related to MPI point-to-point and collective communication
can be easily specified using common abstractions that represent execution-state
information and links between related events. In this article, we present new ab-
stractions targeting remote memory access (also referred to as one-sided commu-
nication) as defined in the MPI-2 standard. We also describe how the general struc-
ture of these abstractions differs from our earlier work to accommodate the more
complicated sequence of data-transfer and synchronization operations required
for this type of communication. To demonstrate the benefits of our methodology,
we specify typical performance properties related to one-sided communication.

1 Introduction

Remote memory access (RMA) describes the ability of a process to access a part of
the memory of a remote process directly without explicit participation of the remote
process in the data transfer. Since all parameters for the data transfer are determined
by one process, it is also called one-sided or single-sided communication. One-sided
communication is often made available to the programmer in the form of platform or
vendor-specific libraries, such as SHMEM (Cray/SGI) or LAPI (IBM). In 1997, one-sided
communication was added to the portable MPI standard version 2 [2].

On platforms with special hardware providing RMA support, one-sided communi-
cation can be used to improve the efficiency of parallel applications. For example,
NASA researchers reported a 39% improvement in throughput after replacing MPI-1
non-blocking with MPI-2 one-sided communication in a global atmosphere simulation
program [3]. As more and more scientists adopt this new paradigm to better utilize the
underlying hardware, the demand for performance tools supporting RMA communica-
tion will increase. This is especially important in view of the complicated sequences of
data transfer and synchronization operations involved and the fact that the MPI specifica-
tion leaves a large degree of freedom to implementors regarding the blocking behavior
of corresponding operations.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 47–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

48 A. Kühnal et al.

A performance-analysis technique successfully applied to traditional message-
passing applications is event tracing. An event trace records performance-relevant run-
time events, such as routine entries or exits or as sending and receiving point-to-point
messages. The KOJAK tool [4] uses the temporal and spatial relationships between in-
dividual runtime events reflected in the event trace to recognize patterns that occur as
a result of suboptimal parallel interaction. These patterns are specified as compound
events to (i) allow the classification of inefficient behavior by describing the exact cir-
cumstances causing it and to (ii) enable the quantification of wait times incurred.

Compound events consist of multiple primitive events, as recorded in the trace file,
and are connected by relationships, such as message transfers, that are often specific to a
particular parallel programming model, such as MPI. They may be further characterized
by constraints imposing, for example, a certain temporal order of events. To keep the
pattern specifications as simple as possible and also to make the simultaneous search
for different patterns more efficient, KOJAK includes a separate layer with common
abstractions representing execution-state information and links between related events
in terms of which the actual patterns are described.

In our earlier work [1], we have defined abstractions along with typical patterns
describing performance properties in the context of traditional message passing (MPI-1)
and shared-memory (OpenMP) programming. In [5], we provided informal descriptions
of patterns suitable to diagnose inefficiencies related to one-sided communication. In
this article, we outline the formal specification of these new abstractions and patterns.
Compared to the previous ones related to MPI-1 and OpenMP, the abstractions presented
here are more complicated to accommodate the complex sequences of data-transfer and
synchronization operations involved in MPI-2 one-sided communication and to reflect
the intricate inter-process relationships established by groups denoting potential origins
or targets during communication epochs. The new patterns have been incorporated into
the KOJAK tool, taking advantage of the recently added measurement infrastructure for
one-sided communication events reported in [6]. As part of this effort, we have also
specified abstractions and patterns related to SHMEM, which, however, are beyond the
scope of this paper.

The outline of this article is as follows: We start with a short description of MPI-2
RMA communication and synchronization functions in Section 2. In Section 3, we give a
brief overview of related work. In Section 4, we introduce the idea of creating suitable
abstractions on top of which inefficiency patterns can be specified and explain their
general structure. After that, we define abstractions for MPI-2 one-sided communication
in Section 5. To demonstrate the usefulness of our methodology, Section 6 specifies
several example MPI-2 patterns containing wait states the application developer may
wish to identify. In Section 7, we conclude our paper and give an outlook on future
work.

2 MPI-2 One-Sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific
APIs in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms even if a platform does not provide any direct hardware

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 49

support for RMA. The design behind the MPI-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of memory accesses has to be
specified by the user with explicit synchronization calls; for efficiency, the implemen-
tation can delay communication operations until the synchronization calls occur.

MPI does not allow RMA operations to access arbitrary memory locations. They can
access only designated parts of a process’ memory, which are called windows. Windows
must be explicitly initialized (with a call to MPI Win create) and released (with
MPI Win free) by all processes that either provide memory or want to access this
memory. These calls are collective between all participating partners and include an
internal barrier operation. By origin MPI denotes the process that performs an RMA

read or write operation, and by target the process in which the memory is accessed.
There are three RMA communication calls in MPI: MPI Put transfers data from the

caller’s memory to the target memory (remote write); MPI Get transfers data from the
target to the origin (remote read); and MPI Accumulate1 updates locations in the
target memory, for example, by replacing them with sums or products of the local and
remote data values (remote update). These operations are nonblocking: the call initiates
the transfer, but the transfer may continue after the call returns. The transfer is com-
pleted, both at the origin and the target, only when a subsequent synchronization call is
issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the program. RMA communi-
cation falls in two categories: active target and passive target communication. In both
modes, the parameters of the data transfer are specified only at the origin, however in
active mode, both origin and target processes have to participate in the synchronization
of the RMA accesses. Only in passive mode is the communication and synchronization
completely one-sided.

RMA accesses to locations inside a specific window must occur only within an access
epoch for this window. Such an access epoch starts with an RMA synchronization call,
proceeds with any number of remote read, write, or update operations on this window,
and finally completes with another (matching) synchronization call. Additionally, in
active target communication, a target window can only be accessed within an exposure
epoch. RMA operations issued by an origin process for a target window will access that
target window during the same exposure epoch if and only if they were issued during the
same access epoch. Distinct epochs for a window at the same process must be disjoint.
However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target
communication. An access epoch at an origin process or an exposure epoch at a
target process are started and completed by such a call. All processes who partic-
ipated in the creation of the window synchronize, which in most cases includes a
barrier. The data transfered is only accessible to user code after the fence.

General Active Target Synchronization (GATS): Here, synchronization is reduced:
only pairs of communicating processes synchronize, and they do so only when
needed to correctly order accesses to a window with respect to local accesses to

1 In our model, we consider an accumulate operation as a special version of a put operation and,
therefore, distinguish only between get and put in the remainder.

50 A. Kühnal et al.

that window. An access epoch is started at an origin process by MPI Win start
and is terminated by a call to MPI Win complete. The start call specifies the
group of targets for that epoch. An exposure epoch is started at a target process by
MPI Win post and is completed by MPI Win wait or MPI Win test. Again,
the post call specifies the group of origin processes for that epoch. Data written is
only accessible after the wait (or test) call, however data can only be read after the
complete call.

Locks: Finally, shared and exclusive locks are provided through the MPI Lock and
MPI Unlock calls. They are used for passive target communication. In addition,
they also define the access epoch for this window at the origin. Data read or written
is only accessible from user code after the unlock operation has completed.

It is implementation-defined whether some of the described calls are blocking or non-
blocking; for example, in contrast to other shared memory programming paradigms, the
lock call must not be blocking. For a complete description of MPI-2 RMA communica-
tion see [2].

3 Related Work

Currently, there are only very few tools that support the measurement and analysis of
one-sided communication and synchronization on a wide range of platforms. The well-
known Paradyn tool which performs an automatic on-line bottleneck search, was re-
cently extended to support several major features of MPI-2 [7]. For RMA analysis, it col-
lects basic, process-local statistical data (i.e., transfer counts and execution time spent
in RMA functions). It does not take inter-process relationships into account nor does it
provide detailed trace data. Also, it does not support the analysis of SHMEM programs.
The very portable TAU performance analysis tool environment [8] supports profiling
and tracing of MPI-2 and SHMEM one-sided communication. However, it only monitors
the entry and exit of the RMA functions; it does not provide RMA transfer statistics nor
are the transfers recorded in tracing mode. The commercial Intel Trace Collector tool
(formerly known as VampirTrace) [9] records MPI execution traces. When used with
MPI-2, it does not measure the routines of the general active target synchronization, cre-
ating the wrong impression that useful user calculations are done instead. Also, message
lines show the RMA transfer as completed by the end of the put or get operation, which
does not reflect the user-visible behavior, as specified by the MPI-2 standard. Finally,
it does not record the collective nature of MPI-2 window functions. Besides these there
are also some non-portable vendor tools with similar limitations.

4 State Sequences and Pointer Attributes

Event tracing models the execution of a program as a sequence of events represent-
ing actions relevant to the purpose of the observation. Therefore, the selection of event
types to be observed defines the view of program execution an event trace can provide.
An event model defines the formal properties of that view. It comprises a set of event
types with an associated set of attributes and constraints defining correct event order-
ing. Each event has a location attribute as well as a wall-clock time stamp. The event

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 51

location is an abstraction usually referring to the process or the thread generating an
event. Since the following discussion only considers pure MPI applications, the location
of an event can be regarded as equivalent to the MPI process, as identified by the rank in
MPI COMM WORLD. Another attribute denotes the event type. An event trace is a finite
indexed set of events E := {e1, . . . , ene}. The indexing reflects the time-sequenced
order of event records in the trace file.

To be able to express complex relationships among the constituents of a compound
event, the event model of system observation can be extended by creating instances of
two different categories of abstractions: (i) state sequences and (ii) pointer attributes.
The process of creating these abstractions is called event model enhancement because it
enhances the model’s capabilities to describe complex situations of execution behavior.
We summarize the key concepts below. The interested reader may refer to [10] for more
details.

State sequences. An event happening in a parallel system indicates a change in its
state, thus, events can be regarded as state transitions. An event trace can be seen as a
sequence of state transitions starting at an initial state and changing into the next state,
event by event, until a final state is reached after the last event. The state entered as
the result of an event is a useful abstraction when specifying compound events that
represent inefficient behavior.

The overall state of a parallel system is characterized by different aspects. For ex-
ample, one aspect might be the set of messages being transferred at a given moment,
another aspect might be the dynamic call stack of a process or thread. Such a state aspect
can be conveniently characterized in terms of the events that caused that aspect’s state.
For each of these aspects we can define a state sequence that describes the evolution of
that aspect over time. A state sequence is inductively defined by a transition operator.
The transition operator is applied to the current state and the next event to compute the
next state in the sequence. Since a state sequence describes only one aspect of the sys-
tem, we can combine all state sequences into a vector of state sequences to obtain the
overall-state sequence.

In our earlier work, a state sequence has been defined as a sequence of event sets.
Starting with the empty set, the transition operator either added the current event or
removed events related to the current event, changing the event set describing an as-
pect of the overall system. To conveniently retrieve event sets of interest during trace
analysis, we have defined auxiliary functions that can be applied to individual states
of a sequence. For example, a scheme that proved to be useful to identify individual
collective-operation instances was to collect all events belonging to an instance and re-
trieving it using an auxiliary function upon its completion if needed. Immediately after
this point, the transition operator removes the instance from the set. Later, we will see
that simple event sets are inconvenient to describe patterns involving intertwined steps
of communication and synchronization, such as occur in one-sided communication, and
that a hierarchical grouping of events becomes necessary.

Pointer attributes. Another useful abstraction is a link connecting related events, so
that one can navigate from one event to another related event. An example is a link
from the event of receiving a message back to the corresponding event of sending it.

52 A. Kühnal et al.

This mechanism permits navigation along a path of related events and the definition of
relationships among the constituents of a compound event using such paths. A natural
way of representing such links is to provide event attributes with pointer semantics,
which we call pointer attributes.

5 One-Sided Abstractions

In this section, we describe abstractions suitable as building blocks for the specifica-
tion of inefficiency patterns related to MPI-2 one-sided communication. For reasons of
brevity, we refrain from presenting the unabridged formalism underlying our abstrac-
tions and try to restrict ourselves to key concepts explained in natural language as far
as possible. See [11] for a complete specification.

The state sequences and pointer attributes presented in this article apply to the un-
derlying KOJAK event model, whose relevant portions are summarized in Table 1.

Table 1. Event types in KOJAK relevant to MPI-2 RMA analysis

Abstraction Event type Type specific Attributes
Entering / leaving a region ENTER region id

(e.g., a function) EXIT region id
Leaving an MPI collective function MPICEXIT region id, comm id, root loc, sent,

recvd
Start / end / origin of RMA PUT 1TS window id, rma id, length, dest loc

one-sided transfers PUT 1TE window id, rma id, length, src loc
GET 1TO window id, rma id
GET 1TS window id, rma id, length, dest loc
GET 1TE window id, rma id, length, src loc

Leaving an MPI GATS function MPIWEXIT window id, region id, group id
Leaving an MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking an MPI window WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

The table lists type-specific attributes that are added to the location attribute and the
timestamp mentioned in Section 4. For entries and exits of regions and ,in particular,
MPI functions, we record which region was entered or left. In the case of collective
MPI functions, instead of “normal” EXIT events, special collective events are used to
capture the attributes of the collective operation. This is the communicator, the root
process, and the amounts of data sent and received during this operation. Start and end
of RMA one-sided transfers are marked with PUT 1TS and PUT 1TE (for remote writes
and updates) or with GET 1TS and GET 1TE (for remote reads). For these events, we
collect the source and destination and the amount of data transferred, as well as a unique
RMA operation identifier which allows an easier mapping of # 1TE to the correspond-
ing # 1TS events in the analysis stage later on. For all MPI RMA communication and
synchronization operations we also collect an identification for the window on which
the operation was performed. Exits of MPI-2 functions related to general active target

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 53

synchronization (GATS) are marked with a MPIWEXIT event which also captures the
groups of origin or target processes. For collective MPI-2 RMA functions, we use an
MPIWCEXIT event and record the communicator that defines the group of processes
participating in the collective operation. Finally, MPI window lock and unlock opera-
tions are represented by WLOCK and WUNLOCK events. A more detailed description
of the MPI-2-specific events and their implementation in KOJAK can be found in [6].

Collective operations. In active target mode, access and exposure epochs may be en-
closed in collective fence synchronization operations. The synchronizing character of
these operations may result in wait times when processes reach the fence at different
points in time. The same applies to functions to create and destroy windows. To detect
wait states resulting from collective synchronization, we have defined a state sequence
modeling the progress of collective operations on RMA windows - similar to the one for
MPI-1 collective communication defined in our previous model.

Since the structure of the RMA-collective sequence is nearly identical to the sequence
used in our previous model, we have introduced the concept of generic meta-sequences
that can be instantiated with a type argument to simplify the formulation of sequences
describing arbitrary collective operations. We have created a meta-sequence Cg < T >
collecting the exit events of collective operations carried out by members of a group
g of processes. Depending on the type T of these exit events, this group is identified
either by an MPI communicator, an OpenMP team, or an RMA window. Once all events
of type T belonging to a collective operation instance are present, the complete instance
is removed upon the next event applied to the set. An auxiliary function complete <
T > (e) is provided to query for instances completed by an event e, which is useful to
measure waiting times. The state sequence for collective window operations is created
by instantiating Cg < MPIWCExit >. Note that this abstraction can also be used for
SHMEM collective operations.

Data transfers. Data transfers are modeled as pairs of events: (i) a start event initi-
ating the transfer (i.e., PUT 1TS or GET 1TS) and (ii) an end event completing the
transfer (i.e., PUT 1TE or GET 1TE). KOJAK’s event model observes the MPI-2 syn-
chronization semantics and, therefore, reflects the user-visible behavior of MPI-2 RMA

operations. Figure 1 shows the model for the three different synchronization methods
defined by MPI-2. The transfer line shown in the picture is not part of the model and is
only shown for clarity.

The end GATS calls is modeled with MPIWEXIT events, the end of fences with MPI-
WCEXIT events to capture their collective nature. The transfer-start event is placed at
the source process immediately after the begin of the corresponding communication
function. However, the transfer-end event is placed at the destination process shortly
before the exit of the RMA synchronization function which completes the transfer ac-
cording to the MPI-2 standard rules. Unfortunately, this has an undesired side effect. As
one can see in the figure, this results in a separation of the data transfer for remote reads
from the correspondingMPI Get function. To rectify this situation, we have introduced
a new event GET 1TO indicating time and location of the transfer’s origin.

To access all events belonging to the same data transfer, we have defined pointer
attributes startptr and originptr, which connect the end event with its corresponding

54 A. Kühnal et al.

time

lo
ca

tio
ns

MPI_Win_fence

Enter

Exit

MPIWCExit

enterptrMPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Put

MPI_Get

startptr

Transfer

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

P1

P0

(a) MPI-2 get and put operations enclosed in fences.

time

lo
ca

tio
ns

MPI_Win_complete

MPI_Win_wait

MPI_Win_start

MPI_Win_post

MPI_Win_start

MPI_Put

MPI_Win_completeMPI_Get

Enter

Exit

MPIWExit

enterptr

startptr

Transfer

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

P0

P1

(b) MPI-2 get and put operations with general active target synchronization.

time

lo
ca

tio
ns

MPI_Win_unlock

Enter

Exit

WLock

enterptr

MPI_Win_lock MPI_Put

MPI_Get

startptr

Put_1TS

Put_1TE

MPI_Win_unlockMPI_Win_lock

Transfer

WUnlock

Get_1TS

Get_1TE

Get_1TO

originptr

P0

P1

(c) MPI-2 get and put operations with locks.

Fig. 1. Examples of KOJAK’s MPI-2 event model

start event and the start event with its corresponding origin event, respectively. Their
definition is based on state sequences collecting transfer events separately for each lo-
cation (i.e., process) - similar to the queue for point-to-point messages defined in our
earlier model. The identification of events belonging to the same transfer is based on the
rma id attribute assigned during trace generation. Subsequently, we use these pointer at-
tributes to reach start and origin events for given transfer-end events. Beyond that, these
pointer attributes can be useful to calculate matrices with amounts of data transferred
between processes.

Access and exposure epochs in general active target synchronization. The most
challenging part of analyzing MPI-2 one-sided communication is GATS synchronization.
To facilitate cross-process analysis in GATS mode, it is necessary to identify correspond-
ing access and exposure epochs. Here, we present a multi-step method to recognize all

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 55

access epochs belonging to a given exposure epoch (and vice versa) with the goal of
providing all data needed for their analysis. This is the most intricate part of our model
as it requires considering sets of sets of events to reflect the hierarchical grouping of the
events involved. Note that this constitutes an important difference to the abstractions
defined in our earlier work. We start with an introduction of the overall structure of
event sets related to GATS communication:

Data transfer. A put or get operation.
Put operation. A PUT 1TE and its corresponding PUT 1TS event connected by the

startptr attribute.
Get operation. A GET 1TE and its corresponding GET 1TS and GET 1TO events

connected by startptr and originptr attributes.
Epoch. An access or exposure epoch.
Access epoch. Includes two MPIWCEXIT events, one for each call to MPI Win

start and MPI Win complete, plus all GET 1TE events in between at the
same location and referencing the same window to represent all get operations be-
longing to this epoch. Note that put operations are represented by their respective
PUT 1TE events inside the exposure epoch.

Exposure epoch. Includes two MPIWCEXIT events, one for each call to MPI Win
post and MPI Win wait, plus all PUT 1TE events in between at the same loca-
tion and referencing the same window to represent all put operations belonging to
this epoch. Note that get operations are represented by their respective GET 1TE
events inside the access epoch.

Epoch pair. Union of an access epoch at location l with a corresponding exposure
epoch at location k but without any communication events not related to commu-
nication between l and k.

Access transaction. Union of an access epoch at location l with all corresponding ex-
posure epochs at locations k1, . . . , kn, but without any communication events not
related to communication between l and k1, . . . , kn. Figure 2 (left) shows an access
transaction involving one access and two exposure epochs.

Exposure transaction. Union of an exposure epoch at location l with all correspond-
ing access epochs at locations k1, . . . , kn, but without any communication events
not related to communication between l and k1, . . . , kn. Figure 2 (right) shows an
exposure transaction involving one exposure and two access epochs.

Matching GATS-based patterns requires the recognition of the above structures in the
event trace. For this purpose, we have defined a hierarchical system of state sequences

Access epoch

Exposure epoch

Access epoch

time

lo
ca

tio
ns

P1

P2

P0

put

put

get

get

Exposure epoch

Access epoch

Exposure epoch

time

lo
ca

tio
ns

P1

P2

P0

put

put

get

get

Fig. 2. An access transaction (left) and an exposure transaction (right)

56 A. Kühnal et al.

that detects higher-level structures step-by-step based on lower-level structures already
detected.

At the bottom, there are two state sequences Al,w and El,w responsible for collect-
ing all events belonging to an access or exposure epoch taking place at location l and
referring to window w. The separation by window ensures that epochs belonging to the
same window do not overlap in time at the same location. Once the event set describing
an epoch is complete, the state is cleared upon the occurrence of the next event.

Completed epochs are combined into epoch pairs by a state sequence P̄k,l,w, which
is defined for a target location k, an origin location l, and a window w. Before com-
bining the two epochs, however, all events not related to communication between the
two sides of the pair are removed. Again, after completion of the whole pair, the state
is cleared. Different from our earlier sequence, the states of this sequence contain sets
of event sets. This is necessary to express the hierarchical grouping of events typi-
cal for GATS transactions that consist of zero or more data transfer events enclosed
by synchronization operations at each participating location. The auxiliary function
epoch pair(e, l) extracts a complete epoch pair as a flat set if e constitutes the last
event of a pair with l being the location of the counter epoch.

The next level of composition is achieved through an auxiliary function expta(e, P̄)
that can be applied to an event e and a set of epoch pairs P̄ and that returns all epoch
pairs belonging to an exposure transaction if e constitutes the last event of this trans-
action. Using this and the function above, we have defined a state sequence Ēl,w for
a location l and a window w that successively adds epoch pairs as they are finished
until a full exposure transaction has been completed, which then can be extracted using
expta(e, P̄). l denotes the location of the access epoch. Similarly, we have defined a
function accta(e, P̄) and a state sequence Āl,w to identify whole access transactions
for later performance analysis.

6 One-Sided Patterns

Now, we use the abstractions defined in the previous section to specify complex inef-
ficiency patterns spanning more than one process as a prerequisite for their automatic
detection in event traces. The general structure of a pattern consists of a root event de-
scribed by a simple test condition and zero or more constituents that can be located
from the root event using the abstractions. The root event is the latest constituent event
because the search for the remaining ones occurs backwards for efficiency reasons. An
additional rule specifies how to quantify the pattern’s performance impact (i.e., the time
lost). Since it is the most complicated part of MPI-2 one-sided communication, we have
focused mostly on patterns related to GATS synchronization.

A major challenge in specifying appropriate detection mechanism has been the fact
that the latest event in an epoch pair can either belong to an access or an exposure epoch.
This can lead to complicated case distinctions that are not necessary for traditional
point-to-point communication, where a send event always precedes a receive event.
Another important difference to point-to-point communication arises from the one-to-
many relationships existing between access and exposure epochs involving more than
two processes. For example, during an exposure epoch, a window may be accessed

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 57

Wait

time

lo
ca

tio
ns

Put

waiting

Put

waiting

Start

Start Complete

Complete

Post

P1

P2

P0

Exposure
epoch

Access
epoch

Access
epoch

Enter

MPIWExit

Put_1TS

Put_1TE

Transfer

Fig. 3. Early Transfer: MPI Get/Put() blocks during an access epoch until the related expo-
sure epoch is started with MPI Win post()

by multiple processes each passing through a separate access epoch according to our
definition above.

Early Transfer. This pattern describes a situation that may happen when communicat-
ing in GATS mode. MPI Get/Put() blocks during an access epoch until the related
exposure epoch is started with MPI Win post() (Figure 3). Recognizing the pattern
requires considering epoch pairs. The root event is the last event of an epoch pair and is
of type MPIWEXIT. It either completes the access or the exposure epoch and, therefore,
either belongs to MPI Win complete() or to MPI Win wait/test().

The complete set of epoch pairs finished by the root event is determined by calcu-
lating epoch pair(root, l) for every location l being a member of the partner group
recorded with the root event. If the root event belongs to an exposure epoch, the pattern
covers all corresponding access epochs already finished.

The waiting time is counted from the start of an access operation within the access
epoch until the corresponding post operation has been issued during the matching ex-
posure epoch. The begin of the access operation is identified using the pointer attributes
startptr and originptr in the case of a get operation.

Early Wait. This pattern represents the premature request to finish an exposure epoch
using MPI Win wait() and is depicted in Figure 4. We consider the request as pre-
mature if it was posted before the last access epoch’s closure has been requested using
MPI Win complete() within the same exposure transaction.

The recognition of this pattern requires the recognition of an exposure transaction.
Two cases must be distinguished: (i) the transaction is completed by an exposure epoch
or (ii) the transaction is completed by an access epoch. In the first case, the root event
is the MPIWEXIT event of the wait operation and the full transaction is easily obtained
by applying expta() to the root event and Ēl,w with l being the location of the root
event.

In the second case, the root event is the MPIWEXIT event of a complete opera-
tion and, therefore, finishes an access epoch. Now, the detection mechanism needs to

58 A. Kühnal et al.

Post Wait

Start CompletePut

waiting

Start CompletePut

time

lo
ca

tio
ns

P1

P2

P0

Exposure
epoch

Access
epoch

Access
epoch

Enter

MPIWExit

Put_1TS

Put_1TE

Transfer

Fig. 4. Early Wait: MPI Win wait() blocks during completion of an exposure epoch until all
related access epochs are completed

find all exposure transactions finished with this access epoch. This is accomplished
by iterating over all exposure epochs belonging to epoch pairs completed by the root
event and extracting completed exposure transactions from Ēk,w using the expta()
function. The exposure epochs are found by means of P̄k,l,w with l being the lo-
cation of the root event and k being a location in the root event’s partner group.
Since the exposure transactions we are looking for have been completed by the root
event, we need to consider Ēk,w at the time of the root event. The waiting time is
the period between the start of the wait until the beginning of the latest complete
operation in the transaction.

Late Complete. If a process delays the completion of an access epoch by perform-
ing work between the last access and the complete operation and the wait operation
has already been posted, a situation named Late Complete occurs (Figure 5). It is ac-
tually a sub-property of Early Wait. This pattern considers an exposure transaction and

time

lo
ca

tio
ns

Post Wait

waiting

Start CompletePut

Start CompletePut

Access
epoch

Access
epoch

P0

P1

P2

Exposure
epoch

Enter

MPIWExit

Put_1TS

Put_1TE

Transfer

Fig. 5. Late Complete: Describes the time wasted between the last access and the call to the
corresponding MPI Win complete() operation

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 59

time

lo
ca

tio
ns

Wait

Start CompletePut

CompletePutStart

waiting

Post

waiting
P0

P1

P2

Access
epoch

Access
epoch

Exposure
epoch

Enter

MPIWExit

Put_1TS

Put_1TE

Transfer

Fig. 6. Late Post: MPI Win start() or MPI Win complete() block because the corre-
sponding exposure epoch has not started yet

measures the time spent in the wait operation between exiting the last put or get and
entering the corresponding complete (or the latest complete if the last get/put is not
unique). The recognition of the exposure transaction is similar to Early Wait.

Late Post. Refers to access-sided synchronization operations that block until access is
granted by an exposing process (Figure 6). Depending on the MPI implementation, this
may happen either during MPI Win start() or during MPI Win complete().
Since the exact blocking semantics are usually not known to a performance tool, our
pattern counts time spent in both operations before the earliest post call within the
same access transaction is issued in the case that MPI Win start() does not block.
Then, however, the time spent in the start operation will be small and the resulting
inaccuracy negligible. Whereas the semantics of the pattern are closer to Early Transfer,
its recognition is very similar to Early Wait, only that it requires the recognition of
an access transaction using Āl,w. Like Early Wait, this pattern needs to distinguish
two cases: (i) the root event finishes an access epoch or (ii) the root event finishes an
exposure epoch, in which case the access transactions have to be identified by iterating
over all related access epochs.

Wait at Fence. Whereas the previous patterns all refer to GATS synchronization, this
pattern covers the simpler case of synchronization with MPI Win fence(). Since
fence normally2 implies a barrier, waiting times occur if the fence is not reached si-
multaneously by all participating processes (Figure 7). Early processes have to wait
for the latest one. The recognition of Wait at Fence is accomplished using Cg <
MPIWCExit >, which collects collective window operation instances. After re-
trieving such an instance using complete < MPIWCExit > () and identifying the
latest entry into the operation, the waiting times of different processes can be easily
determined.

2 The internal barrier can be avoided by passing additional ”hints” to the fence call as a
second parameter.

60 A. Kühnal et al.

MPI_Win_fence

MPI_Win_fence

time

lo
ca

tio
ns

Enter

MPIWCExit

waiting

waiting

MPI_Win_fence

2en

1en

2ex

1ex

0ex0en

P0

P1

P2

Fig. 7. Wait at Fence: Time spent waiting in front of a synchronizing MPI Win fence() oper-
ation

7 Conclusion

To the best of our knowledge, this is the first systematic approach of automatically iden-
tifying wait states related to MPI-2 one-sided communication in event traces. Building
upon our earlier framework to identify wait states in traditional two-sided and collective
communication, we have defined new abstractions representing higher-level events re-
lated to one-sided operations. These abstractions serve as a useful prerequisite to specify
inefficiency patterns in a way facilitating their automatic detection in the event stream.

A major difficulty that has been solved within our new framework is the fact that
one-sided communication is accomplished in complex sequences of synchronization
and communication, where the notion of send and receive operations is replaced by
the notion of access and exposure epochs comprising both synchronization and access
operations. Also, a single epoch may perform communication with an entire group of
processes, which requires the recognition of all counter epochs performed by members
of this group. In addition, the root event from where the constituents of a pattern may
be located may reside on either side of an epoch pair, which involves complex case
distinctions on the side of the detection mechanism.

To demonstrate the usefulness of our framework, we have specified several complex
patterns of inefficient behavior targeting, in particular, general active target synchro-
nization, which can be challenging for programmers. Meanwhile, we have completed
the implementation of all KOJAK modules necessary for the instrumentation, measure-
ment, conversion, and analysis of parallel applications based on MPI-2 RMA and we
have a prototype version for SHMEM programs. Figure 8 shows a summary of the cur-
rently implemented pattern hierarchy. We have also extended our internal test suite to
cover one-sided communication and used it to verify our implementation. As a next
step, we need to evaluate the relevance of these patterns using real-world applications.

Finally, we hope that some of the complexity in the analysis can be avoided, when
transferring this approach to the new parallel analyzer architecture developed in the
SCALASCA [12] project. By exploiting distributed memory and parallel processing

Specification of Inefficiency Patterns for MPI-2 One-Sided Communication 61

Lock Competition

Wait at Barrier

Wait at Barrier

Wait at N x N

Early Reduce

Messages in Wrong Order

Late Receiver

Time

Execution

Idle Threads

MPI

OpenMP

Communication

Fork

Collective

Point to Point

Late Sender

Late Broadcast

Synchronization

Barrier

Messages in Wrong Order

Flush

Implicit

Explicit

Critical

API

Synchronization

IO

Wait at Barrier

Barrier Completion

Barrier

RMA Synchronization

Active Target

Window Management

Fence

Locks

Wait at Free

Wait at Create

Wait at Fence

Early Wait

Late Complete

Early Transfer

RMA Communication

Late Post

Overhead

Lock Competition

SHMEM

Synchronization

Barrier

Communication

API

Collective

Wait at N x N

Late Broadcast

RMA

Wait at Barrier

Point to Point

Wait Until

Init/Exit

Memory Management

Init/Exit

Fig. 8. Performance properties defined by KOJAK. White boxes indicate performance properties
based on summary information which could also be provided by a profiling tool. However, the
second type, indicated by gray boxes, involves idle times that can only be determined by compar-
ing the chronological relation between individual events.

62 A. Kühnal et al.

capabilities, the analysis is carried out entirely in main memory, relaxing the efficiency-
motivated forward-analysis requirement imposed by our previous sequential analysis
approach.

References

1. Wolf, F., Mohr, B.: Specifying Performance Properties of Parallel Applications Using Com-
pound Events. Parallel and Distributed Computing Practices 4 (2001) 301–317 Special Issue
on Monitoring Systems and Tool Interoperability.

2. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface
(1997) http://www.mpi-forum.org.

3. Mirin, A., Sawyer, W.: A scalable implementation of a finite volume dynamical core in
the Community Atmosphere Model. International Journal of High Performance Computing
Applications 19 (2005) 203–212

4. Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications.
Journal of Systems Architecture 49 (2003) 421–439 Special Issue “Evolutions in parallel
distributed and network-based processing”.

5. Mohr, B., Kühnal, A., Hermanns, M.A., Wolf, F.: Performance Analysis of One-sided Com-
munication Mechanisms. In: Proceedings of Parallel Computing (ParCo), Malaga, Spain
(2005) Mini-Symposium ”Tools Support for Parallel Programming”.

6. Hermanns, M.A., Mohr, B., Wolf, F.: Event-based Measurement and Analysis of One-sided
Communication. In: Proc. of the European Conference on Parallel Computing (Euro-Par).
Volume 3648 of Lecture Notes in Computer Science., Lisboa, Portugal, Springer (2005) 156–
165

7. Mohror, K., Karavanic, K.L.: Performance Tool Support for MPI-2 on Linux. In: Proc. of
the Supercomputing Conference (SC), Pittsburgh, PA (2004)

8. Malony, A.D., Shende, S.: Performance Technology for Complex Parallel and Distributed
Systems. In Kacsuk, P., Kotsis, G., eds.: Quality of Parallel and Distributed Programs and
Systems, Nova Science Publishers, Inc., New York (2003) 25–41

9. Pallas/Intel: Intel Trace Collector (2006) http://www.intel.com/software/
products/cluster/tcollector/

10. Wolf, F.: Automatic Performance Analysis on Parallel Computers with SMP Nodes. PhD
thesis, RWTH Aachen, Forschungszentrum Jülich (2003) ISBN 3-00-010003-2.

11. Kühnal, A.: Performance Properties for One-Sided Communication Mechanisms. Diploma
Thesis. Forschungszentrum Jülich (2005) In German.

12. Forschungszentrum Jülich: SCALASCA (2006) http://www.scalasca.org.

http://www.intel.com/software/products/cluster/tcollector/
http://www.intel.com/software/products/cluster/tcollector/
http://www.scalasca.org

	Introduction
	MPI-2 One-Sided Communication
	Related Work
	State Sequences and Pointer Attributes
	One-Sided Abstractions
	One-Sided Patterns
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

