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Abstract. Automatic trace analysis is an effective method for identifying com-
plex performance phenomena in parallel applications. However, as the size of par-
allel systems and the number of processors used by individual applications is con-
tinuously raised, the traditional approach of analyzing a single global trace file,
as done by KOJAK’s EXPERT trace analyzer, becomes increasingly constrained
by the large number of events. In this article, we present a scalable version of the
EXPERT analysis based on analyzing separate local trace files with a parallel tool
which ‘replays’ the target application’s communication behavior. We describe the
new parallel analyzer architecture and discuss first empirical results.

1 Introduction

Event tracing is a well-accepted technique for post-mortem performance analysis of
parallel applications. Time-stamped events, such as entering a function or sending a
message, are recorded at runtime and analyzed afterwards with the help of software
tools. For example, graphical trace browsers like VAMPIR [1] and PARAVER [2], allow
fine-grained investigation of execution behavior using a zoomable time-line display.

However, in view of the large amounts of data usually generated, automatic off-line
trace analyzers, such as the EXPERT tool from the KOJAK toolset [3,4], can provide
relevant information more quickly by automatically searching traces for complex pat-
terns of inefficient behavior and quantifying their significance. In addition to usually
being faster than a manual analysis performed using trace browsers, this approach is
also guaranteed to cover the entire event trace and not to miss any pattern instances.

Unfortunately, sequentially analyzing a single trace file does not scale to applications
running on thousands of processors. Even if access locality is exploited, the amount
of main memory might not be sufficient to store the current working set of events.
Moreover, the amount of trace data might not even fit into a single file, which already
suggests to perform the analysis in a more distributed fashion.

In this paper, we describe how the pattern search can be done in a more scalable way
by exploiting both distributed memory and parallel processing capabilities available on
modern large-scale systems. Instead of sequentially analyzing a single global trace file,
we analyze separate local trace files in parallel by replaying the original communication
on as many CPUs as have been used to execute the target application itself.

We start our discussion with a review of related work in Section 2, followed by
an overview of our trace analyzer’s new parallel design in Section 3, where it is also
compared to the previous sequential design. Then, in Section 4, we discuss the parallel
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pattern-analysis mechanism in more detail, before we show preliminary experimental
results that already demonstrate the improvement over the sequential analysis in Sec-
tion 5. Finally, in Section 6 we conclude the paper and outline further improvements.

2 Related Work

Wolf et al. [5] review a number of approaches addressing scalable trace analysis. Dy-
namic periodicity detection in OpenMP applications [6] avoids recording redundant per-
formance behavior, while the frame-based SLOG trace-data format [7] supports scalable
visualization. Important to our particular approach has been the distributed trace analy-
sis and visualization tool VAMPIR Server[8], which provides parallel trace access mech-
anisms, albeit targeting a ‘serial’ human client in front of a graphical trace browser as
opposed to fully automatic and parallel trace analysis. A tree-based main memory data
structure for event traces called cCCG [9] allows potentially lossy compression of trace
data while observing specified deviation bounds.

Non-trace-based on-line performance tools, such as Paradyn [10] or Periscope [11],
that analyze performance data in real-time address scalability by employing hierarchical
networks for efficient reduction and broadcast operations between back-end processes
and the tool front-end. The particular way patterns are specified and implemented in EX-
PERT was stimulated by the APART Specification Language (ASL) [12], which provides
a formal notation to describe performance properties of parallel applications. Other
ASL-inspired work includes JavaPSL [13], a Java version of ASL, and the aforemen-
tioned Periscope tool. KappaPI 2 [14] sequentially searches trace files of message-
passing applications for patterns very similar to those used in our approach, but in
KappaPI 2 emphasis is put on generating recommendations on how to improve the
performance using knowledge of bottleneck use cases.

3 Overview of Parallel Trace Analysis

Instead of sequentially analyzing a single and potentially large global trace file, we an-
alyze multiple local trace files in parallel based on the same parallel programming par-
adigm as the one used by the target application. For the sake of simplicity, we currently
have restricted ourselves to handle only single-threaded MPI-1 applications, which im-
plies that our parallel analyzer is an MPI-1-based program as well. The analyzer is
executed on as many CPUs as have been allocated for the target application, allowing
to run it within the same batch job as the application itself. Using an allocation with a
different (smaller) number of CPUs for the analysis would require a separate batch job
introducing typically significant additional waiting time in the performance analysis
workflow. Figure 1 depicts the analysis workflow along with responsible components
in comparison to the sequential analysis implemented by EXPERT.

The parallel analyzer itself uses a distributed memory approach, where each process
reads only the trace data that was recorded for the corresponding process of the target
application. This specifically addresses scalability with respect to wider traces, this is,
those from larger numbers of processes. Since longer traces can be handled by selective
tracing — i.e., by recording events only for code regions of particular interest — we
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Fig. 1. Schematic overview of the new parallel analysis work flow (a) in comparison to the previ-
ous sequential analysis (b). Stacked rectangles denote multiple instances of files or applications
executed in parallel.

assume that the local trace data can be completely held in the main memory of the
compute nodes. This has the advantage of having efficient random-access to individual
events, whereas this is often not the case when dealing with a global trace file.

The actual analysis can then be accomplished by performing a parallel replay of
the application’s communication behavior. The central idea behind this replay-based
analysis approach is to analyze a communication operation using an operation of the
same type. For example, to analyze a point-to-point message, the event data necessary
to analyze this communication is also exchanged in point-to-point mode between the
corresponding analysis processes. To do this, the new analysis traverses local traces in
parallel and meets at the synchronization points of the target application by replaying
the original communication. How this idea can be used to search for complex patterns
of inefficient behavior will be described in more detail in Section 4.

The event records stored in the individual per-process trace files use local identifiers
to refer to static program entities, such as source-code regions or MPI communicators.
Therefore, these local identifiers are mapped onto unique, global identifiers for the ex-
change of trace data between analysis processes. In the sequential analysis this map-
ping is part of the Merge step. In the parallel approach, this is similarly accomplished
by performing a preprocessing step using a separate program that sequentially unifies
the definitions of the per-process traces and generates a global definitions file that is
shared between all analysis processes. To avoid reading the entire local trace files to
extract definition records, we have modified the KOJAK measurement system to write
definition and event records into separate files. The Unification step also creates a set
of mapping tables that the analysis processes use to convert local into global identifiers
while reading their local event data.
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Each parallel analysis process only calculates a subset of the overall analysis report.
Therefore, these local reports have to be combined into a single output file after the
analysis has completed. In our current prototype, the individual analysis processes write
their results to local files, which are then merged into a global CUBE output file [15]
during a separate postprocessing Combine step.

These sequential pre- and postprocessing steps can be optimized in several ways,
among which the most promising option is their integration into the analyzer and con-
comitant parallelization to minimize costly file I/O operations. However, detailed dis-
cussion of these optimizations is beyond the scope of this paper.

4 Message Passing Pattern Analysis

The replay-based analysis approach can be used to search for a large number of inef-
ficiency patterns. Our current prototype supports the full range of MPI-1 performance
metrics offered by the original sequential EXPERT tool, with the exception of Late Re-
ceiver, Messages in Wrong Order that is rarely significant in practice. A representative
subset of these patterns is diagrammed in Figure 2. Their detection algorithms will be
used to illustrate the parallel analysis mechanism below.
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Fig. 2. Patterns of inefficient behavior

4.1 Point-to-Point Communication

As an example for inefficient point-to-point communication, we consider the so-called
Late Sender pattern. Here, a receive operation is entered by one process before the
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corresponding send operation has been started by the other. The time lost due to this
pattern is therefore the difference between the timestamps of the enter events of the MPI

function instances which contain the corresponding message send and receive events.
The complete Late Sender pattern consists of four events, specifically the two enter
events and the respective message send and receive events.

During the parallel replay, the detection of this performance problem is triggered by
the point-to-point communication events involved (i.e., send and receive). That is, when
a send event is found by one of the processes, a message containing this event as well as
the associated enter event is created. This message is then sent to the process represent-
ing the receiver using a point-to-point operation. To ensure the correct matching of send
and receive events, we use equivalent tag and communicator information to perform the
communication.

When the receiver reaches the receive event, the aforementioned message containing
the remote constituents of the pattern is received. Together with the locally available
constituents (i.e., the receive and the enter events), a Late Sender situation can be de-
tected by comparing the timestamps of the two enter events and calculating the time
spent waiting for the sender. This approach relies on the availability of a synchronized
clock: otherwise linear interpolation of timestamps [16] is used, but alternative methods
of time correction are being considered.

The detection of the Late Receiver pattern is very similar and straightforward to im-
plement. However, to avoid sending redundant messages while executing the detection
algorithms for the different performance problems related to point-to-point communica-
tion, we exploit specialization relationships between patterns and reuse results obtained
on higher levels of the hierarchy. This is implemented using a sophisticated event no-
tification and call-back mechanism similar to the publish-and-subscribe approach pre-
sented in [4]. For this pattern the severity is calculated by the receiver but attributed
to the sender’s location. To avoid the additional overhead of transferring the calculated
waiting time back to the sender, it is stored as a remote result at the receiving process.

By contrast, detecting the Late Sender, Messages in Wrong Order pattern is more
difficult. This pattern describes the situation that during a Late Sender pattern, another
message is waiting to be received by the same destination but which was sent earlier.
To detect it, we would need a global view of the messages currently in transit while
assessing the Late Sender situation, which is not available in a parallel implementation.
Therefore, each analysis process keeps track of the last occurrences of the Late Sender
pattern found in its local trace using a ring buffer. If a receive event is encountered
during the replay, we compare the timestamps of the corresponding send event and those
of the buffered Late Sender occurrences. If the Late Sender’s send operation starts after
the send event associated with the current receive, the Late Sender instance is classified
as a Wrong Order situation and removed from the buffer. Note that this approach does
not guarantee to find all occurrences of this pattern, although empirical results suggest
that the coverage of our method is sufficient in practice.

4.2 Collective Communication and Synchronization Operations

The second important type of communication operations are MPI collective operations.
As an example of a related performance problem, we discuss the detection of the Wait
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at N×N pattern, which quantifies the waiting time due to the inherent synchronization
in N-to-N operations, such as MPI Allreduce.

While traversing the local trace data, all processes involved in a collective operation
will eventually reach their corresponding collective exit events. After verifying that it
relates to an N-to-N operation, accomplished by examining the associated region iden-
tifier, the analyzer invokes the detection algorithm, which determines the latest of the
corresponding enter events using an MPI Allreduce operation. After that, each process
calculates the local waiting time by subtracting the timestamp of the local enter event
from the timestamp of the enter event obtained through the reduction operation. The
group of ranks involved in the analysis of the collective operation is easily determined
by re-using the communicator of the original collective operation.

Very similar algorithms can be used to implement patterns related to 1-to-N, N-to-1
and barrier operations. As with point-to-point operations, a single MPI call is used to
calculate the asscociated waiting times. Only barrier operations, for which the analyzer
also calculates asymmetries that occur when leaving the operation, require two calls.

5 Results

To evaluate the effectiveness of parallel analysis based on a replay of the target appli-
cation’s communication behavior, a number of experiments with our current prototype
implementation have been performed at a range of scales and compared with the se-
quential EXPERT tool. To facilitate a fair comparison, a restricted version of EXPERT

was used that provides only the functionality of our parallel prototype, i.e., support for
MPI-2, OpenMP, and SHMEM pattern analysis was disabled.

Measurements were taken on the IBM BlueGene/L system at Forschungszentrum
Jülich (JUBL), which consists of 8,192 dual-core 700 MHz PowerPC 440 compute
nodes (each with 512 MBytes of memory), 288 I/O nodes, and p720 service and lo-
gin nodes each with eight 1.6 GHz Power5 processors [17]. The system was running
the V1R2 software release with GPFS parallel filesystem configured with 4 servers. A
dedicated partition consisting of all of the compute nodes was used for the parallel
analyses, whereas the sequential programs (pre- and postprocessing, and EXPERT) ran
on the lightly-loaded login node. Two applications with quite different execution and
performance characteristics have been selected for detailed comparison.

The ASC benchmark SMG2000 [18] is a parallel semi-coarsening multigrid solver,
which uses a complex communication pattern. The MPI version performs a lot of non-
nearest-neighbor point-to-point communication operations (and only a negligible num-
ber of collective communication operations) and can be considered to be a stress-test
for the memory and network subsystems of a machine. To investigate weak scaling
behavior, a fixed 64×64×32 problem size per process with five solver iterations was
configured, resulting in a nearly constant application run-time as additional CPUs were
used. Because the number of events traced for each process increases with the total
number of processes, the aggregate trace volume increases faster than linearly.

The second case, PEPC-B [19], uses a locally-developed parallel tree code for com-
puting long-range forces in N-body particle systems applied in this case to beam-plasma
interactions. With a fixed problem size consisting of one million charged particles



Scalable Parallel Trace-Based Performance Analysis 309

updated for 10 steps, increasing the number of CPUs reduces overall run-time as a
demonstration of strong scaling behavior. By contrast to the SMG2000 benchmark,
it uses a significant proportion of collective communication and synchronization
operations.

Figure 3 charts wall-clock execution times for the uninstrumented applications and
their analysis with a range of process numbers on JUBL. The 8-fold doubling of process
numbers necessitates a log–log scale to show the corresponding range of times, partic-
ularly for the old sequential analysis (which furthermore becomes impractical for the
largest traces). The figure shows the total time needed for the parallel analysis includ-
ing the aforementioned sequential steps, the time taken by the parallel analysis without
sequential steps, and the time taken by the parallel replay itself without file I/O. Due
to the often considerable variation in the time for file I/O (e.g., depending on overall
filesystem load) the times reported are the best of several measurements.

While the set of execution traces from 1,024 PEPC-B processes only reached
400 MBytes aggregate size (56 million events in total), the corresponding execution
traces from 1,024 SMG2000 processes were 10 GBytes (a total of 1,886 million events).
The largest set of execution traces from 16,384 SMG2000 processes amounted to
230 GBytes (over 40,000 million events in total). Both applications have communi-
cation characteristics that result in individual process traces being considerably smaller
or larger than the average.

File I/O can be seen to command increasing proportions of the analysis time, how-
ever, future versions of the parallel analysis will reduce this overhead by parallelizing
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Fig. 3. Execution times for SMG2000 (left) and PEPC-B (right) and their analysis using the se-
quential EXPERT and new prototype at a range of scales. Linear scaling is the bold dotted line.
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Fig. 4. Analysis report for ASC SMG2000 on 16,384 processors of BlueGene/L highlighting the
distribution of the Wait at N x N performance metric in the SMG.Setup MPI Allreduce on the
physical machine topology distribution (left) and MPI process topological distribution (right).
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the currently sequential pre- and postprocessing steps and thereby eliminating the need
to read and write intermediate data files. By contrast, the actual procedure of replaying
and analyzing the event traces, the focus of this paper, exhibits a satisfactory scaling be-
havior up to very large configurations. On account of its replay-based nature, the time
needed for this part of the analysis procedure depends on the communication behavior
of the target application. Since communication is a key factor in the scaling behavior of
the target application as well, similarities can be seen in the way both curves evolve as
the number of processes increases.

Notably, the total time for the new analysis approach is already more than one or-
der of magnitude faster than the sequential analysis based on EXPERT, which makes it
possible to examine wider (and longer) parallel traces in a reasonable time.

While SMG2000 is a reasonable test case for examining the scaling behavior of
performance analysis to large scales, as a well-optimized benchmark application, the
analysis results are of little interest (see Figure 4). On the other hand, PEPC-B is a rel-
atively new application which has recently been scaled in size and the performance
report shows that communication and load imbalance have become increasingly impor-
tant issues.

6 Conclusion and Future Work

We have presented a novel approach for automatically analyzing event traces of large-
scale applications based on exploiting the distributed memory capacity and the parallel
processing capabilities of modern supercomputing systems. Instead of sequentially an-
alyzing a single and potentially large global event trace file, we analyze separate local
trace files with an analyzer, that is a parallel application in its own right, replaying the
target application’s communication behavior. This approach has been elaborated to im-
plement the detection algorithms for a variety of performance problems related to the
use of the MPI-1 parallel programming interface. In the future, we plan to add support
for additional APIs, such as OpenMP and MPI-2, and will investigate using a smaller
number of processes for the replay analysis than were used for the measurement, to
provide greater analysis flexibility.

To evaluate the scalability of our approach, we have performed experiments with
different applications using our prototype implementation on up to 16,384 CPUs. Al-
though the overall analysis time is currently dominated by the sequential parts of the
procedure and associated file I/O, the new approach is already more than one order of
magnitude faster than the sequential analysis carried out by the EXPERT tool, thereby
enabling analyses at scales that have been previously inaccessible.

Since the remaining sequential overhead can be reduced by integrating and paral-
lelizing the pre- and postprocessing parts to eliminate the need to read and write in-
termediate data files, these early results point to further improvements that can be re-
alized based on the new approach, as we focus on these parts of the analysis work
flow. The all-in-memory analysis (perhaps using cCCGs) will also be explored for
opportunities to facilitate the detection of new and more complex performance
problems.
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