
Timestamp Synchronization for Event Traces of
Large-Scale Message-Passing Applications

Daniel Becker1, Rolf Rabenseifner2, and Felix Wolf1

1 Forschungszentrum Jülich, John von Neumann Institute for Computing (NIC)
52425 Jülich, Germany

{d.becker,f.wolf}@fz-juelich.de
www.fz-juelich.de

2 University of Stuttgart, High-Performance Computing-Center (HLRS)
70550 Stuttgart, Germany
rabenseifner@hlrs.de

www.hlrs.de

Abstract. Identifying wait states in event traces of message-passing
applications requires measuring temporal displacements between con-
current events. In the absence of synchronized hardware clocks, linear
interpolation techniques can already account for differences in offset and
drift, assuming that the drift of an individual processor is not time de-
pendant. However, inaccuracies and drifts varying in time can still cause
violations of the logical event ordering. The controlled logical clock al-
gorithm accounts for such violations in point-to-point communication
by shifting message events in time as much as needed while trying to
preserve the length of intervals between local events. In this article, we
describe how the controlled logical clock is extended to collective commu-
nication to enable a more complete correction of realistic message-passing
traces. In addition, we present a parallel version of the algorithm that
is intended to scale to thousands of application processes and outline its
implementation within the framework of the scalasca toolkit.

Keywords: Performance analysis, event tracing, clock synchronization.

1 Introduction

Event tracing is a frequently applied technique for post-mortem performance
analysis of message-passing applications because it can be used to analyze tem-
poral relationships between concurrent activities. Obviously, the accuracy of such
analyses depends on the comparability of timestamps taken on different proces-
sors. Inaccurate timestamps can not only cause a given interval to appear shorter
or longer than it actually was, but also change the logical event order, which re-
quires that a message can only be received after it has been sent. This is also
referred to as the clock condition. To avoid violations of this condition, the error
of timestamps should ideally be smaller than one half of the message latency.

Often, however, the clocks accessible from different processors are entirely non-
synchronized or only synchronized within disjoint partitions (e.g., smp-node or

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 315–325, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.fz-juelich.de
www.hlrs.de

316 D. Becker, R. Rabenseifner, and F. Wolf

multicore-chip). Clock synchronization protocols, such as ntp [4], can align the
clocks to a certain degree, but are often not accurate enough for our purposes.
Assuming that all local clocks on a parallel machine run at different but constant
speeds (i.e., drifts), their time can be described as a linear function of the global
time. This approach is used in the tracing library of the scalasca toolkit [2],
which performs offset measurements between all local clocks and an arbitrarily
chosen master clock once at program initialization and once at program final-
ization. However, as the assumption of constant drift is only an approximation,
violations of the clock condition may still occur.

The controlled logical clock (clc) [6] is a method to retroactively correct
timestamps violating the clock condition. As the modification of individual
timestamps might change the length of local intervals and even introduce new
violations, the correction takes the context of the modified event into account by
stretching the local time axis in the immediate vicinity of the affected event. The
current clc algorithm, however, is limited by two factors. First, it covers only
point-to-point operations and ignores collective ones. Second, it is a serial algo-
rithm designed for a single global trace file. In this article, we describe how the
controlled logical clock is extended to collective communication to enable a more
complete correction of realistic message-passing traces. In addition, we present
a parallel version of the algorithm that is intended to scale to thousands of ap-
plication processes and outline its implementation design within the framework
of scalasca [2], a performance-analysis tool that can be used to automatically
identify idle times in event traces of large-scale message-passing programs.

The outline of this article is as follows: In Section 2, we start with a short
description of scalasca’s event model and its parallel trace analysis approach,
followed by a review of the basic clc mechanism in Section 3. In Section 4, we
describe our extensions required to handle collective operations. After that, we
present the new parallel algorithm design in Section 5. Finally in Section 6, we
summarize our paper and give an outlook on future work.

2 Event Model and Replay-Based Parallel Analysis

Because we plan to integrate the extended clc algorithm with the scalasca

trace-analysis tool, we describe it in terms of the scalasca event model, which is
similar to the vampir event model [5], for which the algorithm has been originally
designed. As far as message passing is concerned, the two models differ only in
the way they express collective communication, which the original algorithm
ignores anyway.

The information scalasca records for an individual event includes at least a
timestamp, the location (i.e., the process) causing the event and the event type.
Depending on the type, additional information may be supplied. The event model
distinguishes between programming-model independent events, such as entering
and exiting code regions, and events related to mpi operations. The latter in-
clude events representing point-to-point operations, such as sending and receiv-
ing messages, and events representing the completion of collective operations.

Timestamp Synchronization for Event Traces 317

These collective exit events are specializations of normal exit events carrying
additional information (i.e., the communicator) that allows identifying concur-
rent collective exits belonging to the same collective operation instance. Table 1
illustrates the event sequences recorded for typical mpi operations.

To facilitate trace analysis for large numbers of application processes, the
scalasca analyzer scans the trace data in parallel. After creating one analysis
process per (target) application process, the analyzer loads the entire trace data
into the potentially distributed main memory and performs a parallel replay of
the applications communication behaviour, thereby examining each communi-
cation operation using an operation of similar type. During this procedure, the
analyzer measures temporal differences both between remote and between local
events, which requires the time stamps to be as accurate as possible. The exe-
cution time of the analyzer mainly depends on communication, which resembles
the original communication of the target application. For details, please see [2].

Table 1. Exemplary event sequences recorded for typical mpi operations

Function name Event sequence
MPI Send() (enter, send, exit)
MPI Recv() (enter, receive, exit)
MPI Allreduce() (enter, collective exit) for each participating process

3 Controlled Logical Clock

Non-synchronized processor clocks may cause inaccurate timestamps in event
traces. A clock condition violation occurs if the receive event of a message has
an earlier timestamp than its matching send event. That is, the happened-before
relation e → e′ [6] between two events e and e′ with their respective timestamps
C(e) and C(e′) does not hold. A clock condition violation between two events is
defined as:

∃ e, e′ : e → e′ ∧ C(e) ≥ C(e′). (1)

The clc algorithm restores the clock condition using happened-before rela-
tionships between distributed events derived from point-to-point communication
event semantics. More precisely, if the condition is violated for a send-receive event
pair, the receive event is moved forward in time. The correction is only applied if
the trace contains clock condition violations.To preserve the length of intervals be-
tween local events, events immediately following or preceding the corrected event
are moved forward as well. This adjustment is called forward and backward amor-
tization, respectively. Note that the accuracy of the adjustment depends on the
accuracy of the original timestamps. Therefore, the algorithm benefits from weak
pre-synchronization, such as the aforementioned linear interpolation. In this sec-
tion, we review the clc algorithm including forward and backward amortization.
The interested reader can find a detailed description of the clc algorithm and a
review of further synchronization approaches in [6] and [7].

318 D. Becker, R. Rabenseifner, and F. Wolf

3.1 CLC with Forward Amortization

The clc algorithm is an enhancement of Lamport’s logical clock [3] and was
introduced by Rabenseifner [6]. The algorithm requires timestamps with lim-
ited errors, which can be achieved through weak pre-synchronization. To denote
timestamps computed by clc, we use the symbol LC′.

In the following, LC′ is modeled with t as the wall clock time and T (t) as the
global time to which the process clocks Ci(t) (i = 0..n − 1) are synchronized.
Next, n is the number of processes, ej

i is the jth event on process i and so
E = {ej

i |i = 0..n − 1, j = 0..jmax(i)} is the set of all events in the trace. In
addition, the set of matching send and receive pairs is defined with

M = {(el
k, en

m)|el
k = send event, en

m = matching receive event}. (2)

Note that the send event always marks the beginning of a send operation
whereas a receive event marks the end of a receive operation. By contrast, ej

i is
an internal event if it is neither a send nor a receive event. Furthermore, δi is
the minimal difference between two events on process i and μk,i is the minimum
message delay of messages from process k to process i. Finally, γj

i is a control
variable with γj

i ∈ [0, 1]. For each process, LC′
i is now defined as

LC′
i(e

j
i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(LC′
k(el

k) + μk,i,

LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) if

el
k

∃ (el
k, ej

i) ∈ M (3)

max(LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) otherwise. (4)

As can be seen, the algorithm consists of two equations. Equation (3) adjusts
the timestamps of receive events while Equation (4) modifies timestamps of
internal and send events. Note that for each process, the terms LC′

i(e
j−1
i) + δi

and LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))) must be omitted for the first event

(j = 0).
Through the term Ci(t(e

j
i)) in Equation (3) and Equation (4), the algorithm

ensures that a correction is only applied if the trace violates the clock condition.
The new timestamps satisfy the clock condition, since the term LC′

k(el
k) + μk,i

in Equation (3) ensures that LC′(ej
i) is put forward compared to Ci(t(e

j
i)) if

needed in case of a clock condition violation. To ensure that the clock does
not stop after a clock condition violation, the term LC′

i(e
j−1
i) + γj

i (Ci(t(e
j
i))−

Ci(t(e
j−1
i)) in Equation (3) and Equation (4) approximates the duration of the

Timestamp Synchronization for Event Traces 319

original communication after a clock condition violation. This mechanism is
called forward amortization.

Moreover, Rabenseifner has shown that γj
i with a constant value can cause

LC′ to be faster than the fastest clock among all process-local clocks Ci [7].
Cyclic changes of physical clock drifts may cause an avalanche effect that enlarges
the value of clock corrections and propagates until the end. To avoid this effect,
a control loop is used to find the optimal value of γj

i . The controller tries to
limit the differences between LC′ and T , i.e., the controller estimates the output
error indirectly because T (t(ej

i)) is unknown. If 1 − γ is chosen smaller than the
maximal drift differences, the controller will enlarge 1−γ (e.g., to 1%) to ensure
that any propagation is bounded by this factor. To calculate γj

i for each event,
the controller requires a global view of the event data. Mainly, γj

i is kept less
than 1 minus the maximal drift of the clocks, however, in most cases a fixed
γ = 0.99 or 0.999 is good enough because physical clock drifts are normally less
than 10−4. For subsequent events of the same process, the term LC′

i(e
j−1
i) + δi

in Equation (3) and Equation (4) causes LC′ to advance at least a small number
of ticks δi if the controller has reduced γj

i to nearly zero. Rabenseifner describes
the control mechanism in more detail in [7].

A jump discontinuity in LC′ of Δt is caused by the term LC′
k(el

k) + μk,i in
Equation (3) if LC′(ej

i) of the violating receive event is put forward compared to
Ci(t(e

j
i)). The term LC′

i(e
j−1
i)+γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i)) in Equation (3) imple-

ments a forward amortization of such a jump. That is, the clock LC′
i for subsequent

events of process i runs with the speed of Ci reduced by the factor γj
i .

3.2 Backward Amortization

Backward amortization is applied to smooth jump discontinuities caused by the
first part of the clc algorithm. This is done by slowly building up the ascension
to a jump Δt using a piecewise process-local linear correction in an amortization
interval LA of appropriate size before the violating receive event [7] (Figure 1).
The compensation is realized by setting the timestamps forward. If there are no
violating send events in the backward amortization interval of a process i, then
the dash-dotted linear interpolation can be used. In Figure 1, the horizontal axis
represents LCb

i , which is equal to LC′
i (i.e., the state after forward amortization)

but without the jump Δt at event r. The vertical axis shows offsets to LCb
i after

applying different stages of backward amortization. Naturally, the offset at r
corresponds to the jump Δt. Note that the smaller the gradient of a clock in this
figure, the better the correction and the smaller the perturbation of preceding
events. Therefore, the ratio Δt/LA should be only a few percent. Apparently,
adjacent clock condition violations cause a larger perturbation.

In addition, not to violate the clock condition, the correction must not ad-
vance the timestamps of send events farther than LC′

m −μi,m of the correspond-
ing receive event en

m of a process m. These upper limits are shown as circled
values above the locations of the send events. If these limits are smaller than the
dashed-dotted line (here at events s1 and s2), then a reduced piecewise linear
interpolation function must be used, see the dotted line in Figure 1. As can be

320 D. Becker, R. Rabenseifner, and F. Wolf

X

X

X

i ris3s2is1

Amortization interval LA

LCi
b

with LCi
b := LC’i without jump Δt

Jump Δt due to LC’k(ek
l)+μi.k in Eq.(3)

(LC’m(em
n) - μi.m)

Clocks – LCi
b

of process i

Corresponding receive
event , i.e., (s3,em

n) M∈

Clocks: LCi’
 LCi

I ideal backward amortization
 in the absence of conflicting sends
 LCi

A piece-wise linear
 backward amortization

Events : r = Receive event
 s = Send event
 i = Internal event

Fig. 1. Algorithm of the backward amortization

seen, the clock error rate is higher than the desired Δt/LA in the interval (s2, r).
For each receive event with a jump, the backward amortization algorithm is
applied independently. If there are additional receive events inside the amorti-
zation interval during such a calculation step, then these events can be treated
like internal events, because advancing the timestamp of a receive event further
cannot violate the clock condition.

4 Extended Controlled Logical Clock

Unfortunately, the clc algorithm in its present state is only designed to cor-
rect clock condition violations related to point-to-point communication. Collec-
tive communication semantics are ignored. In this section, we extend the algo-
rithm including forward and backward amortization to correctly handle collective
communication. Again, we start with considering happened-before relationships
among collective communication events. We start with a description of the ex-
tended forward amortization followed by the extended backward amortization.

4.1 Extended CLC with Forward Amortization

The clc algorithm requires the detection of clock condition violations. The
happened-before relation is used to synchronize the timestamp of the receive
event with the timestamp of the corresponding send event, i.e., the receive event
is put forward in time if a clock condition violation has occurred.

A single collective operation can be considered as a composition of many
point-to-point communications. Using this model, we determine collective send
and receive pairs occurring during a collective operation instance. We distinguish
several types of collective operations (e.g., 1-to-N, N-to-1, etc.). Depending on
the type, some of the enter events in a collective operation instance can be
regarded as send events and some of the collective exit events as receive events.

In the following, we review the different types of collective operations to identify
happened-before relationships based on the decomposition of collective operations
into send and receive pairs. With S and R we denote the set of send and receive
events in a collective operation instance i, respectively. For each call to a collective
operation, the set of all send-receive pairs M is enlarged by adding S × R.

Timestamp Synchronization for Event Traces 321

1-to-N: One root process sends its data to N other processes. Example are
MPI Bcast, MPI Scatter, and MPI Scatterv. S only contains the send event of
the root process (i.e., its enter event), whereas R contains receive events from all
processes of the communicator (i.e., all collective exit events) with a data length
greater zero, i.e., the set may be smaller than the size of the communicator in
the case of variable length operations (MPI ...v).

N-to-1: One root process receives its data from N processes. Examples are MPI
Reduce, MPI Gather, and MPI Gatherv. R only contains the receive event on the
root process (i.e., its collective exit event). S is the set of send events (i.e., all
enter events) on all processes of the communicator with a data length greater
zero. Given that the root process is not allowed to exit the operation until the
last process enters the operation, the latest enter event is the relevant send event
to fulfill the collective clock condition. Hence, if S contains more than one ele-
ment, the term LC′

k(el
k)+μk,i in Equation (3) must be replaced by the maximum

of LC′
k(el

k) + μk,i over all el
k ∈ S. That is, Equation (3) must be replaced by

LC′
i(e

j
i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max((max∀el
kwith(el

k,ej
i)∈M LC′

k(el
k) + μk,i),

LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) if

el
k

∃ (el
k, ej

i) ∈ M (3′)

... otherwise. (4)

N-to-N’: All processes of the communicator are sender and receiver. Exam-
ples are MPI Allreduce, MPI Allgather, MPI Alltoall, and MPI Barrier with
N’=N, and the variable length operations MPI Reduce scatter,MPI Allgatherv,
and MPI Alltoallv. S and R are defined by all those enter and collective exit
events whose processes contribute input data or receive output data. For a call to
MPI Barrier, all processes of the communicator contribute to S and R.

Special cases: For MPI Scan and MPI Exscan, the set of messages added to M
cannot be expressed as the Cartesian product S × R. Below, el

k refers to the
enter event of a collective operation instance and ej

i refers to the collective exit
event and, thus, the set of messages added to M has the form

{(el
k, ej

i) | k = 0..N−1, i = 0..k−x}

with x = 0 for MPI Scan and x = 1 for MPI Exscan.
Independently of collective operation type, it is important to optimize the

handling of S × R in Equation (3’). A parallelized algorithm of the extended
clc should attempt to reduce the effort to O(log N).

322 D. Becker, R. Rabenseifner, and F. Wolf

4.2 Extended Backward Amortization

To extend the backward amortization algorithm for collective routines, the upper
bounds for the send events (see Figure 1) must be adapted to collective events: If
ej−m

i is the send event of a collective routine, an upper bound for the piecewise
linear interpolation at ej−m

i is defined by minel
k∈R LC′

k(el
k) − μi,k with R being

the receive event data set defined in Section 4.1.

5 Parallel Timestamp Synchronization

Event tracing of applications running on thousands of processes [8] requires a
scalable synchronization scheme. In this section, we present a parallel version of
the extended clc algorithm.

5.1 Pre-synchronization

The accuracy of the clc algorithm depends on the accuracy of the original
timestamps and therefore a pre-synchronization is required. This can be achieved
through a linear interpolation where all process-local clocks are mapped onto a
single master clock. Given that different clocks vary in offset and drift, offset
values between worker processes and one master process measured at program
start and at program end are used to find a linear correction function. The
offset values are measured using the remote clock reading technique introduced
by Cristian [1]. As a byproduct, the minimum transfer delay can be estimated
during the offset measurements.

5.2 Parallel Post-mortem Timestamp Synchronization

scalasca’s replay-based approach of analyzing separate process-local trace files
in parallel can handle traces from thousands of processes. We can achieve com-
parable scalability for the clc algorithm if we also implement it using a parallel
replay. This has the additional advantage that it can be seamlessly integrated
into the existing analysis framework.

Fig. 2. Non-linear drifts of physical clocks measured on an Infiniband cluster in com-
parison to Send-Recv and Allreduce latency

Timestamp Synchronization for Event Traces 323

Preparation: While each scalasca analysis process reads the local trace file
of the corresponding application process into memory, the linear correction is
applied to all timestamps based on the previous offset measurements at program
start and end. The resulting timestamps are taken as the Ci. Inaccurate Ci can
occur for two reasons: (i) inaccurate offset measurements and (ii) time-dependant
clock drift. Figure 2 shows the non-linear behavior of the clocks Ci after such
linear correction on an infiniband cluster. Clock errors are still significantly
larger than point-to-point and collective latencies, i.e., violations of the clock
condition can still occur.

Logical clock synchronization algorithm: To apply the extended clc algorithm,
a parallel traversal of the event stream is performed. Whenever reaching com-
munication events, the corresponding communication operation is replayed to
exchange the timestamps of communication events for their later comparison.
For each event, a new timestamp is calculated using the extended clc algorithm.
The comparison between the remote timestamp and the local timestamp is used
to find clock condition violations. Depending on the type of the original com-
munication operation, different timestamps are exchanged using different mpi

function calls, as listed in Table 2.

Table 2. Timestamps exchanged depending on the type of operation during forward
amortization

Type of operation timestamp exchanged MPI function
P2P timestamp of send event MPI Send
1-to-N timestamp of root enter event MPI Bcast
N-to-1 max(all enter event timestamps) MPI Reduce
N-to-N’ max(all enter event timestamps) MPI Allreduce
MPI Scan max(some enter event timestamps) MPI Scan
MPI Exscan max(some enter event timestamps) MPI Exscan

Note, that in Equation (3’), the parallel calculation of the maximum over
all corresponding send events (max∀el

kwith(el
k,ej

i)∈M LC′
k(el

k) + μk,i) in the case
of N-to-1, N-to-N’, MPI Scan, and MPI Exscan can not be implemented with
the mpi function identified in Table 2 if μk,i is not the same for all pairs of
processes. Therefore in Equation (3’), μk,i must be substituted by min∀k,i(μk,i).
The exchanged timestamps are based on the LC′ values calculated up to the
specific event.

The control mechanism used for the controlled logical clock requires a global
view of the trace data to calculate γi as described in Section 3. Establishing
a global view of the trace data is not feasible with the replay-based approach
since communication would be required for each single event. Therefore, we
eventually have to perform multiple passes until the maximum error e is below
a predefined threshold ε. For the first pass through the trace files, we propose to
use γ = const < 1, for subsequent passes a γj+1 < γj should be used.

Backward amortization algorithm: The backward amortization requires a sec-
ond replay of the target application’s communication behavior. Timestamps are

324 D. Becker, R. Rabenseifner, and F. Wolf

Table 3. Timestamps exchanged depending on the type of operation during backward
amortization

Type of operation timestamp exchanged MPI function
P2P timestamp of receive event MPI Send
1-to-N min(all collective exit event timestamps) MPI Reduce
N-to-1 timestamp of root collective exit event MPI Bcast
N-to-N min(all collective exit event timestamps) MPI Allreduce
MPI Scan min(some collective exit event timestamps) MPI Scan
MPI Exscan min(some collective exit event timestamps) MPI Exscan

exchanged at synchronization points of the application. However, as explained
in Section 3, the former sender now needs data from the former receiver and so
the roles between sender and receiver are switched during the backward amor-
tization. Depending on the type of operation, the collective receiver needs the
timestamp of the relevant collective send event which are shown in Table 3. For
MPI Scan and MPI Exscan, a communicator with reverse rank ordering must be
used. The exchanged timestamps are based on the LC′ values after completion
of the extended clc algorithm. After receiving the data, each process temporally
stores the timestamps to locally apply the backward amortization if LC′ exhibits
a jump disconutinity. Note that this happens after the forward amortization has
already been applied.

Given that most mpi implementations use binomial tree algorithms to per-
form their collective operations, our replay-based approach reduces the commu-
nication complexity automatically to O(log N). Moreover, the stepwise parallel
replay during the backward amortization phase could be replaced by a single col-
lective operation per communicator for the entire trace - provided that sufficient
memory is available.

6 Conclusion

In this paper, we have extended the clc algorithm to take collective communi-
cation semantics into account so that now a more complete correction of realistic
message-passing traces can be achieved. Although the extended clc algorithm
only needs information about the respective event semantics (e.g., root sends to
all other processes), we would like to point out that the accuracy of our model
could be improved if the mpi-internal messaging inside collective operations was
exposed using interfaces such as peruse. In this case, the decomposition into
(additional) send and receive events is naturally given.

Finally, we have presented a design how the previously sequential algorithm
can de parallelized and implemented within the framework of the scalasca

toolkit. Once we have completed the actual implementation, we will perform a
detailed quantitative evaluation using real message-passing codes.

Timestamp Synchronization for Event Traces 325

References

1. Cristian, F.: Probabilistic clock synchronization. Distributed Computing 3, 146–158
(1998)

2. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based perfor-
mance analysis. In: Proc. 13th European PVM/MPI Conference, Bonn, Germany,
Springer, Heidelberg (2006)

3. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558–565 (1978)

4. Mills, D.L.: Network Time Protocol (Version 3). The Internet Engineering Task
Force - Network Working Group, March 1992. RFC (1305)

5. Nagel, W., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR: Visualization and
analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)

6. Rabenseifner, R.: The controlled logical clock - a global time for trace based software
monitoring of parallel applications in workstation clusters. In: Proc. 5th EUROMI-
CRO Workshop on Parallel and Distributed (PDP’97), London, UK, pp. 477–484
(1997)

7. Rabenseifner, R.: Die geregelte logische Uhr, eine globale Uhr für die tracebasierte
Überwachung paralleler Anwendungen. PhD thesis, Universität Stuttgart (March
2000)

8. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.: Large event traces in parallel
performance analysis. In: 8th Workshop Parallel Systems and Algorithms (PASA),
Lecture Notes in Informatics, Frankfurt/Main, Germany, March 13-16, Gesellschaft
für Informatik (2006), http://icl.cs.utk.edu/projectsfiles/kojak/pubs/
pasa06.pdf

http://icl.cs.utk.edu/projectsfiles/kojak/pubs/pasa06.pdf
http://icl.cs.utk.edu/projectsfiles/kojak/pubs/pasa06.pdf

	Introduction
	Event Model and Replay-Based Parallel Analysis
	Controlled Logical Clock
	CLC with Forward Amortization
	Backward Amortization

	Extended Controlled Logical Clock
	Extended CLC with Forward Amortization
	Extended Backward Amortization

	Parallel Timestamp Synchronization
	Pre-synchronization
	Parallel Post-mortem Timestamp Synchronization

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

