
Performance Simulation of Non-Blocking
Communication in Message-Passing Applications

David Böhme1,2, Marc-André Hermanns1, Markus Geimer1, and Felix Wolf1,2

1 Jülich Supercomputing Centre
Forschungszentrum Jülich, Germany

{d.boehme,m.geimer,m.a.hermanns,f.wolf}@fz-juelich.de
2 Aachen Institute for Advanced Study in Computational Engineering Science

RWTH Aachen University, Germany

Abstract. In our previous work [1], we introduced performance simula-
tion as an instrument to verify hypotheses on causality between locally
and spatially distant performance phenomena without altering the ap-
plication itself. This is accomplished by modifying mpi event traces and
using them to simulate hypothetical message-passing behavior. Here, we
present enhancements to our approach, which was previously restricted
to blocking communication, that now allow us to correctly simulate mpi
non-blocking communication. We enhanced the underlying trace data
format to record communication requests, and extended the simulator
to even retain the inherently non-deterministic behavior of operations
such as MPI Waitany.

1 Introduction

As a prerequisite for the productive use of state-of-the-art supercomputers, the
hpc community needs powerful and scalable performance-diagnosis tools that
make the optimization of parallel applications both more effective and more
efficient. One major difficulty application developers are confronting with tra-
ditional performance tools is that the tools often diagnose only the symptoms
of performance problems but not necessarily their causes. Often, the symptoms
appear much later or on a different processor than the event causing it. The tem-
poral or spatial distance between cause and symptom constitutes a substantial
challenge in deriving helpful conclusions from a set of performance data.

In our earlier work [1], we have presented a simulator called silas (SImula-
tion of LArge-Scale parallel applications) that can be used to verify hypotheses
on causal connections between different performance phenomena at very large
scales. The verification is accomplished by modifying event traces according to a
hypothesis and using them to simulate the hypothetical message-passing behav-
ior. The predicted behavior can then be scanned for wait states to investigate
how the modification would influence (and hopefully reduce) their occurrence
in various parts of the program. Typical questions the simulation can answer
encompass how the performance behavior changes if a specific computation is



more evenly distributed across the machine or if a specific communication op-
eration is replaced or eliminated. The simulator performs a parallel real-time
reenactment of the communication to be simulated using the original execution
configuration. This eliminates the need for modeling communication and, thus,
circumvents a major source of prediction inaccuracy.

So far, our simulator was able to replay only mpi blocking point-to-point
and collective communication, but not non-blocking communication, as infor-
mation on communication requests was not yet recorded in the trace data. In
this paper, we outline extensions to the trace format and the simulator itself that
allow us to correctly simulate all aspects of mpi non-blocking communication,
thus making our simulation approach applicable to a much broader range of
mpi applications. Special emphasis is given on the feature of retaining the inher-
ent non-determinism exhibited by operations such as MPI Waitany or MPI Test,
which may yield different results during simulation than they did during trace
recording.

After discussing related work and briefly recapitulating the working princi-
ple of the simulator in the remainder of this section, we describe the required
extensions to the trace format in Section 2. In Section 3, we present the basic
approach for simulating non-blocking communication and mechanisms to retain
non-deterministic behavior in the simulation. Finally, an experimental evalua-
tion to demonstrate the scalability and accuracy of our approach is given in
Section 4, before concluding in Section 5.

1.1 Related Work

The principle of trace-driven performance prediction has already been intensively
studied. An early performance-analysis toolkit offering trace-based simulation
capabilities as one element of a comprehensive feature catalog is aims [2], which
estimates the scalability of parallel applications by extrapolating previously gen-
erated execution traces to higher numbers of processors and larger problem sizes.
dimemas [3] provides the ability to simulate the execution behavior of parallel
programs based on previously generated event traces. The underlying prediction
model allows the adjustment of relative processor speeds, network bandwidth
and latency within and across nodes, the number of input and output links, and
the processor scheduling policy. Predicting application performance for emerg-
ing architectures larger than those at one’s disposal is the focus of BigSim [4].
BigSim combines an emulator that is capable of running larger numbers of vir-
tual processes on a smaller number of physical processors with a post-mortem
simulator that uses traces generated during an emulated run.

Compared to the approaches described above, our work clearly concentrates
on the effects of fine-grained alterations of application-level behavior with respect
to the performance under an identical execution configuration. The most impor-
tant methodological difference is the use of a parallel real-time replay of the sim-
ulated communication at the original scale, which offers scalability advantages
and relieves us of the burden of modeling the extremely complex communication
infrastructures found on today’s large-scale machines.



Core simulation workflow

Instr.
target
application

Measurement

library
Original

trace

Hypothesis
generation

Transformation
specification

Trace
transformation

Modified
trace

Simulation
Simulated

trace

Parallel
wait-state search

Wait-state
report

Difference
operator

Sim. wait-state
report

Parallel
wait-state search

Difference
report

Report
browser

Fig. 1: Workflow for verifying optimization hypotheses. Dark rectangles denote pro-
grams, light rectangles with the upper right corner turned down denote files, and light
rectangles with rounded corners denote data objects residing in memory. Stacked sym-
bols indicate multiple instances of programs, files, or data objects running or being
processed in parallel. The target application generating the event trace is the entry
stage of the workflow. Judging the difference between normal execution and the pre-
dicted outcome of the optimization displayed in the report browser is the final stage.

1.2 Hypothesis Verification

Here, we briefly review the intended usage scenario for our simulator in the con-
text of the Scalasca toolset [5]. Figure 1 illustrates the role of the simulator in
the procedure of verifying hypotheses on causality between temporally or spa-
tially distant performance phenomena. The general objective of the process is to
generate wait-state analyses from both the measured and the predicted behavior
and compare the results to allow conclusions on the effects of hypothetical pro-
gram modifications with respect to wait states and other performance metrics.
The workflow starts with running the instrumented target application in the ex-
ecution configuration we want to make predictions for and generating an event
trace consisting of one trace file per application process. During all subsequent
steps, access to the event trace occurs through a parallel object-oriented high-
level api [6]. The primary usage model of the api assumes a one-to-one mapping
between application and tool processes, that is, for every process of the target
application, one tool process is created which loads the corresponding trace data
into main memory and offers random access to individual events. Data exchange
among tool processes is accomplished via mpi communication.

A hypothesis includes the specification of a trace transformation, which may
prescribe the adjustment of event timestamps, the deletion of existing events, or
the insertion of new events to model changes in the application’s source code.
Currently, a set of parametrized standard transformations including the scaling
of functions or the elimination of messages can be specified. After the transfor-
mation has been applied, the simulator performs a parallel real-time replay of
the events stored in the trace. Computation intervals are simulated simply by
elapsing the time in between using busy wait, whereas communications are sim-
ulated by reenacting the communication operations recorded in the trace. Thus,
the time of a communication is determined by the time needed to execute the



corresponding mpi call under modified conditions. As the simulation progresses,
event timestamps are adjusted to reflect the time elapsed since simulation start.

2 Trace Format Extensions

The trace format used by our performance analysis and simulation tools stores
data in event records. There is a number of fixed event record types, for example
for entering or exiting source code regions, or sending and receiving messages,
respectively. Each event record contains a timestamp and, according to its type,
other data such as the receiving location for send events or a source code region
identifier for region-enter events. Event records are written consecutively in the
order of the timestamps, with each process writing its own trace file.

In its previous form, our trace format did not provide explicit support for
mpi non-blocking communication. Only send start events for MPI Isend and re-
ceive completion events for MPI Wait* or MPI Test* regions were recorded using
generic send/receive records. While this is sufficient to detect some communica-
tion inefficiencies (e.g., Late Sender) in our parallel performance analyzer, it does
not allow accurate replay of communication as it is required for the simulation.
In particular, neither information on the send completions and receive starts
associated with the respective non-blocking send starts and receive completions,
nor on failed tests for completion in MPI Test is available in the trace.

2.1 Attribute Records

In order to enhance application traces with additional information at minimal
impact on our current code base, we introduced the notion of attribute records to
store additional, optional data for events. An event can have an arbitrary num-
ber of attributes, which are written as attribute records immediately before the
corresponding event record in the trace. Unlike event records, attribute records
do not contain a timestamp field, which keeps the record size as small as possible.
Compared to the alternative approach of adding more fixed-size special-purpose
event records, using attribute records to augment a particular event with addi-
tional information offers far more flexibility and better extensibility.

2.2 Non-Blocking Event Record Types

For a full representation of non-blocking communication, we introduced request
IDs to identify individual communication requests and to associate a request
start with its completion. During trace recording, the opaque MPI Request ob-
jects are mapped onto unique request IDs, which are stored in the trace for every
non-blocking communication request start and completion.

While we added new event record types to store the request ID for receive
starts and send completions, we continue to use the generic point-to-point send
and receive record types for send start and receive completion events. Here, the
request ID is stored in an attribute to the generic event. Using an attribute



time
p
ro

ce
ss

es A

B

Isend Wait

Irecv Test Wait

1

23

4

5

6

7

Fig. 2: Trace format extensions. Previous format: (1) send event; (2) receive event. Ex-
tensions: (3) receive start; (4), (7) request attribute; (5) test event; (6) send completion.
White circles denote region enter events, black circles denote region exit events.

instead of new special-purpose event records keeps backward compatibility and
allows us to reuse large portions of existing code in our analysis tools.

In addition to events for send completion and receive request, we also added
a tested event, which indicates that a request has been unsuccessfully probed
for completion in a call to MPI Test or MPI Waitany/some, and a cancel event
which indicates a request that has been canceled using MPI Cancel. Figure 2
shows the use of the new event records.

3 Simulation of Non-Blocking Communication

Given a trace enhanced with additional data as described in Section 2.2, replay
of deterministic non-blocking communication in the performance simulator is
now straightforward. When a non-blocking request start operation is encoun-
tered during trace replay, a corresponding MPI Isend or MPI Irecv operation is
invoked, and the MPI Request object obtained from mpi is saved in a (request
ID, MPI Request) map. Upon request completion, the requests corresponding to
the request IDs found in the trace are completed using MPI Wait or MPI Waitall.

3.1 Retaining Non-Deterministic Behavior in the Simulation

Our basic non-blocking communication simulation approach sketched above al-
lows accurate simulation of non-blocking communication if only MPI Wait or
MPI Waitall are used for request completion, but some difficulties arise for in-
herently non-deterministic operations like MPI Test or MPI Waitany/some. For
example, a call to MPI Waitany may yield a different result in the altered, simu-
lated scenario than it did during trace acquisition. Likewise, a test for completion
using MPI Test which failed in the original run could succeed in the replay, or
vice versa. Essentially, in an application scenario modified according to a per-
formance hypothesis, the order and source code location of request completions
can change compared to the original application’s behavior, which may have
a significant effect on the observed performance characteristics. Restricting re-
quest processing in the simulation to the order and locations found in the trace
would therefore not accurately predict the application’s communication behavior
for non-deterministic operations. Hence, our non-blocking communication model
needs to take reordering and relocating of request completions into account.



time

p
ro

ce
ss

es A

B

C

Send

W.any W.any

Send

21 1

(a) Waitany in original trace: request 2
completes first.

time

p
ro

ce
ss

es A

B

C

Send

W.any W.any

Send

swap completions

1 2 2

(b) In simulation, former request 1
completes first: Completion events
are swapped, request ID 1 is
remapped.

time

p
ro

ce
ss

es A

B

Send

Test Test Test

(c) Test in original trace: request
completes in second Test

time

p
ro

ce
ss

es A

B

Send

Test Test Test

(d) In simulation, test completes
earlier. Completion is pre-drawn
and additional test call removed.

Fig. 3: Retaining non-deterministic behavior of Waitany and Test

Simulating Waitany. For MPI Waitany regions, the trace contains a comple-
tion event record with the request ID that completed in the original run, and
tested event records with the request IDs that were also passed to the original
call to MPI Waitany. In the simulation, the request objects for all given request
IDs are passed to MPI Waitany. If the request that completed in the simulation
is not the same as in the original run, we swap the completion events and remap
the request, that is, the remaining events with the request ID that completed
in the simulated run are mapped to the ID of the request that completed in the
original run (Figure 3a and 3b). As a result, these test or completion events will
now be handled for the request that completed originally. Since the positions
of subsequent events in the trace pertaining to a certain request ID are known
from a preprocessing step, the extra effort for request remapping is negligible.
By allowing the simulation in MPI Waitany to complete a request different from
the one completed in the original run, we can accurately model the application’s
intended communication behavior (“return the first request which completes”).

Simulating Tests. For calls to MPI Test that are unsuccessful (i.e., do not
complete a request), a tested event with the corresponding request ID is stored
in the trace (Figure 3c). In this case, the simulator calls MPI Test with the
associated request. If the request does complete in the simulation, the completion
is pre-drawn: the test event will be replaced with the requests’ completion event,
and all remaining test events with this request ID are deleted from the trace.



If the last test or completion event remaining in a region is deleted, that region
will be removed from the simulation altogether (Figure 3d).

More difficulties arise for MPI Test calls which are successful in the original
run, but fail in the simulation. In this case, the application would try to complete
the request again later on. However, the simulation is bound to the trace that
was recorded in the original run, which does not contain any information on
how the application would have handled the request. Since there is no useful
strategy for the simulator to process the request later if the MPI Test call was
unsuccessful, we explicitly complete a request using MPI Wait if an mpi test
operation succeeded in the original application run. This approach may, however,
introduce some waiting time which would not have occurred in the modified
application.

3.2 Limitations

While our simulator handles non-blocking communication well for most cases,
there are a few noteworthy restrictions.

Non-deterministic operations pose a fundamental limitation on our simula-
tor. Applications can take entirely arbitrary actions depending on the outcome
of a non-deterministic operation, whereas our simulator is bound to the trace
recorded in the original run. In some cases, our heuristics for retaining non-
determinism by reordering and relocating request completions may fail to re-
produce the application’s behavior, or in extreme cases even deadlock. The user
can therefore enable a deterministic simulation mode, which restricts request
processing to the exact order found in the trace, at the cost of losing some simu-
lation precision. It should be noted, though, that severe problems occur only for
pathological cases exhibiting a highly unusual communication behavior. Typical
communication patterns, such as looping MPI Waitany on a fixed list of requests,
work as expected. Genuinely reproducing the application behavior for different
outcomes of MPI Test operations is not possible without knowledge of the ap-
plication semantics, which currently exceeds the scope of our replay approach.
As such, our heuristic represents a best-effort approach which at least allows
conclusions, e.g., on the number of tests needed to complete a request.

Also, our model currently does not handle persistent communication requests
explicitly. Instead, they are handled as ordinary non-blocking communication,
which may slightly overestimate the processing time for those requests in the
simulation.

4 Results

We conducted a number of experiments to demonstrate accuracy and scalability
of our approach, using small synthetic benchmarks and more complex real-world
benchmark codes. All experiments were performed on the 72-rack Blue Gene/P
supercomputer Jugene and the 448-core Power6 cluster Jump at the Jülich Su-
percomputing Centre.



4.1 Simulation Accuracy

One effective way of validating the simulation accuracy is an identity simulation,
where a simulation run without any performance hypothesis applied is compared
to the original program behavior. We conducted identity simulation experiments
with bt from the NAS parallel benchmark suite [7] with 256 and 1024 processes
on Jugene. The runtime of the benchmark kernel in the original, uninstrumented
benchmark executable is compared with the runtime during trace recording and
the simulated runtime. The results are shown in the following table.

Table 1: NAS bt measurement and simulation results.

Comm. Runtime (sec) Deviation from Original

No. procs fraction Original Traced Simulated Traced Simulation

256 16 % 46.56 47.23 46.82 1.44 % 0.56 %

1024 30 % 14.93 16.57 15.67 10.98 % 4.96 %

Note that the deviation between original and traced runtime is about 2.5
times (256 procs) and 2.2 times (1024 procs, respectively) higher than the de-
viation between original and simulated runtime. Synthetic experiments confirm
that the overhead of tracing is indeed higher than the overhead created by the
replay of communication in the simulator. Especially small, short-running func-
tions like MPI Irecv can have a high relative tracing overhead.

In general, inaccuracies introduced by tracing may also negatively influence
the simulation, which is based on the trace. While the overall simulation accu-
racy for non-blocking communication in the presented case is good, the relation
between simulation accuracy and measurement overhead during trace recording
still requires further investigation.

4.2 Non-Deterministic Behavior Simulation

A simple synthetic benchmark demonstrates the necessity of retaining non-
deterministic behavior in the simulation. Figure 4a outlines the working prin-
ciple. The master process is waiting for messages from the remaining processes
in a loop using MPI Waitany. Due to a load imbalance in code region foo, the
messages arrive in the order of process ranks.

We recorded an example trace of the program with four processes on our
Power6 cluster and performed simulation runs both with request relocation and
reordering enabled (non-deterministic mode) and disabled (deterministic mode).
First, we performed an identity simulation, then another simulation with a per-
formance hypothesis to balance code region foo applied. The result of the latter
was compared to a modified version of the original program with foo balanced.

Table 2 shows the results of the experiments. While for the identity sim-
ulation, both deterministic and non-deterministic mode yield accurate results,
only the non-deterministic mode is able to predict the program’s behavior with



time

p
ro

ce
ss

es

A

B

C

foo W.any W.any

foo bar Send

foo bar Send

(a) Load imbalance in foo: messages to arrive in order of
ranks

time

p
ro

ce
ss

es

A

B

C

foo W.any W.any

foo bar Send

foo bar Send

(b) Balancing foo: message order is reversed on destination

Fig. 4: Waitany Benchmark: Original (a) and modified version (b).

region foo balanced correctly. This is because by balancing region foo, the or-
der of message arrival in the MPI Waitany call is reversed due to another load
imbalance in code region bar (Figure 4b). By retaining non-deterministic behav-
ior in our simulator, we can predict this effect correctly. In deterministic mode,
however, the simulator is restricted to the original order of message arrival in
the program, and therefore introduces larger waiting times.

Table 2: Non-deterministic behavior simulation: Deviation of simulation result from
original (identity simulation) and modified program behavior (balance experiments).

Runtime Identity simul. ∆ Balanced simul. ∆

Metric original modified non-det. det. non-det. det.

Total time 34.82 s 31.65 s 0.0003 % 0.0003 % 0.0689 % 8.14 %

Point-to-Point 5.60 s 2.40 s 0.0013 % 0.0009 % 0.0029 % 33.34 %

Late Sender 5.59 s 2.39 s 0.0041 % 0.0036 % 0.0083 % 33.36 %

Synchronization 2.70 s 2.70 s 0.0048 % 0.0011 % 0.0022 % 66.67 %

5 Conclusion

We have presented enhancements to our performance simulator and underlying
trace data format which allow us to accurately simulate the message-passing be-
havior of applications that utilize mpi non-blocking communication. Using both
new event records and attribute records, we could amend application traces with
communication request tracking capabilities requiring only minimal changes to
the existing code base of our analysis tools. Moreover, attribute records may



provide a generic and flexible approach to enhance application traces with ad-
ditional, optional information. By reordering and relocating communication re-
quests, our simulator can accurately predict even non-deterministic communica-
tion behavior for most typical communication patterns.

Further enhancements we plan to incorporate into our simulator are explicit
support for persistent communication requests and support for mpi-2 one-sided
communication. We are also investigating more detailed performance analysis
procedures for non-blocking communication using the new request tracking ca-
pabilities in our parallel performance analyzer.

Acknowledgment

Financial support from the Deutsche Forschungsgemeinschaft (German Research
Association) through grant GSC 111 and from the Helmholtz Association of Ger-
man Research Centers under Grant No. VH-NG-118 is gratefully acknowledged.

References

1. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between
distant performance phenomena in large-scale mpi applications. In: Proceedings
of the 17th International Conference on Parallel, Distributed, and Network-Based
Processing. (February 2009)

2. Yan, J., Sarukkai, S., Mehra, P.: Performance Measurement, Visualization and
Modeling of Parallel and Distributed Programs using the AIMS Toolkit. Software
– Practice and Experience 25(4) (1995) 429–461

3. Rodriguez, G., Badia, R.M., Labarta, J.: Generation of simple analytical models
for message passing applications. In: Proc. of the European Conference on Parallel
Computing (Euro-Par). Volume 3149 of Lecture Notes in Computer Science., Pisa,
Italy, Springer (August - September 2004)

4. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based per-
formance prediction for large parallel machines. International Journal of Parallel
Programming 33(2-3) (June 2005)

5. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based perfor-
mance analysis. In Mohr, B., Träff, J.L., Worringen, J., Dongarra, J., eds.: Proceed-
ings of the 13th European Parallel Virtual Machine and Message Passing Interface
Conference. Volume 4192 of Lecture Notes in Computer Science., Bonn, Germany,
Springer Berlin / Heidelberg (2006) 303–312

6. Geimer, M., Wolf, F., Knüpfer, A., Mohr, B., Wylie, B.J.N.: A parallel trace-
data interface for scalable performance analysis. In: Proceedings of the Workshop
on State-of-the-art in Scientific and Parallel Computing (PARA). Volume 4699 of
Lecture Notes in Computer Science., Umea, Sweden, Springer Berlin / Heidelberg
(2006) 398–408

7. Bailey, D.H., Barzcz, E., Dagum, L., Simon, H.D.: NAS parallel benchmark results.
IEEE Parallel Distrib. Technol. 1(1) (1993) 43–51


