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Abstract—In studying the scalability of the Scalasca per-
formance analysis toolset to several hundred thousand MPI
processes on IBM Blue Gene/P, we investigated a progressive
execution performance deterioration of the well-known ASCI
Sweep3D compact application. Scalasca runtime summariza-
tion analysis quantified MPI communication time that cor-
related with computational imbalance, and automated trace
analysis confirmed growing amounts of MPI waiting times. Fur-
ther instrumentation, measurement and analyses pinpointed a
conditional section of highly imbalanced computation which
amplified waiting times inherent in the associated wavefront
communication that seriously degraded overall execution ef-
ficiency at very large scales. By employing effective data
collation, management and graphical presentation, Scalasca
was thereby able to demonstrate performance measurements
and analyses with 294,912 processes for the first time.

Keywords- parallel performance measurement & analysis;
MPI; scalability of applications & tools;

I. INTRODUCTION

Scalasca is an open-source toolset for scalable perfor-
mance analysis of large-scale parallel applications [1], [2],
[3]. It integrates runtime summarization with automated
event trace analysis of MPI and OpenMP applications, for
a range of current HPC platforms [4]. Just as the trend
for constructing supercomputers from increasing numbers
of multicore and manycore processors requires application
scalability to exploit them effectively, associated application
engineering tools must continually improve their scalability
commensurately. To assess the scalability of Scalasca on the
Jugene IBM Blue Gene/P system [5] at Jülich Supercomput-
ing Centre, consisting of 294,912 (288k) processor cores, we
chose to study a highly-scalable compact application.

The ASCI Sweep3D benchmark code [6], [7] solves a 1-
group time-independent discrete ordinates neutron transport
problem, calculating the flux of neutrons through each cell
of a three-dimensional grid (i, j, k) along several directions
(angles) of travel. Angles are split into eight octants, cor-
responding to one of the eight directed diagonals of the
grid. It uses an explicit two-dimensional decomposition (i, j)
of the three-dimensional computation domain, resulting in
point-to-point communication of grid-points between neigh-
bouring processes, and reflective boundary conditions. A
wavefront process is employed in the i and j directions,

combined with pipelining of blocks of k-planes and octants,
to expose parallelism. Being the basis for computations
consuming a large fraction of cycles on the most capable
computers, Sweep3D has been comprehensively modelled
and executions studied on a wide range of platforms and
scales (e.g., [8], [9], [10], [11], [12], [13]).

To investigate scaling behaviour of Sweep3D for a large
range of scales, the benchmark input was configured with
a fixed-size 32×32×512 subgrid for each process: i.e., for
an NPE_I by NPE_J grid of processes, total problem grid
size is IT_G=32×NPE_I, JT_G=32×NPE_J and KT=512.
Consistent with the benchmark and published studies, de-
fault values of MK=10 and MMI=3 were initially used for the
blocking of k-planes and angles, respectively, which control
the multitasking parallelism. 12 iterations were performed,
with flux corrections (referred to as ‘fixups’) applied after 7
iterations. The code was built with IBM’s mpxlf Fortran
compiler and MPI library for Blue Gene, using the -O3
optimization flag, and run on Jugene in virtual node (VN)
mode using all four available cores per processor.

II. BASE ANALYSIS OF DEFAULT SWEEP3D
EXECUTION CONFIGURATION

Execution times reported for the timed Sweep3D kernel
for a range of process counts are shown in Figure 1 (left
graph, bold line with diamonds). From two minutes with
1,024 processes to over 8 minutes for 294,912 processes, a
progressive slowdown is clear, which is consistent with that
measured previously [12] and not uncommon when weak-
scaling applications over such a large range.

To understand the execution performance behaviour, the
Scalasca toolset (version 1.2) was employed. Sweep3D
source routines were automatically instrumented using a
common compiler capability, and the resulting objects linked
with the Scalasca measurement library, such that events
generated when entering and leaving user-program routines
and operations in the MPI library could be captured and pro-
cessed by the measurement library. Each Scalasca execution
measurement and associated analysis is stored in a dedicated
experiment archive directory. Elapsed times reported for
the benchmark kernel of the uninstrumented version were
within 5% of those when Scalasca measurements were made,
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Figure 1. Scaling of Sweep3D execution time on BG/P for original MK=10 (left) and subsequently improved MK=1 (right) configurations of k-planes,
with breakdown of computation and message-passing costs from Scalasca summary and trace analyses.
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Figure 2. Scaling of Scalasca Sweep3D trace analysis times on BG/P, for original MK=10 (left) and subsequently improved MK=1 (right) configurations,
with breakdown of parallel event replay time. (Total number of events captured in traces shown with dashed lines).

suggesting that instrumentation and measurement dilation
were acceptable (and refinement was not needed).

A. Runtime summarization

An initial series of experiments were made using Scalasca
runtime summarization to construct a callpath profile for
each process during measurement, consisting of callpath
visit count, execution time, and associated MPI statistics
for the number and aggregate size of messages transferred.
During measurement finalization, callpaths are unified and
measurements collated into an XML report, that is subse-
quently post-processed into an analysis report consisting of
7 generic, 12 OpenMP-specific and 45 MPI-specific hierar-
chically organised metrics. Both report size and generation
time increase linearly with the number of processes.

From the runtime summary profiles, it was found that
the computation time (i.e., execution time excluding time
in MPI operations) was 100 seconds, independent of scale,
but the MPI communication time in the sweep kernel grew
from some 30 to over 400 seconds. (MPI communication
time is not shown in Figure 1, however, subsequent analysis
will show that it is indistinguishable from MPI waiting time

on the logarithmic scale.) Variation of time between ranks
of around 10 seconds was also evident in marked patterns,
where processes that had less computation time had an
equivalently increased amount of communication time, due
to the blocking point-to-point communication within each
sweep and synchronizing MPI_Allreduce operations at
the end of each sweep iteration. (Collective communication
time itself was visibly concentrated on processes at the origin
of the grid, and collective synchronization time is negligible
since a MPI_Barrier is only employed at the very end
of the timed computation and immediately following the
synchronizing collective communication.)

An additional heuristic metric estimating Computational
imbalance (shown as a dashed line in Figure 1), by cal-
culating the absolute difference from the mean exclusive
execution time of each callpath, could be readily employed
to localize the imbalance to the main sweep routine, and
validated by examining the distribution of execution times in
that routine for each process. At larger scales, the imbalance
is apparently less significant, therefore its further analysis
was postponed while attention focussed on the message
passing efficiency.
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B. Trace collection and analysis

Even with all user routines instrumented and events for
all MPI operations, scoring of the summary profile analysis
report determined that the size of trace buffer required for
each process was only 2.75MB. Since this is less than the
Scalasca default value of 10MB, and the majority of this
space was for MPI events, trace collection and analysis
required no special configuration of trace buffers or filters.
Storing trace event data in a separate file for each pro-
cess, Scalasca trace analysis proceeds automatically after
measurement is complete using the same configuration of
processes to replay the traced events in a scalable fashion.
Figure 2 shows that trace analysis times (squares) remain
modest, even though total sizes of traces increase linearly
with the number of processes to 790GB for 59e9 traced
events (dashed line). Although trace files are read in parallel,
the linearly increasing time for generation of the final anal-
ysis report (identical to the summary report augmented with
20 trace-specific MPI metrics) dominates at larger scales.
By far the most significant hindrance to the scalability of
such trace-based analysis — and also applications which
use similar techniques for intermediate checkpoints and final
results — is the creation of one file per process, which grew
to take over 86 minutes for 294,912 files, apparently due to
GPFS filesystem metadata-server contention.

From Scalasca automated trace analysis examining event
patterns and quantifying their corresponding cost, MPI com-
munication time can be split into basic message processing
and a variety of performance properties indicating waiting
time when message-passing operations are blocked from
proceeding (see Figure 3 for examples). Figure 1 shows that
while basic message processing time (open squares) remains
negligible and fairly constant at around one second, MPI
communication time is dominated by increasingly onerous
waiting time (filled squares) that governs the performance of
Sweep3D at larger scales. Most waiting time is found to be
Late Sender situations, where a blocking receive is initiated
earlier than the associated send, with further waiting time
for Wait at N x N in the MPI_Allreduce operations for
processes that initiate the collective operation in advance of
the last participant.

C. Auxilliary investigation of process mappings

Since similar (though less extreme) behaviour was ob-
served with smaller process configurations, experiments
were repeated specifying alternative mappings of processes
onto the BG/P physical torus hardware. The default XYZT
mapping was found to be statistically as good as permuta-
tions of XYZ, while TXYZ (and permutations) which map
consecutive ranks onto the same processor cores degraded
performance by some 2%. In comparison, optimal mappings
have been reported to be able to improve Sweep3D per-
formance by 4% on Blue Gene/L [12]. (It would be inter-
esting to investigate the performance difference using the

hardware counters available on BG/P, however, meaningful
measurements are currently only possible in SMP mode.)
Scalasca experiments using a Cray XT system with 4 cores
and processes per compute node had comparable MPI costs
and patterns of imbalance, indicating that the communication
network and mapping of processes are not pertinent to the
communication overhead and imbalance.

III. DETAILED ANALYSIS OF IMPROVED SWEEP3D
EXECUTION CONFIGURATION

Blocking of k-planes and angles in Sweep3D can signif-
icantly change the computation/communication ratio, with
a trade-off between fewer communication steps with larger
message sizes and better parallel efficiency from more rapid
succession of wavefronts [8], [10]. From trials varying
the numbers of k-planes in a block of grid points (MK)
and angles processed together (MMI), using single k-planes
(MK=1) was found to be optimal, and more than 4 times
faster than the default (MK=10) with 294,912 processes on
BG/P. (The number of angles didn’t need to be adjusted.)

A. Revised summary and trace analyses

Having determined from new Scalasca summary experi-
ments that MPI communication costs are substantially re-
duced on BG/P with the additional pipelining possible in
the MK=1 configuration, general performance and scaling
behaviour were now much better as shown in Figure 1
(right). Total execution time is reduced for all process
configurations, especially at the largest scales. (Measurement
dilation was even reduced to only 3%.)

Scalasca tracing experiments were also repeated with the
new configuration to investigate the performance change.
Recently incorporated support for the SIONlib library [14]
was employed, such that one multi-file was created by
each BG/P I/O node (i.e., 576 files at full scale) for the
traces from 512 processes, reducing the time for creation
of the experiment archive directory and trace files from
86 minutes (for individual files) down to 10 minutes. With
ten times more messages due to the smaller computational
blocks, 27MB trace buffers were required, and traces are
correspondingly larger and slower to analyse, as seen in
Figure 2, however, parallel trace replay time (circles) closely
parallels Sweep3D execution time. For 294,912 processes,
510e9 events were recorded and total trace size was 7.6TB.
Serial writing of the analysis report was also improved 8-
fold by dumping gathered metric severity values in binary
format (while retaining XML for the metadata header).

Sweep3D computation time is found to be 20% less than
previously at a constant 80 seconds. MPI processing times
increased from 1 to 4 seconds due to the additional messages
transferred, however, remain relatively insignificant. Most
notable is the reduction in MPI waiting times, which al-
though still increasing with scale, no longer dominate overall
performance as they did before.
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Figure 3. Scalasca analysis report explorer presentation of Sweep3D execution performance with 294,912 MPI processes on Blue Gene/P. The physical
three-dimensional torus topology (upper right) and 576×512 application virtual topology (lower right, grid origin in NW corner) show the distribution of
values per process, for the Late Sender waiting time metric selected from the metric hierarchy (upper left) for the MPI_Recv callpath. Processes in the
topology displays and the boxes next to nodes in the trees are colour-coded by metric value according to the colour scale at the bottom of the window.
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The computational imbalance that appeared to be asso-
ciated with the communication waiting time is still found
in the new configuration, with amplified significance. As
before, the imbalance is in the sweep routine, however, it
is now a much larger proportion of the reduced computation
time, and has more of an effect on the associated commu-
nication waiting time. Figure 3 shows the presentation of
the Sweep3D execution performance with 294,912 MPI pro-
cesses by the Scalasca analysis report explorer. The program
calltree in the middle panel has a similarly tree-structured
set of performance metrics in the left panel, and on the right
a depiction of the MPI processes according to the BG/P
physical hardware topology. The profile of the selected Late
Sender metric from the Time metric hierarchy shows all of
it is found in MPI_Recv calls in the sweep routine, and
the distribution of values by process. Switching to a two-
dimensional 576×512 grid corresponding to the application
virtual topology (lower right) reveals the distribution of
Late Sender time with several pronounced characteristics: a
background of waiting times progressively increasing from
NW to SE corners, a central rectangular block with higher
waiting time, and an intricate pattern of sharp oblique lines
radiating from the central block to the edges.

B. Refined instrumentation and analyses

To isolate the origin of the imbalance, the Sweep3D
source code was manually annotated with Scalasca instru-
mentation macros. Starting with the key 625-line sweep
flow routine, the loop over the eight octants was annotated
to define a distinct region in the callpath when processing
each octant. It was found that computation times didn’t
vary much by octant, however, there was a sizable variation
in communication time between octants (which will be re-
examined later in more detail).

With further annotation of the execution phases within
octant processing, the imbalance was isolated to the i-line
section where corrective ‘fixups’ for negative fluxes are re-
cursively applied in the i, j, k directions (shown in Scalasca
source browser window in Figure 3), as typically identified
as a hotspot by sampling-based profilers (e.g., [13]). Finer
annotation of the conditional fixup block for each direction
determined that i and j corrections are applied with roughly
the same frequency, and somewhat more often than k
corrections. In each case, there is a pronounced distribution
pattern, varying from a relatively small number of fixes in
an interior rectangular block with much higher numbers on
oblique lines reaching to the border of the domain (matching
that visible in Figure 3). The aggregate computation time for
applying these fixes is directly proportional to the number
of fixes applied. Since this computation is done between
receiving inflows and sending outflows for each block of k-
planes, delays sending outflows on processes applying more
flux corrections result in additional waiting time in receives
for inflows on neighbours.

Since the input configuration for Sweep3D specifies that
flux fixups are only applied after the seventh iteration,
the major solver iteration ‘loop’ in the inner routine
was annotated: this ‘loop’ with increasing values of its
is implicitly defined by a continue statement and a
guarded goto statement, within which region entry and
exit annotations were incorporated, each time defining a new
region labeled with the corresponding value of its. Each of
the 12 executions of this region was then distinguished in
the resulting callpath analysis, visible in the middle panel
of the screenshot at the top of Figure 4. Charts of the
execution time for each iteration can also be produced, with
a breakdown of the MPI processing and waiting times, such
as shown in Figure 5. While the initial seven iterations have
very similar performance characteristics, including minimal
imbalance in computation or communication, the eighth iter-
ation is markedly more expensive with significant imbalance.
Subsequent iterations are not quite so bad, however, they still
have significant imbalance and waiting times, with a pattern
that spreads from the central rectangular block along oblique
angles out to the edges visible in the sequence of views
of the process computation time distribution in Figure 4.
(A colour scale for times from 5 to 10 seconds is used to
enhance contrast: the initial 6 iterations are indistinguishable
from iteration 7, and the final 2 iterations are very similar
to iteration 10.)

Separating the analysis of the computationally-balanced
non-fixup iterations from that of the iterations with
computationally-imbalanced fixup calculations, helps distin-
guish the general efficiency of the communication sweeps
from additional inefficiencies arising from the computational
imbalance. In this case, octant instrumentation is combined
with instrumentation that selects between fixup and non-
fixup iterations, producing a profile as shown in Figure 6.
Here the distribution of Late Sender waiting time is a com-
plement to the distribution of pure computation time arising
from the fixup calculations seen in Figure 4. Communication
time for even-numbered octants is negligible for the non-
fixup iterations (which are also well balanced), and while
octants 1, 3, and 7 have comparable communication times,
octant 5 generally requires twice as long: this octant is
where the sweep pipeline must drain before the reverse
sweep can be initiated, with corresponding waiting time.
The distribution of Late Sender waiting time in non-fixup
iterations for pairs of octants shown in Figure 6 illustrates
the impact of the sweeps. In octants 1+2, waiting times
are greatest in the NW and progressively diminish towards
the SE. For octants 5+6, the waiting times are larger due
to the sweep reversal, and the progression is from NE to
SW. Octants 3+4 and 7+8 combine sweeps from both SW
to NE and SE to NW resulting in progressively decreasing
amounts of waiting time from south to north. Each octant
in fixup iterations has more than twice as much aggregate
Late Sender waiting time, with a distribution that clearly
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its=7 its=8 its=9 its=10

Figure 4. Sweep3D computation Execution time variation by iteration (top) and 16,384-process distribution evolution for iterations 7 to 10 (bottom).

superimposes the underlying sweep with the additional com-
putational imbalance.

IV. CONCLUSION

The ubiquitous Sweep3D benchmark code has good scal-
ability to very high numbers of processes, however, careful
evaluation of coupled input parameters is required to ensure
that waiting times for MPI communication do not grow
to dominate execution performance. Although Sweep3D
has been comprehensively studied and modelled, providing
valuable insight into expected performance, actual execu-
tion at extreme scales can differ appreciably due to easily
overlooked factors that introduce substantial imbalance and

additional waiting times. Key execution performance char-
acteristics of Sweep3D were revealed by Scalasca runtime
summarization and automated event trace analyses, and re-
fined employing source code annotations inserted for major
iteration loops and code sections to direct instrumentation
and analysis. In on-going research we are investigating
automatic determination and combining of iterations with
similar performance profiles [15], and analysing traces
for the root causes of wait states to improve attribution
of performance problems [16]. Tools for measuring and
analysing application execution performance also need to be
highly scalable, as demonstrated by the Scalasca toolset with
294,912 Sweep3D processes on Blue Gene/P, where multiple
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Figure 5. Sweep3D iteration execution time breakdown with 16,384 processes on BG/P for MK=10 (left) and MK=1 (right) k-plane blocking factors.

techniques for effective data reduction and management are
employed and application-oriented graphical presentation fa-
cilitated insight into load-balance problems that only become
critical at larger scales.
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Figure 6. Sweep3D MPI communication Late Sender time variation by sweep octant for initial 7 non-fixup and subsequent 5 fixup iterations (top) and
16,384-process waiting time distributions for the computationally balanced non-fixup and imbalanced fixup octant pairs 1+2, 3+4, 5+6, 7+8 (bottom).
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