
SCALASCA Parallel Performance Analyses
of SPEC MPI2007 Applications

Zoltán Szebenyi1,2, Brian J. N. Wylie1, and Felix Wolf1,2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany
2 Aachen Institute for Advanced Study in Computational Engineering Science,

RWTH Aachen University, Germany
{z.szebenyi,b.wylie,f.wolf}@fz-juelich.de

http://www.scalasca.org/

Abstract. The SPEC MPI2007 1.0 benchmark suite provides a rich
variety of message-passing HPC application kernels to compare the per-
formance of parallel/distributed computer systems. Its 13 applications
use a representative cross-section of programming languages (C/C++/
Fortran, often combined) and MPI programming patterns (e.g., block-
ing vs. non-blocking vs. persistent point-to-point communication, with
or without extensive collective communication). This offers a basis with
which to examine the effectiveness of parallel performance tools using
real-world applications that have already been extensively optimized and
tuned (at least for sequential execution), but which may still have par-
allelization inefficiencies and scalability problems. In this context, the
Scalasca toolset for scalable performance analysis of large-scale parallel
applications, which has been extended to distinguish iteration/timestep
phases, is evaluated with this suite on an IBM SP2 ‘Regatta’ system, and
found to be effective at identifying significant performance improvement
opportunities.

Keywords: Parallel/distributed systems; Benchmark suite; Perform-
ance measurement & analysis tools; Application tracing & profiling.

1 Introduction

Various parallel performance tools studies have considered benchmark suites,
such as evaluation of the Vampir trace collection and visualization toolset with
the 13 applications of the SPEC MPI benchmark suite [1,2,3,4] and the ompP
profiler with the 11 applications of the SPEC OpenMP benchmark suite [5].
Such tools provide in-depth analyses that offer insight into performance and
scalability problems indicated by whole execution measurements [6,7]. While
tools that aggregate and summarize measurements during execution readily han-
dle long-running complex applications, those that rely on trace collection and
analysis are not so fortunate, since trace sizes grow proportionately with the
length of measurement (in addition to the orthogonal dimensions of the number
of processes/threads, density of traced events and number of metrics associated
with each event).

S. Kounev, I. Gorton, and K. Sachs (Eds.): SIPEW 2008, LNCS 5119, pp. 99–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

The open-source Scalasca toolset [8,17] addresses these scalability issues
with a compound approach consisting of flexible measurement configuration (in-
cluding filtering), runtime summarization of measurements during execution, and
event trace collection matched with a replay-based trace analysis that exploits
the parallelism and distributed-memory resources of the target system [9,10].
From an initial summarization measurement of a fully-instrumented applica-
tion, an appropriate list of user functions to filter can be determined and spec-
ified in subsequent measurements. After verifying that the filter produces an
accurate summary measurement (without undue dilation), and that a resulting
trace won’t be so excessively large as to require highly disruptive intermediate
buffer flushing, it can be used for a tracing experiment. Without recompilation or
reinstrumentation of the application, straightforward reconfiguration of the mea-
surement runtime system allows traced events to be buffered until measurement
completion, after which the trace analyzer replays them in parallel to automat-
ically calculate a rich set of execution performance properties. Both runtime
summary and postmortem trace analysis use a common report format, allowing
them to be examined with the same interactive analysis report explorer. The
library for reading and writing the XML reports also facilitates the development
of utilities which process the reports in various ways, such as the extraction of
measurements for each process or their statistical aggregation, for the generation
of timeline charts and metric graphs, respectively.

This paper presents Scalasca measurements and analyses of Version 1.0 of
the SPEC MPI2007 benchmark suite application kernels on an IBM SP2 ‘Regatta’
system, with particular attention given to the scalability of the applications and
the Scalasca toolset itself, and examination of performance variation between
processes and different timesteps/iterations of the applications’ executions.

2 Experiment Configuration

2.1 SPEC MPI2007 1.0 Benchmark Suite

Version 1.0 of the SPEC MPI2007 benchmark suite [1,2] was released in June
2007 to provide a standard set of MPI-based HPC application kernels for compar-
ing the performance of parallel/distributed systems’ hardware, operating system,
MPI execution environment and compilers. The initial release includes 13 appli-
cations and a ‘medium-sized’ reference dataset (MPIm2007) for benchmarking
runs requiring up to 2GB of memory per process and configurable for up to 512
processes.

Table 1 summarizes the 13 applications of the MPI2007 suite, showing that
they derive from a wide variety of subject areas and are implemented using a
representative cross-section of programming languages (C/C++/Fortran, often
combined). From the MPI usage breakdown in the table, it can be seen that
a variety of MPI functions are used at many locations (‘sites’) in the source
code, however, performance analysis can concentrate on the smaller number
of communication and synchronization functions (shown as c&s/used ‘funcs’)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 101

Table 1. SPEC MPI2007 1.0 applications’ coding and subject area

Program MPI
Application code language LOC funcs sites paths Application subject area
104.milc C 17987 9/18 51 111 Lattice quantum chromodynamics
107.leslie3d F77,F90 10503 8/13 43 12 Combustion dynamics
113.GemsFDTD F90 21858 9/16 237 21 Computational electrodynamics
115.fds4 F90,C 44524 8/15 239 8 Computational fluid dynamics
121.pop2 F90 69203 11/17 158 173 Oceanography
122.tachyon C 15512 8/16 17 8 Computer graphics: ray tracing
126.lammps C++ 6796 12/25 625 41 Molecular dynamics
127.wrf2 F90,C 163462 7/23 132 62 Numerical weather prediction
128.GAPgeofem F77,C 30935 8/18 58 13 Geophysics finite-element methods
129.tera tf F90 6468 9/13 42 17 Eulerian hydrodynamics
130.socorro F90 91585 11/20 155 147 Quantum chemistry
132.zeusmp2 C,F90 44441 11/21 639 85 Astrophysical hydrodynamics
137.lu F90 5671 10/13 72 24 Linear algebra SSOR

and the distinct program call-paths on which they are actually executed during
benchmark runs (‘paths’).

Table 2 tallies the MPI functions used by 32-way benchmark executions, and
shows that a similarly diverse range of MPI programming patterns are imple-
mented, e.g., blocking, vs. non-blocking vs. persistent point-to-point communi-
cation, with or without extensive collective communication, etc. (SPEC rules
allow only MPI parallelization, so auto-parallelization capabilities of compilers
must be disabled, at least in this initial version of the benchmark suite.) The
suite therefore provides a comprehensive test, both for MPI benchmarking pur-
poses, but also for examining the effectiveness of parallel performance tools with
real-world applications.

2.2 IBM SP2 Regatta p690+ System

The John von Neumann Institute for Computing ‘JUMP’ system [11] hosted by
Jülich Supercomputing Centre consists of 41 IBM SP2 p690+ frames, each with
16 dual-core 1.7GHz Power4+ processors and 128GB of shared main memory,
connected via IBM High Performance Switch. At the time measurements were
made, the system was running AIX 5.3, with IBM’s POE 4.2 MPI and GPFS
filesystem, and use of compute nodes managed via LoadLeveler.

The available IBM XL compiler suites (versions 7.0/8.0 for C/C++ and
9.1/10.1 for Fortran) were unable to compile and/or link some of the SPEC
MPI2007 applications when the build was configured using the specification
provided for them with the benchmark distribution. In such cases, aggressive
optimization options were progressively removed until a viable application exe-
cutable was produced. Full optimization of the code and run-time environment
were neither essential nor particularly desirable for our purposes, as the study

102 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Table 2. MPI function calls used by 32-way SPEC MPIm2007 executions on JUMP

Irecv Isend Recv Send Wait Waitall Waitany
104.milc 359340 359340 718680
107.leslie3d 3201600 3201600 320160
113.GemsFDTD 3316 3316
115.fds4 35271 35271 151264
121.pop2 558007700 558007700 319663712
122.tachyon

126.lammps 196544 9152 205696 196544
127.wrf2 6508380 10106 6518486 6508380
128.GAPgeofem 6099876 6099876 1404288
129.tera tf 1989504 360 1989864 1989504
130.socorro 3286178 3286178 3286178
132.zeusmp2 845056 845056 249888
137.lu 19000 7600320 7619320 19000

Sendrecv Recv init Send init Start Startall Testsome Scan
113.GemsFDTD 1240000
122.tachyon 16158 16158 6536 1 223
126.lammps 32

Allgather Allgatherv Allreduce Barrier Bcast Gather Reduce
104.milc 17700 62 122
107.leslie3d 140832 1088 64
113.GemsFDTD 160 292000 128
115.fds4 303040 320 8512
121.pop2 26080640 8640 9664
122.tachyon 32 32
126.lammps 1696 64 1888
127.wrf2 67488
128.GAPgeofem 2016224 352
129.tera tf 60352 15520 1184
130.socorro 512 7936 37536 9696 1088
132.zeusmp2 12864 96 1280 64
137.lu 224 32 288

Group
Cart Comm Comm Comm Comm Comm range
create split create free dup group incl

104.milc 32
113.GemsFDTD 32
121.pop2 96 96 96
126.lammps 32 32
128.GAPgeofem 32
130.socorro 224
132.zeusmp2 32 32
137.lu 32

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 103

Fig. 1. SPEC MPIm2007 1.0 benchmark execution times with different numbers of
processes on the IBM SP2 system ‘JUMP.’ Eight of the benchmarks (shown with dashed
lines) have good speedup, up to 1024 processes when supported by the benchmark
and 512 processes otherwise. The remaining five benchmarks (shown with solid lines)
have clear scaling problems. 126.lammps uses a maximum of 140 processes (idling
any excess provided) and therefore shows no significant speedup beyond 128 processes.
130.socorro and 115.fds4 both show good speedup to 512 processes, before respectively
having small and significant slowdowns. Finally, 121.pop2 only scales to 256 processes
before slowing down and 113.GemsFDTD only to 128 processes before its dramatic
performance breakdown.

is more focussed on ‘typical’ application performance in a representative HPC
environment than benchmarking.

Figure 1 shows a graph of the benchmark execution times with different
numbers of processes, on a log–log scale, from which the scalability of each
benchmark can be determined. To reduce the impact of variability in run times
(due to non-dedicated use of the communication switch and filesystem in the
production configuration of the JUMP system), the best run time of several
measurements is taken although this is contrary to the SPEC benchmark rules.
(Including confidence intervals in the graphs and tables would be appropriate in
a comprehensive study, however, these have been omitted to reduce unnecessary
clutter and clarify the underlying behaviour.)

While around half of the benchmarks scale well, it is clear that certain others
have very limited scalability, before no further speed-up is possible or perfor-
mance degrades unacceptably. Although no tuning has been done for JUMP, and
measurements were taken on a non-dedicated production system, from review of

104 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

published benchmark results [1] the same scalability limitations are seen to be
common to specially ‘tuned’ benchmark measurements on dedicated systems.

Of course, analyzing the performance of optimally-tuned applications that
scale perfectly has much less value than identifying potential opportunities for
improvement of applications with problems, and is key to producing better per-
forming and more scalable applications.

2.3 SCALASCA Toolset

Scalasca is an open-source toolset for scalable performance analysis of large-
scale parallel applications [8,17] developed by Jülich Supercomputing Centre in
conjunction with the University of Tennessee. Version 1.0 includes integrated
runtime measurement summarization and selective event tracing [9] with au-
tomatic trace analysis based on parallel replay [10], to ensure scalability for
long-running and highly-parallel MPI, OpenMP and hybrid applications.

When the Scalasca instrumenter is prepended to each application compile
and link command, it produces fully-instrumented executables without modify-
ing or inhibiting compiler optimizations. This exploits capabilities for function
entry and exit instrumentation provided by most (but not all) modern compilers,
and the standard PMPI library interposition interface. A source preprocessor is
also provided for OpenMP pragma/directive and annotated region instrumenta-
tion (though not used in this work). Manual annotation of significant code re-
gions (e.g., initialization) can also be done with a macro-based user API, which
has been extended for annotating repetitive phases (such as solver iterations or
time-steps).

Scalasca measurement collection and analysis is performed by a nexus that
is also prefixed to the normal application execution command-line, whether part
of a batch script or interactive run invocation. Experiments with an instrumented
executable can be configured to collect runtime summaries and/or event traces
(optionally including hardware counters), with the latter traces automatically
analyzed with the same number of processes as used for measurement. Both
summary and trace analyses are generated in the same profile format, which
can be interactively explored with the Scalasca analysis report examiner GUI
(shown in Figures 10&11). Command-line tools are also provided for processing
analysis reports, e.g., to produce filters containing lists of functions to ignore
for improved measurement configuration, and new prototype tools are being
developed for graphing and charting metrics calculated for repetitive phases.

Table 3 shows the SPEC MPIm2007 application execution characteristics de-
termined from Scalasca runtime summarization experiments. Application pro-
grams are seen to typically consist of hundreds to thousands of global timesteps
or solver iterations, with the farming-based 122.tachyon being an exception.
Although 130.socorro only does 20 iterations, it has by far the most com-
plex call-tree and the deepest frame depth (with MPI communication down
to depth 18, one further than 127.wrf2): some highly recursive functions in the
initialization phase of 127.wrf2 were filtered out and are not counted here. At
tens of gigabytes per process rank, complete traces of either 122.tachyon or

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 105

Table 3. SPEC MPIm2007 1.0 applications’ 32-way execution characteristics

Program execution RSS Trace buffer content (MB) Filter
Application code steps depth callpaths (MB) total MPI filter residue funcs
104.milc 8+243 6/6 255/257 341 2683 1.7 2626 57 4
107.leslie3d 2000 3/3 40/40 1078 1437 15. 1422 16 6
113.GemsFDTD 1000 4/5 166/185 505 3619 5.9 3582 37 1
115.fds4 2363 1/8 149/151 209 122 2.1 117 6 6
121.pop2 9000 6/6 403/403 748 6361 2494. 2606 3841 6
122.tachyon N/A 3/3 25/27 676 59884 0.7 59809 75 5
126.lammps 500 6/6 162/162 401 291 0.8 290 1 9
127.wrf2 1375 17/22 4951/4975 297 1109 0.4 1106 5 69
128.GAPgeofem 235 4/4 44/44 361 996 33. 971 34 2
129.tera tf 943 3/4 57/59 74 2459 10. 1628 831 4
130.socorro 20 18/23 10350/10352 148 10703 13. 10587 120 21
132.zeusmp2 200 5/5 171/179 377 5 3.4 — 3 0
137.lu 180 4/4 48/49 384 42 28. — 28 0

130.socorro would be prohibitively large, however, specifying a few functions to
filter reduces their requirements to around 100MB/process. Many of the other
applications also benefit from substantial reduction of measurement overheads
when one or more of their user functions are filtered. Unfortunately, a full ex-
ecution measurement of the MPI-dominated 121.pop2 remains intractible even
when only MPI functions are traced, therefore it was necessary to reduce the
number of steps it does from 9000 to 2000 (by modifying its input file).

Table 4 presents the SPEC MPIm2007 application execution times for unin-
strumented runs and for a variety of Scalasca measurement experiments with
32, 128 and 512 processes. When measurements are being collected, run times
are naturally longer than the uninstrumented execution times, due to dilation
introduced by instrumentation and measurement processing, however, this can
be minimized by providing appropriate filters specifying functions to be ignored
during measurement (as determined by an initial summarization measurement).
When an initial full summarization measurement is not practical, as was the case
with 122.tachyon, a filter could be determined from a shorter or smaller execu-
tion. (Although the dilation remains serious, further reduction was not pursued
since 122.tachyon was ultimately not particularly interesting.) For 132.zeusmp2
and 137.lu filtering was neither necessary nor desirable.

As well as reducing measurement dilation, filtering is also appropriate for
reducing the trace buffer capacity requirements, to avoid highly disruptive in-
termediate flushes of trace buffers to disk during measurement: examples of
catastrophic disruption from intermediate trace flushing are detailed in [4]. Fur-
thermore, very large traces are also awkward to analyze, so judicious filtering
balances what measurements are collected and analyzed with what is omitted on
expediency grounds. Functions that have been filtered in this way are ‘invisible’
during analysis, as if they had been ‘in-lined.’ Even with all user functions fil-
tered (i.e., measuring only MPI functions), the 2.5GB/rank trace buffer capacity

106 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Table 4. SPEC MPIm2007 1.0 applications’ execution times in wallclock seconds with
32, 128 and 512 processes on the p690+ cluster for a variety of instrumentation and
measurement/analysis configurations. ‘None’ is a reference run with neither instrumen-
tation nor measurement (beyond elapsed time), whereas the additional columns refer
to measurements of fully-instrumented versions (i.e., using automatic function instru-
mentation by the compiler and MPI library interposition instrumentation), sometimes
augmented with user-defined phase annotations (p), where measurement was config-
ured for runtime summarization only (Sum) or runtime summarization combined with
event tracing (Trace). Measurements marked (f) used filtering of selected user functions
with excessive overheads. After trace collection during measurement, additional time
is required to dump buffered trace event records to disk (Td) for subsequent automatic
trace analysis (Ta), both done in parallel with the total trace data.

Instrumentation/Measurement Tracing Trace
Application code None Sum Sum+f Sum+pf Trace Td+Ta (GB)

32
104.milc 1556 2140 1616 — 1611 13+50 1.587
107.leslie3d 2704 2945 2807 2892 2787 43+113 0.403
113.GemsFDTD 2028 2680 2042 2111 2102 57+144 0.634
115.fds4 951 1010 960 957 959 92+141 0.130
121.pop2 1687 2415 2176 2104 N/P —+— —
121.pop2 (2000) 398 N/A 514 N/A 518 124+2734 13.613
122.tachyon 2024 N/P 6016 — 6023 1+68 0.007
126.lammps 1883 1988 1899 2001 1963 41+74 0.038
127.wrf2 2352 2945 2499 2475 2550 425+907 18.138
128.GAPgeofem 833 984 879 884 874 14+182 0.670
129.tera tf 2399 2583 2458 2390 2395 17+71 24.737
130.socorro 1411 3990 1631 1701 1703 120+373 3.420
132.zeusmp2 1683 1727 — — 1729 28+67 0.113
137.lu 1771 1815 — — 1910 13+159 1.100

128
113.GemsFDTD 670 — 1033 — 1038 103+216 0.944

512
104.milc 59 — 63 — 69 5+7 0.827
107.leslie3d 179 — 193 — 199 310+343 7.037
113.GemsFDTD 2363 — N/A — N/A —+— —
115.fds4 81 — 86 — 88 272+743 1.050
121.pop2 752 — 1072 — N/P —+— —
121.pop2 (2000) 182 — 226 — 326 1380+2627 103.646
122.tachyon 133 — 383 — 380 2+27 0.069
126.lammps 416 — 445 — 434 233+360 0.167
127.wrf2 269 — 300 — 310 1878+2535 107.929
128.GAPgeofem 69 — 82 — 87 50+333 15.216
129.tera tf 265 — 287 — 298 163+316 72.381
130.socorro 228 — 263 — 268 635+913 25.756
132.zeusmp2 108 112 — — 115 5+19 2.084
137.lu 118 119 — — 119 36+126 19.493

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 107

requirements of 121.pop2 were impractical for tracing a full execution, therefore
measurements were repeated with only 2000 rather than the full 9000 steps.

For applications with identifiable repetitive phases, corresponding to global
timesteps or solver iterations, additional annotation instrumentation was man-
ually inserted into the source code. This was possible for all except 122.tachyon
which is based on a task-farming parallelization, and 104.milc which has a com-
plex structure of nested loops and branches. The overhead of this additional
instrumentation during measurement is found to be much less than the run-
to-run variation of the applications themselves, and the phase markers can be
exploited in subsequent analyses.

After an initial set of 32-way measurements, from which appropriate mea-
surement filters could be determined, 128-way and 512-way measurements were
then taken. (512-way measurements were skipped for 113.GemsFDTD due to
its adverse scaling.) Although the measurement times for runtime summariza-
tion and trace collection are seen to scale in proportion to the uninstrumented
application execution time, trace sizes and corresponding trace handling (dump-
ing of buffers and post-mortem analysis) generally grow more expensive. In a
few cases, however, traces actually become smaller or the use of parallel I/O
decreases trace handling time. For example, 121.pop2 trace sizes and writing
times grew by factors of 7.6 and 11 respectively, however, parallel trace analysis
time actually slightly improved with 8 times the number of processes.

3 Results and Analyses

The final automatic trace analysis reports for each SPEC MPIm2007 bench-
mark application execution (with 32 processes), including functions and anno-
tated phases, were postprocessed to extract the aggregate and individual process
execution behaviour of each application-specific phase (corresponding to global
timesteps or solver iterations as appropriate). 104.milc and 122.tachyon are ex-
cluded from this analysis.

Scalasca analyses automatically determine a variety of performance metrics
for each application call-path and thread of execution, which are concisely pre-
sented in hierarchical trees (as shown in Figures 10&11). Simple V isits counts
and MPI message-passing statistics (e.g., numbers of sends and receives or col-
lective operations and associated Bytes transferred) complement metrics derived
from measured times. MPI Communication and Synchronization times can be
distinguished from total Execution time, and further split into times for Point-to-
point and Collective operations. These summary metrics, which are straightfor-
ward to calculate during measurement, can be augmented by specialized metrics
that can only be determined from analysis of traces searching for patterns of
events indicative of inefficiencies.

Eight of the remaining 11 applications are treated collectively in Figures 2–5,
whereas 107.leslie3d, 129.tera tf and 132.zeusmp2 show particularly interesting
execution behaviour and are examined in more detail afterwards.

108 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

The left column in Figures 2–5 graphs total Execution time and MPI Com-
munication time for each iteration phase. The values for the process(es) with
the largest times are shown red, the median shown blue, and the shortest shown
green. In most cases, no significant difference is apparent in total Execution
time between the fastest and slowest processes, and the graphs appear uniformly
green. 137.lu is one of the exceptions, consistently having an observable differ-
ence in every iteration, whereas a difference is only apparent in the first itera-
tion of 113.GemsFDTD and some of the iterations of 121.pop2. Variation in MPI
Communication time is much more pronounced, both between iterations and be-
tween processes within iterations, exemplified by 115.fds4 and 113.GemsFDTD
respectively.

Whereas most applications show a stable constant execution time for each iter-
ation (sometimes with the first and/or last iteration being distinguished), some
reveal gradually deteriorating performance (e.g., 126.lammps and 127.wrf2).
Much larger Execution time of certain iterations of 126.lammps at regular inter-
vals are also clearly distinguished, and from further analysis found to correlate
to more point-to-point communication every 20th iteration and collective com-
munication every 100th. The execution of 127.wrf2 is clearly dominated by its
1st and 1201th iterations, however, there are also significant iterations with col-
lective communication every 300 iterations.

The right column in Figures 2–5 shows total Execution time and MPI Com-
munication time for each iteration phase as a timeline chart for each process. In
each chart, the value for the largest time is shown in dark red, with the other
values on a progressive scale down to light yellow, and white used if there is no
value for a particular entry. (This colour scale is shown at the bottom of Figures
10&11.) Globally consistent behaviour is generally apparent, including variation
per iteration which appears as peaks in the graphs on the left.

137.lu can again be readily distinguished by its broadly non-deterministic vari-
ation of Execution time across processes in any iteration, however, MPI Com-
munication time reveals a more complex story. Certain processes consistently
have much shorter Communication times than the others, indicative of load im-
balance. More dramatic load imbalance is evident from the horizontal stripes in
the MPI Communication time chart of 113.GemsFDTD , where processes with
ranks 7, 30 & 31 consistently take longer than the others: the latter are found
not to participate in certain local update operations and consequently are always
early when they must communicate with partners. Similar striping can also be
seen in 128.GAPgeofem and on odd-numbered process ranks of 126.lammps. For
121.pop2 it is predominantly higher numbered process ranks that have longer
MPI Communication times.

Note that the phase annotations do not explicitly synchronize processes, such
that the time for a particular iteration on one process can vary significantly
from that of its peers, however, inter-process communication results in loose
synchronization in those cases where explicit collective synchronization is not
used by the application itself in each iteration.

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 109

Fig. 2. SPEC MPIm2007 113.GemsFDTD and 115.fds4 iteration time metrics

110 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 3. SPEC MPIm2007 121.pop2 and 126.lammps iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 111

Fig. 4. SPEC MPIm2007 127.wrf2 and 128.GAPgeofem iteration time metrics

112 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 5. SPEC MPIm2007 130.socorro and 137.lu iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 113

3.1 107.leslie3d

Iteration statistics graphs and timeline charts for a variety of performance met-
rics measured for 107.leslie3d are shown in Figure 6. The Execution time metric
shows a clear transition at iteration number 1015, with iterations taking roughly
1.35s before and 1.37s afterwards. This is seen to correlate with the median
Point-to-point Communication time metric increasing from 0.10s to 0.13s after
iteration 1015. Furthermore, the fraction of Point-to-point Communication time
considered to be due to early receivers blocked waiting on senders to initiate
communication (Late Sender) is clearly anti-correlated with the performance
degradation and mostly restricted to processes with ranks 10 & 11. They are
also found to be receiving messages in non-optimal order: Late Sender / Wrong
Message Order during that period indicates that a message already in tran-
sit could have been received instead of waiting for another not yet initiated.
The Collective Communication time metric doesn’t show a transition, but has a
prominent peak value for iteration 1015. Although there is a significant variation
in the number of call-path Visits and Bytes transferred by processes, they remain
constant thoughout, and therefore don’t explain the dramatic transition. Addi-
tional 107.leslie3d measurement experiments showed similar transitions, though
with varying onset, severity, and affected processes, suggesting that an external
influence is responsible for this significant disruption in execution performance.
While other benchmarks seem less susceptible to this effect, it has also been
identified in 121.pop2 and 126.lammps measurements. One explanation could
be process migration away from its local memory within the SP2 SMP node,
however, an AIX API to determine processor bindings for processes has not yet
been identified to be able to investigate this.

3.2 129.tera tf

Iteration statistics graphs and timeline charts for a variety of performance met-
rics measured for 129.tera tf are shown in Figure 7. The Execution time metric
shows a progressive increase from 1.2s to 2.9s for iterations, with occasional
non-deterministic peaks. This increase is largely explained by the increase in
maximum Point-to-point Communication time (0.1s growing to 1.5s) during the
course of execution: the maximum Collective Communication time also grows to
0.4s. Both graphs show intriguing fine-scale variations from iteration to iteration
amid larger-scale progressive trends

Blocking time of early receivers waiting for senders to initiate communication,
considered Late Sender time, is seen to contribute significantly to Point-to-point
Communication time, and found to affect different processes at different stages
of execution. A ‘hump’ in maximum Late Sender time for iterations between 240
and 450 is remarkably prominent. Not shown, Collective Synchronization time
is insignificant, with only the final iteration containing MPI Barrier calls, and
variation in the number of callpath Visits and Bytes transferred by processes is
clearly evident, but constant throughout.

114 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 6. Graphs and charts of SPEC MPIm2007 107.leslie3d iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 115

3.3 132.zeusmp2

Although 132.zeusmp2 demonstrated extremely good scalability to 512
processes, Scalasca analyses of 32-way experiments identified potentially im-
portant inefficiencies which warranted further investigation. Further experiments
were therefore collected with 512 processes, to examine how these inefficiencies
develop at larger scale.

Iteration statistics graphs and timeline charts for a variety of performance
metrics measured for 512-way execution of 132.zeusmp2 are shown in Figures 8
and 9. The Execution time metric (upper left) shows a progressive increase from
0.43s to 0.49s for timesteps (after the initial timestep), with occasional out-
liers taking a little longer. Following down the column of metric graphs, this
behaviour is explained by the median aggregate Communication time, which
increases from 0.05s to 1.0s during the course of execution, with occasional
iterations taking almost double as long. This is predominantly Point-to-point
Communication time, with around a fifth due to Collective Communication time.
Minimum time per iteration for the point-to-point operations fluctuates around
0.02s. Notably, while Collective Communication time was negligible during 32-
way runs of 132.zeusmp2, it has grown to be relatively significant in this 512-way
experiment.

The bottom graphs of Figure 9 show that blocking time of early receivers
waiting for senders to initiate communication, i.e., Late Sender time, contributes
around half of the Point-to-point Communication time, and around half of it is
for receiving messages out of order (i.e., Late Sender / Wrong Message Order).
Multiple iterations are seen to have elevated times across most of the processes,
and account for pronounced peaks in the median time, e.g., for iterations 39,
53 & 179, in both of these metrics. These higher communication times also
carry through to observable delays in total Execution time for those iterations.
Variation in the number of callpath Visits and Bytes transferred by process is
clearly evident, but constant throughout, so provide no further insight into this
dynamic execution behaviour.

The detailed metric charts and graphs provide a comprehensive view of the
execution performance across processes and through time for annotated itera-
tions and timesteps, which complements the profile-oriented Scalasca analysis
presentation.

From the runtime summarization report shown by the Scalasca analysis
report examiner GUI in Figure 10, MPI Communication time is found to be
18.4% of total execution time. 70% of this is Point-to-point Communication
time, however, Collective Communication time which was insignificant with 32
processes now contributes the rest: this might be indicative of deteriorating
load balance or lower efficiency of collectives using the IBM High Performance
Switch when using multiple SMP nodes. MPI Point-to-point Communication
time is largely concentrated in MPI Waitall calls in the three routines bvalemf1,
bvalemf2 and bvalemf3 on the call-path to hsmoc via ct and transprt. For these
MPI Waitall calls, there is a substantial variation across the 512 processes. with

116 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 7. Graphs and charts of SPEC MPIm2007 129.tera tf iteration time metrics

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 117

Fig. 8. Graphs and charts of SPEC MPIm2007 132.zeusmp2 timestep metrics

118 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 9. Graphs and charts of SPEC MPIm2007 132.zeusmp2 timestep metrics (cont.)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 119

Fig. 10. Scalasca analysis report of SPEC MPIm2007 132.zeusmp2 512-process exe-
cution runtime summarization experiment, showing unbalanced distribution of Point-
to-point Communication time (left pane) on critical call-path to MPI Waitall calls
in function bvalemf1 (central pane). Closed tree nodes show inclusive metric values
(including child node values), whereas open tree nodes show exclusive metric values
(excluding child values). Numerical metric values are also colour-coded according to
the scale at the bottom. Values in each pane are accumulated from those in panes to the
right, and selecting a metric or call-path sets that node’s metric value as the focus for
panes to the right. 12.8% of total execution time is MPI Point-to-point Communication
time, 13.9% of which is in the MPI Waitall calls from bvalemf1, with a 35.6% standard
variation across the 512 processes, and highest values predominantly for processes in
the 2nd and 7th z-planes of the application’s 8×8×8 Cartesian grid (right pane).

120 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Fig. 11. Scalasca analysis report of SPEC MPIm2007 132.zeusmp2 512-process exe-
cution tracing experiment, including manually inserted timestep annotations, showing
unbalanced distribution of Late Sender time for the MPI Waitall calls directly from
function ct during the first timestep. 7.6% of total execution time is due to Late Sender
situations, which is 57.7% of MPI Point-to-point Communication time. This varies con-
siderably from timestep to timestep, and manifests as a 105.1% standard deviation in
the MPI Waitall calls in ct during the first timestep, localized to a small number of
interior processes of the 8×8×8 Cartesian grid.

highest values localized on certain processes, which can be determined from their
locations within the 8×8×8 Cartesian grid used by 132.zeusmp2.

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 121

Additional insight into the origin of this imbalance in MPI Point-to-point
Communication time can be derived from the automatic trace analysis report
shown in Figure 11. Metrics which are only available from trace analysis show
that inefficiencies are growing, e.g., Late Sender situations are now 57.7% of
MPI Point-to-point Communication time. The additional timestep annotations
distinguish the metric variation between timesteps, which is clearly consid-
erable. Of more concern, however, is the huge variation between processes
within each timestep, which is localized to relatively small numbers of interior
processes.

3.4 Review of SCALASCA SPEC MPI2007 Benchmark Analyses

SPEC MPI2007 is a substantial suite of application kernels for testing the
effectiveness of performance tools. By collecting and analyzing execution
measurement experiments with 512 processes for each benchmark, the various
Scalasca measurement and analysis techniques have demonstrated that they
scale well, and provide insight into significant performance problems. Annotat-
ing repetitive execution phases [12,13] and associated timeline charts of those
phases [14] support deeper and clearer understanding of those performance is-
sues, to determine which execution intervals and processes are affected. Although
the analyses presented here concentrated on MPI communication and synchro-
nization, metrics acquired from processor and network hardware counters can
readily be incorporated in measurement experiments for a holistic view of exe-
cution performance [15].

Certain dubious coding constructs used in the SPEC MPI2007 applications,
however, resulted in analysis problems. For example, a non-void function with-
out an explicit return statement was incorrectly instrumented by the IBM XL
compiler, such that exits were not matched with corresponding entry instrumen-
tation. In these rare cases, the offending source code was modified and then the
compiler generated correct instrumentation.

The analyses also identified oddities in some of the SPEC MPIm2007 bench-
marks, e.g., 115.fds4 makes numerous calls to MPI Waitall always with an empty
list of requests. Although this is a valid test of MPI performance, simple appli-
cation optimization would skip the MPI Waitall call in such cases.

122.tachyon and 129.tera tf appear to scale perfectly, however, other SPEC
MPI2007 applications show performance tailing off with larger numbers of
processes, and the Scalasca analyses at large scale provide crucial insight
into the governing performance factors, as demonstrated with 132.zeusmp2. For
137.lu, 132.zeusmp2 and 126.lammps the problem size is too small to scale to
larger numbers of processes, or there are coded scalability limiters (enforced or
implied). Clearly unacceptable scaling of 113.GemsFDTD appears mainly to
be due to its inefficient scheme for distributing data using broadcasts during
initialization prior to the update loop.

122 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

4 Conclusions and Future Work

Applying established performance analysis techniques for phase annotation,
event filtering, runtime summarization, event tracing and analysis presenta-
tion, via the Scalasca toolset, to the SPEC MPI2007 benchmark suite ap-
plications has revealed a variety of complex execution behaviour and potential
opportunities for performance improvement. Although 512 processes is a rela-
tively modest scale for the current generation of HPC applications, the ability
to collect and analyze measurements effectively from long-running, real-world
applications was demonstrated.

With their limited scalability and significant process memory requirements,
the SPEC MPIm2007 benchmarks are clearly not suitable for the largest ‘leader-
ship’ computer systems, such as IBM BlueGene, Cray XT and Sun Constellation.
When a ‘large-sized’ benchmark configuration becomes available, it will be inter-
esting to repeat the Scalasca analyses at the large-scale for which the toolset
was designed and already validated with other HPC applications [16].

Automated classifications of equivalence groups of phases and processes with
related behavioural characteristics are currently being investigated with the aim
of making measurements and analyses more concise, and thereby more scalable.
Future work will also examine how the presentation of such analyses can be scaled
adequately for much larger numbers of processes (often in the tens of thousands)
and integrated within the Scalasca interactive analysis report explorer GUI.

References

1. Standard Performance Evaluation Corporation, SPEC MPI2007 benchmark suite,
http://www.spec.org/mpi2007/

2. Müller, M.S., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kalyan, K.,
Baron, J., Brantley, B., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC MPI
2007 — An application benchmark for clusters and HPC systems. In: Proceedings
of ISC 2007, Dresden, Germany (June 2007) (Also available as internal report
ZIH-IR-0708, Technische Universität Dresden, Germany)

3. Müller, M.S.: Applying performance tools to real world applications. In: Proceed-
ings of Seminar 07341 on Code Instrumentation for Massively Parallel Performance
Analysis, Dagstuhl, Germany (September 2007)

4. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing scalable applications with Vampir, VampirServer and Vampir-
Trace. In: Parallel Computing: Architectures, Algorithms and Applications, Proc.
12th ParCo Conf., Jülich/Aachen, vol. 15, pp. 637–644. IOS Press, Amsterdam
(2008)

5. Fürlinger, K., Gerndt, M., Dongarra, J.: Scalability analysis of the SPEC OpenMP
benchmarks on large-scale shared-memory multiprocessors. In: Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 815–822.
Springer, Heidelberg (2007)

6. Aslot, V., Eigenmann, R.: Performance characteristics of the SPEC OMP2001
benchmarks. In: Proc. 3rd European Workshop on OpenMP, EWOMP 2001,
Barcelona, Spain (September 2001)

SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications 123

7. Saito, H., Gaertner, G., Jones, W., Eigenmann, R., Iwashita, H., Lieberman, R.,
van Waveren, M., Whitney, B.: Large system performance of SPEC OMP2001
benchmarks. In: Proc. Int’l Workshop on OpenMP Experiences and Implementa-
tions (WOMPEI 2002) (2002)

8. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K.,
Geimer, M., Hermanns, M.-A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.:
Usage of the Scalasca toolset for scalable performance analysis of large-scale par-
allel applications. In: Proc. 2nd Int’l Workshop on Tools for High Performance
Computing, Stuttgart, Germany, Springer (July 2008) (to appear)

9. Wylie, B.J.N., Wolf, F., Mohr, B., Geimer, M.: Integrated runtime measurement
summarization and selective event tracing for scalable parallel execution perfor-
mance diagnosis. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.)
PARA 2006. LNCS, vol. 4699, pp. 460–469. Springer, Heidelberg (2007)

10. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
PVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

11. John von Neumann Institute for Computing, Jülich Multiprocessor IBM p690+
cluster, http://www.fz-juelich.de/jsc/jump

12. Wylie, B.J.N., Gove, D.J.: OMP AMMP analysis with Sun ONE Studio 8. In:
Proc. 5th European Workshop on OpenMP EWOMP 2003, Aachen, Germany,
September 2003, pp. 175–184. RWTH Aachen University (2003)

13. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling.
In: Parallel Computing: Architectures, Algorithms and Applications, Proc. 11th
ParCo Conf., Málaga, Spain, September 2005. NIC Series, vol. 33, pp. 203–210.
John von Neumann Institute for Computing, Jülich, Germany (2005)

14. Fürlinger, K., Gerndt, M., Dongarra, J.: On using incremental profiling for the
performance analysis of shared-memory parallel applications. In: Kermarrec, A.-
M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 62–71. Springer,
Heidelberg (2007)

15. Wylie, B.J.N., Mohr, B., Wold, F.: Holistic hardware counter performance analysis
of parallel programs. In: Parallel Computing: Architectures, Algorithms and Ap-
plications, Proc. 11th ParCo Conf., Málaga, Spain, September 2005. NIC Series,
vol. 33, pp. 187–194. John von Neumann Institute for Computing, Jülich, Germany
(2006)

16. Wylie, B.J.N., Geimer, M., Wolf, F.: Performance measurement and analysis of
large-scale parallel applications on leadership computing systems. In: Scientific
Programming, special issue on Large-scale Programming Tools and Environments.
IOS Press, Amsterdam (to appear, 2008)

17. Jülich Supercomputing Centre, SCALASCA toolset for scalable performance analy-
sis of large-scale parallel applications, http://www.scalasca.org/

	SCALASCA Parallel Performance Analyses of SPEC MPI2007 Applications
	Introduction
	Experiment Configuration
	SPEC MPI2007 1.0 Benchmark Suite
	IBM SP2 Regatta p690+ System
	SCALASCA Toolset

	Results and Analyses
	$107.leslie3d$
	$129.tera tf$
	$132.zeusmp2$
	Review of SCALASCA SPEC MPI2007 Benchmark Analyses

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

