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Abstract
As part of performance measurements with Score-P, a description of the system and the exe-
cution locations is recorded into the performance measurement reports. For large-scale mea-
surements using a million or more processes, the global system description can consume all the
available memory. While the information stored process-locally during measurement is small,
the memory requirement becomes a bottleneck in the process of constructing a global represen-
tation of the whole system. To address this problem we implemented a new system description
in Score-P that exploits regular structures of the system, and results, on homogeneous systems,
in a system description of constant size. Furthermore, we present a parallel algorithm to create
a global view from the process-local information. The scalable system description comes at the
price that it is no longer possible to assign individual names to each system element, but only
enumerate elements of the same type. We have successfully tested the new approach on the full
JUQUEEN system with up to nearly two million processes.

Keywords: Performance analysis, data compression, exascale computing

1 Introduction

Contemporary high performance systems increase their performance mostly through increased
parallelism. However, to effectively utilize the available parallelism, applications need to use
the provided resources efficiently. Performance analysis tools help to find scalability bottlenecks
and, thus, are essential for increasing the scalability of applications. To measure the perfor-
mance, the performance measurement system has to scale to the same level as the application
does.

∗This material is based upon work supported by the US Department of Energy under Grant No. DE-
SC0015524 and by the German Federal Ministry for Education and Research (BMBF) under Grant No.
01IH13001.
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Score-P [8] is a performance measurement tool for parallel applications. One of its design
goals was high scalability. It instruments an application and records performance data for each
execution location. To store its measurement data, it shares the memory with the applica-
tion. The user can specify the amount of memory that Score-P may use during measurement
and, thus, can control how much memory is available for the application and the performance
measurement.

Beside performance data, Score-P records also the so called definitions, meta-data that
describes the program structure, system hierarchy and metrics. The definitions are kept in
memory, because they define the data realm. However, on systems with millions of cores, the
description of the system hierarchy and the execution locations can require more memory than
is available for a single process. For the system definition, Score-P creates a tree structure in
which the root node represents the whole system and the rest of the nodes represent elements of
the system hierarchy (e.g., node, rack) and execution locations (process, thread) (see Figure 2).
In the beginning of a measurement, every process creates the local system definitions, which
are the definitions for the nodes on the path from the root node to the nodes that represent
itself. In a finalization step the local information is gathered to build the global system tree
which is a representation of the whole system. The global system tree is required to correctly
collate the local data from each process into a global performance measurement report and for
later analysis of the data.

Creating the local system definition records requires only a few nodes and, thus, little
memory. The memory bottleneck occurs when Score-P tries to build and write the global
system tree. The size of the system tree grows linearly with the size of the system, especially
with the number of processes and threads. On large systems, the system tree description can
consume multiple hundreds of megabytes of memory. On JUQUEEN, the system used for our
tests, only 256 MB of memory are available per hardware thread. This amount must be shared
between the operating system, the application, and the measurement system. Figure 1 shows
the memory footprint during the Score-P finalization of an instrumented “hello world” program.
The memory footprint is dominated by the system tree definitions. If we run with 64 processes
per node on JUQUEEN, we are not able to run the measurement with 262,144 processes because
the size of the system tree description would be too large to fit into the available memory.

In this paper, we present a system tree description that is based on the PERI-XML profiling
format proposal for data exchange [11]. It exploits regular structures to reduce the size of the
system description. On homogeneous systems, the size of the system tree description has con-
stant size and is independent of the scale on which the application runs. In addition, we present
a distributed algorithm to create the new global system tree description. We implemented our
approach in Score-P and tested it at full-scale on the JUQUEEN system. The memory re-
quirements of this algorithm depend on the per-process-memory needed to implement MPI
communicators. For large scale systems efficient MPI communicator implementations are cru-
cial. Previous work from Moody et al. [12] and Langer et al. [9] describes methods to implement
MPI communicators with logarithmic size or even constant size requirements per process.

The paper is organized as follows. Section 2 contains a survey of related work. Section 3
describes the system tree definitions. Section 4 describes the algorithm. Section 5 describes the
evaluation of our method. We close with a conclusion in Section 6.

2 Related Work

Our system description is based on the PERI-XML proposal for a profiling data exchange
format [11]. Like our approach, PERI-XML takes advantage of the regularity of large systems.
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Figure 1: The memory footprint of the Score-P final-
ization step for an instrumented “hello world” pro-
gram.

Figure 2: The Cube display of the
system tree.

However, it provides only a specification of the format without any implementation that creates
descriptions from local information. The format was never widely adopted by HPC tools.
ParaProf [3] can read data in PERI-XML format, but, to the best of our knowledge, there are
no tools that can write PERI-XML files.

The amount of data at large-scale is a challenge to every performance analysis tool. The
amount of trace data in particular can become huge; in the advent of exascale applications
and systems the amount of profile data becomes a challenge, too. One approach to reduce the
amount of data is to use standard data compression methods, such as leading-zero compression
and zlib compression. They can be applied to traces [16] or profiles, e.g., Cube [15] uses zlib
compression.

In addition to general techniques, trace-specific methods exist as well. Knüpfer et al. devel-
oped a trace compression algorithm [7] that searches for matching event sequences along the
time axis and compresses them. ScalaTrace [14] uses intra- and inter-node compression to re-
duce the size of MPI event traces. The authors also exploit repetitions of event sequences along
the time axis to reduce the overall trace size. Another way to reduce the size of MPI traces
is to extract the loop nesting structure during measurement from its event flow graph [1] and
using sophisticated compression mechanisms [2] to further reduce the amount of data recorded.

Another approach that reduces the size of the trace data is stratified sampling [5]. It
adjusts the sampling frequency to the measured application, and exploits equivalence classes
of processes to reduce the number of processes to be sampled. However, all of these methods
target the measurement data and do not consider excessive system descriptions.

In [10], the authors aggregate the data of multiple threads within a process with different
strategies. This results in an implicit reduction of the number of execution locations and
a shrinking of the system description. However, the aggregation takes place only within a
process. The system description still grows linearly with the number of processes.

Another data reduction approach is filtering [17]. Filtering reduces the size of the call tree
by removing certain nodes. In most cases, the user can specify regions that are included in the
measurement with white lists or black lists. Mußler et al. [13] presented criteria for automatic
filters based on static analysis of the executable.
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Our algorithm depends on MPI-communicators with low memory requirements. The imple-
mentation of MPI communicators on large scale systems face the challenge of limited memory,
too. More space-efficient MPI communicator implementations are possible [12, 9]. Similarly, the
representation of communicators within the Score-P measurement system need to be memory-
efficient for large-scale systems. Geimer et al. [6] describe a representation of MPI communica-
tors in Score-P, which requires only constant memory per process.

3 System Tree Definitions

The Score-P [8] measurement system captures some meta-data to describe the measured per-
formance data. This meta-data is called definitions, e.g., the system tree description is called
system tree definitions. The current system definitions in Score-P are structured as a tree, where
every node represents a system unit, e.g., a rack, a node, a node card, a midplane, a CPU, a core
or the whole system. Every child node represents a system unit that is a part of the system unit
represented by its parent node and can contain smaller units that are represented by its child
nodes, e.g., the root node represents the whole machine. The machine may consist of several
compute nodes that are children of the machine node. A node may have multiple CPUs, which
are represented by its children. Furthermore, Score-P adds execution streams, e.g., processes
or threads, to the system tree and, thus, associates them with an execution location. In the
implementation, Score-P creates one data record for every system tree node. In the following
we call this type of system tree definitions single-node definitions. The system definitions are
kept in memory during measurement and are written to disk either in the CUBE4 format [15]
(profiling mode) or in OTF2 format [4] (tracing mode). Figure 2 shows a system tree as dis-
played in the Cube GUI, which allows to browse CUBE4 profiles. The size of the system tree
grows linearly with the number of nodes in the system tree. Considering that the system tree
also contains processes and threads, the memory consumption of the system tree definitions
may become excessively large.

However, most large systems have a regular, homogeneous structure, e.g., each rack has
the same number of nodes. Even so called inhomogeneous systems usually have a significant
amount of regularity, e.g., half of the nodes have accelerators, whereas the other half has no
accelerators. We can exploit the homogeneity by designing a system tree definitions format
that describes the patterns that can be observed in the system tree definitions. Therefore, we
aggregate sub-trees of the system tree that have the same structure, keeping one representative,
and store a value which specifies how many copies of this sub-tree exist. This aggregation can be
performed on each level of the system tree. We call this type of definitions sequence definitions,
because every data record defines a sequence of system tree elements of the same type. Figure 3
shows an example for the sequence definitions.

The sequence definition records are based on the PERI-XML proposal [11]. The new system
tree sequence definitions have (i) a class field that describes the system unit type, (ii) A field that
contains the number of copies of this element and (iii) a list of child definitions to describe the
structure of each copy. If a system is not completely homogeneous it may have multiple entries in
the list of children at any level. Figure 4 show the example of an inhomogeneous system. Thus,
these definitions are flexible enough to describe also completely irregular systems. However,
inhomogeneity increases the size of the definitions. If the system contains no regularity, the
sequence definitions degenerate to the full system tree with one data record per system tree
node. However, we do not expect large-scale systems to be without any regularity. In fully
homogeneous systems, the system tree definition depends only on the depth of the tree and not
on the number of elements and, thus, have constant size.
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Figure 3: This is an example of
sequence definitions for a system
tree. The system consists of one
machine with 16 compute nodes.
There are 8 processes on each
compute node and each of the
processes has 4 threads.

Figure 4: This is an example of the sequence defi-
nitions for an inhomogeneous system. This machine
has two types of compute nodes: 16 nodes belong to
the first type, which runs 4 processes with 4 threads
per process; the other 16 nodes belong to the sec-
ond type, which has only 2 threads per process and
a GPU context in each of the processes.

With sequence definitions we can describe the system architecture. However, we also want
to associate an execution location or any other system tree node with recorded performance
data. Thus, we need a mechanism to identify individual system tree nodes. Therefore, we
simulate a depth-first traversal of the whole system tree by iteratively traversing a system tree
sequence definition as many times as the number stored in the copies field. This traversal
defines an enumeration of the nodes in the system tree that can provide an unique index to
reference individual system tree nodes.

4 Distributed System Tree Creation

The memory requirements of the sequence definitions may be small, but we do not gain any
scalability if the algorithm that creates the sequence definitions has a memory footprint that
grows linearly with the system size, even if just on one process. In this section we describe a
distributed algorithm that extracts the regular patterns and, on homogeneous systems, has a
memory footprint that depends on the size of the MPI communicators, the depth of the system
tree and the number of execution locations per process. With constant-size MPI communicators,
the algorithm has also a memory footprint that is independent of the number of processes on
homogeneous systems.

On every process, the Score-P measurement system obtains the system location where it
executes, the system tree node for this process and its ancestor nodes. Furthermore, it creates
the nodes for the threads and other execution locations that belong to the process. Thus, we
have a tree on every process that branches only on the execution location level. The definitions
are still single-node definitions that we will convert into sequence definitions. Figure 5 shows
the definitions that are obtained on every process.

The algorithm processes the system tree level by level from the leaves to the root. First, it
creates sequence definitions for the process and its execution locations from the already obtained
single-node definitions. For every type of execution location it counts the number of occurrences
and creates a single sequence definition record for this type. In addition it creates a sequence
definition for the process itself. At this first step there are still just process-local definitions, as
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Figure 5: The single-node definitions that
are obtained by Score-P at measurement
initialization on every process. It includes
the definitions for the process, its execution
locations, and the system tree nodes on the
path to the root.

Figure 6: This figure continues the exam-
ple from Figure 5. It shows the process-
local system tree definitions after the con-
version of process definitions and execution
location definitions to sequence definitions.
Blue circles mark single-node definitions.
Orange nodes mark sequence definitions.

we have not yet aggregated definitions among processes. Figure 6 continues the example from
Figure 5 and shows the partial sequence definitions for a process and its execution locations.

As a second step we need to create the sequence definitions for the remaining levels of the
system tree. Therefore we need to identify the children of each node at the current depth level
d. To do so, every system tree node is assigned to a process that executes the computation for
this node. The goal of this step is to create a MPI communicator Cnode(N) for every node N in
the current level d; this communicator comprises all the processes that computed the sequence
definitions for the child nodes of N (see Figure 7).

We are going to create the new communicators by splitting existing ones by color, where
the color is obtained from hashing unique node names, e.g., the host names. When running
into hash-collisions, we need to reiterate the splitting on the inconclusive communicator. We
are following [12], where the authors present an algorithm to split communicators that works
on every user defined data as color. Furthermore, the authors propose to store communicators
as a chain where every process stores only its neighbors. As long as only a split is required they
found that their hash-based communicator split requires only O(1) memory and O(logP ) time,
where P is the number of processes.

Within each Cnode(N), we aggregate the definitions into rank 0 of Cnode(N). Whenever
a process merges the definitions from another process p, it compares whether the sequence
definitions sub-tree from p matches one of its own. If it does, the number of copies is increased by
one. Otherwise, the sequence definitions from p are added as an additional child to the current
definition. To compute Cnode(N) we need an MPI communicator Cdepth(d) that contains all
the processes that computed the sequence definitions for nodes in level d+ 1. At the beginning
of the algorithm, every process constructed its own sequence definitions. Thus, the initial
communicator Cdepth(D) is MPI COMM WORLD. For the computation on the next level d − 1, we
also need to create Cdepth(d − 1), which consists of all the processes that are rank 0 in one of
the node specific communicators of the current level. Figure 8 shows the continuation of the
example. Afterwards, the aggregation continues at the next higher level, until we finally have
processed the whole system.

To aggregate the data within Cnode(N), we construct a binary spanning tree over all pro-
cesses, with rank 0 in Cnode(N) as the root node. Every process receives the sequence definitions
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Figure 7: This figure continues the exam-
ple from Figure 6. To convert the next level
of single-node definitions to sequence def-
initions, we need to identify the processes
that belong to the same system tree node.
The figure shows multiple processes and
the system tree definitions that are avail-
able on these processes. The red line en-
circles matching nodes that we want to ag-
gregate to a sequence definition.

Figure 8: This figure continues the example
from Figure 7. Rank 0 and Rank 3 have ag-
gregated all definitions from the other pro-
cesses that belonged to the same compute
node. Furthermore, they converted the
single-node definition of the compute node
into a corresponding sequence definition.
Thus, these two ranks belong to the com-
municator Cdepth(0). On the top, the rank
number of the process in MPI COMM WORLD

is shown.

from its two children in the spanning tree, merges them with its own, and sends the merged
data to its parent. In addition it needs to store mapping data for its children.

To tell each process its place in the global definitions, we need to calculate its index and
distribute it backwards on the same path we used for aggregating the definitions. Starting at
the global root with its index 0 and using the mapping information every process has collected,
we are able to calculate and distribute back the indices to all processes.

5 Evaluation

To evaluate the sequence definition algorithm, we compared the heap memory footprint and the
execution time of the Score-P measurement finalization using either the established single-node
definition algorithm or the proposed sequence definition implementation. As the generation of
the system tree and its writing to file is independent of the application’s behavior, we used
a simple “hello world” program that we instrumented with Score-P for the evaluation. Using
such a program with minimal intrinsic resource consumption facilitates the comparison of the
two algorithms.

We performed our measurements on JUQUEEN, an IBM Blue Gene/Q system with 28
racks, 28,672 nodes and 458,752 cores. Each rack consists of two midplanes. Each midplane
has 16 node-boards and each node-board has 32 compute nodes. An application can run with
up to 64 ranks per compute node. On the whole machine, we can run applications with up
to 1,835,008 processes. Every node has 16 GB memory. Thus, with 64 ranks per node, every
rank has 256 MB memory that needs to be shared between executable, application data, MPI
and measurement data. Hybrid applications that use MPI in combination with threads get
more memory per rank which relaxes the memory restrictions. Running with the maximum
number of ranks per node is the hard case for our measurement system. We repeated the time
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Figure 9: The heap memory footprint during Score-P finalization with sequence definitions.
“MPI” shows the memory allocated for MPI communicators during the calculation of the se-
quence definitions. The memory footprint shown for “sequence definitions” contains all memory
allocations during the calculation of the sequence definitions, except MPI. The “write map-
pings” shows the buffer allocations for collecting the mappings. “Profile writing” shows the
heap memory allocations during writing the profile to disk.

measurements ten times. The memory footprint is deterministic. For the execution time we
show the median.

With sequence definitions, we were able to run measurements of the “hello world” code on
the whole machine with 1,835,008 MPI ranks. Figure 9 shows the memory footprint during the
Score-P finalization. We measured the memory footprint for MPI communicators separately
from the memory footprint of the sequence definition creation. The sequence definitions alone
used 672 bytes of memory; this value was constant for all numbers of processes. This matches
the theoretical analysis in Section 4. The MPI communicators consumed constant space as long
as the whole job ran on a single midplane; running on a larger partition caused the memory
requirements to grow linearly with the number of processes. An ideal MPI implementation
could reduce the MPI memory footprint to a constant value, though.

The main contributor to the total memory footprint is the Cube profile writing. The Cube
library writes data items as a sequence of values for all execution locations. Thus, we need to
gather the data items from all locations which requires a buffer that grows with the number
of locations. Furthermore, we need to create a new communicator that contains all ranks in
the order of their index in the depth-first system tree traversal of the sequence definitions. A
parallel profile writing mechanism could limit the required buffer sizes for data collection to a
constant amount and a write-through approach in Cube could reduce the memory allocations
inside of the library. However, this is subject to future work. To write the mappings, we use the
same technique as for gathering the profile data. We observed buffer allocations only when using
more than one midplane, see the jump in the graph for writing the mappings. This is similar
to the observations of the MPI communicators. For 131,072 ranks, the total heap memory
footprint for sequence definitions is a factor of 2.5 smaller than for single-node definitions.

Figure 10 shows the comparison of the execution time of the Score-P finalization with se-
quence definitions and Score-P finalization with single-node definitions. With 131,077 processes,
the profile writing was 91 times faster for sequence definitions than for single-node definitions.
This factor grows with the number of processes, because the sequence definitions have constant
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Figure 10: The execution time of the Score-P finalization with sequence definitions versus with
single-node definitions.

size while the single-node definitions grow linearly with the number of processes.

6 Conclusion

The size of the system description can limit the scalability of a performance measurement and
analysis tool. However, most large scale systems have a mostly regular structure. Even so
called heterogeneous systems have a limited number of different component types. Sequence
definitions, a system description that exploits the regularity of the system, use only constant
memory as the number of processes increases. They can be constructed with a constant memory
footprint if MPI communicators have constant size. In this case the memory requirements for
a system description using sequence definitions depend on the depth of the system tree and
are independent of the number of processes. The presented algorithm relies on an efficient
implementation of MPI communicators. However, on large scale systems we expect efficient
MPI implementations.

The new algorithm solved a scalability limitation in Score-P which was caused by excessive
memory consumption of the previous algorithm that used single-node definitions. We were able
to prove that with sequence definitions, Score-P scales to nearly two million ranks using the
whole JUQUEEN system. We could achieve this even though the memory constraints were very
tight and the memory requirements per process of the MPI communicator implementation is not
constant. The price we have to pay for sequence definitions is that system tree elements cannot
have individual names any longer, but are constructed from a type and a running number.
However, mappings can circumvent this limitation to some extent.
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