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Abstract
Neural networks (NNs) are currently a very popular topic in ma-
chine learning for both research and practice. GPUs are the domi-
nant computing platform for research e�orts and are also gaining
popularity as a deployment platform for applications such as au-
tonomous vehicles. As a result, GPU vendors such as NVIDIA
have spent enormous e�ort to write special-purpose NN libraries.
On other hardware targets, especially mobile GPUs, such vendor
libraries are not generally available. Thus, the development of
portable, open, high-performance, energy-e�cient GPU code for
NN operations would enable broader deployment of NN-based al-
gorithms. A root problem is that high e�ciency GPU programming
su�ers from high complexity, low productivity, and low portability.
To address this, this work presents a framework to enable pro-
ductive, high-e�ciency GPU programming for NN computations
across hardware platforms and programming models. In particular,
the framework provides speci�c support for metaprogramming and
autotuning of operations over ND-Arrays. To show the correct-
ness and value of our framework and approach, we implement a
selection of NN operations, covering the core operations needed
for deploying three common image-processing neural networks.
We target three di�erent hardware platforms: NVIDIA, AMD, and
Qualcomm GPUs. On NVIDIA GPUs, we show both portability
between OpenCL and CUDA as well competitive performance com-
pared to the vendor library. On Qualcomm GPUs, we show that our
framework enables productive development of target-speci�c opti-
mizations, and achieves reasonable absolute performance. Finally,
On AMD GPUs, we show initial results that indicate our framework
can yield reasonable performance on a new platform with minimal
e�ort.

CCSConcepts •Computingmethodologies→Neural networks;
•Software and its engineering→ Source code generation;

Keywords computer vision, code generation, neural networks,
mobile computing, convolution

1 Introduction
Productive, e�cient parallel programming remains a challenging
task with no general solution. In this work, we focus on a single
facet of this broad issue: implementing neural network operations
on GPUs. Taking a vertical approach spanning from high-level
application to low-level programming, we present several contri-
butions:

• A framework that provides a novel uni�ed methodology,
based on metaprogramming and autotuning, for productive
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development of portable, e�cient implementations of a
broad class of numerical functions targeting GPUs or similar
platforms.

• Support for metaprogramming with ND-Arrays as a key
data type, using named dimensions for improved produc-
tivity and type checking.

• A proof-of-concept use of the framework to implement the
core set of operations needed for deploying three common
image-processing neural networks, i.e., AlexNet, Network-
in-Network, and Inception-V1 across three di�erent GPU
targets.

• An experimental evaluation of the resulting implementa-
tion, including a comparison to highly-tuned vendor library.

An additional contribution is that we provide a platform for
future research, further experiments, and benchmarking related to
GPU portability and metaprogramming. While our current focus
is on neural network operations, any numerical operations that
operate over ND-Arrays should be reasonably well supported by our
approach. The entire framework, including support for automated
replication of all results presented here, is made available as open
source with a permissive license1.

However, note that we speci�cally do not attempt to address the
general problems of parallel programming, such as language and
compiler design. We instead take the more pragmatic approach of
layering over existing languages and compilers that are available
on the platforms we target. Currently, creating e�cient imple-
mentations of the types of operations we consider in this work is
extremely di�cult and time consuming. While the semantics of the
operations are generally easy to express in a few lines of code in any
language, e�cient implementations for GPUs often require many
programmer-years of e�ort. We provide one alternative method to
develop such implementations. We show that our approach to such
development represents a novel tradeo� among portability, speed,
and productivity.

We achieve this with the careful application of both metapro-
gramming and autotuning in our proposed framework. We demon-
strate the approach via a case study of mapping a core set of NN
deployment computations, particularly convolutions, pooling, and
activation functions, to NVIDIA, Qualcomm, and AMD GPUs. We
show that we can target the same NVIDIA GPU hardware using
either OpenCL or CUDA and achieve similar, high-e�ciency results.
This portability is possible due to the metaprogramming support
provided by the framework, which allows syntactic compatibil-
ity between the core languages of the programming models (i.e.
OpenCL and CUDA). Additionally, the framework abstracts away
details related to compilation, allocation, scheduling, and execu-
tion that di�er between OpenCL and CUDA. Also, we show that
our approach eases the cumulative burden of targeting NVIDIA,
Qualcomm, and AMD GPUs. Using the NVIDIA-tuned code as a
starting point, we were able to achieve reasonable performance on
a Qualcomm mobile GPU with only a few weeks of part-time e�ort
by a programmer unfamiliar with the target. Then, using all the

1https://github.com/moskewcz/boda
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Figure 1. An illustration of a typical NN convolution (left) and the
corresponding compute graph fragment (right).

code developed for the NVIDIA and Qualcomm platforms, we show
the initial results of applying autotuning to target another new
hardware platform, AMD GPUs. With no manual e�ort, we achieve
a modest level of performance on AMD hardware, and argue that
the pro�ling and tuning capabilities of the framework provide a
great starting point for platform-speci�c optimizations.

2 Background and Motivation
Convolutional neural networks (CNNs) are NNs which make heavy
use of 2D convolutions over multi-channel 2D images. CNNs have
been quite successful in many computer vision applications such
as object detection [4] and video classi�cation [6]. In this work,
the proof-of-concept set of operations we implement using our
framework is drawn from three common CNNs: “AlexNet” [7],
“Network-in-Network” [10], and the �rst version of Google’s “In-
ception” network [16].

In addition to convolutions, CNNs commonly contain other oper-
ations such as pooling and nonlinear activation functions. However,
for CNNs, convolution operations typically dominate the compu-
tation. Typically, convolutions require many operations (100s to
1000s or more) to produce a single output pixel, as each output pixel
depends on all input pixels across all input channels within a con-
volution kernel-sized window of the input. In our discussion, we
focus on convolution operations, as they are the most challenging
operations to implement. However, note that we do implement all
the operations necessary for deployment of our three considered
CNNs, including the pooling and activation operations.

ND-Arrays, or collections of numbers with N indexes (sometimes
also called N-D Matrices or tensors), are the main data type used
for CNN computations. In particular, the input image, the �ltered
images produced by each layer (and fed as input to the next layer),
and the �lters themselves are all ND-Arrays. That is, each layer of
convolutions in a CNN can be de�ned as the function output = conv
(input, �lters), where output, input and �lters are all ND-Arrays.
The left side of Figure 1 shows an example of a single convolutional
layer. Each output value of the convolution is the result of a dot-
product between one of the 96 �lters and an 11×11 region of the
input image.

2.1 Problem Statement
Convolution, as used in neural networks, has simple-to-express
semantics but is very di�cult to implement e�ciently. In partic-
ular, evidence suggests that such e�orts invariably involve both
low level programming and a signi�cant degree of metaprogram-
ming [9] [2]. Thus, rather than try to shield the programmer from
such issues, we embrace both metaprogramming and direct, low-
level programming in our approach, and attempt to make both
activities as productive as possible.

Ideally, programmers could express NN operations such as con-
volution in a simple forms, such as a sets of simple nested loops,
in the languages of their choice. Then, the compiler (or entire
development toolchain) would create or provide an e�cient imple-
mentation for the target platform. However, this has always been
an elusive goal. At best, it simply shifts the fundamental imple-
mentation problems from the end developer to the developer of
the toolchain. At worst, it adds substantial new problems, since
the toolchain must solve a much more general problem than that
of implementing a speci�c, known operation. In general, creating
high-e�ciency GPU implementations of numerical operations is no
simple task. Many algorithmic and implementation issues must be
considered, and a wide design space must be explored. In the end,
the result of such work may be captured in many forms: libraries,
frameworks, languages, or compilers. However, in this work, we
are concerned more with how the initial algorithmic work and
exploration is performed in the �rst place, rather than how it is
eventually captured for �nal use (although this is also important).
That is, let us say one believes that a compiler or language should
handle some general case of creating e�cient numerical code for
some platform. However, in that case, it is still a prerequisite that
it is known how to create e�cient code for such operations for the
given platform.

Our high level task is, given a NN and its inputs, e�ciently
compute its outputs. We can de�ne a NN as a directed acyclic
graph of (stateless) functions and ND-Arrays. We refer to this
type of graph as a compute graph. Figure 1 shows an example
of a convolution operation and its corresponding compute graph
fragment. We term the process of converting from some description
of a NN to the corresponding compute graph the NN front-end.
In this work, as we are focused on the implementation of core
computations, we are NN front-end neutral; as long as a suitable
compute graph can be produced, any NN front-end can be used
with our approach. Further, as mentioned earlier, while there are
various operations in the compute graph, convolution is the most
computationally challenging. Due to space limitations, we limit our
discussion here primarily to the implementation of convolution.

2.2 Key Problems of E�cient GPU Convolutions
When implementing convolutions across multiple types of GPUs,
there are two categories of problems. First, there are the fundamen-
tal challenges of implementing e�cient convolutions on any GPU.
Second, there are the issues of portability that arise when targeting
multiple GPUs. Together, the full set of high-level problems we
address with our approach are:

• Incompatible GPU programming models across di�erent
hardware: OpenCL and CUDA.

• GPU-hardware-speci�c constraints: memory size and ac-
cess methods, organization and control of compute primi-
tives.

• Data movement: getting data from o�-chip to compute units
and back, sizes and bandwidths of storage locations.

• Parallelism: what computations happen when and where.
• Managing overheads: conditionals, control �ow, indexing.

To the best of our knowledge, our approach is the �rst to address
these concerns in a uni�ed, vertical framework for implementing
NN convolutions on GPUs. In Section 3, we will discuss how our
approach addresses each of these concerns using metaprogramming,
autotuning, and other techniques.

2



2.3 Why portability?
One might ask, why not simply target each GPU separately to
avoid portability issues? In short, there are many downsides to
reimplementing convolutions for every GPU target. Aside from
the initial duplicated e�ort, which is perhaps the primary issue,
separate implementations complicate testing and maintenance. In
practice, the bulk of high-performance, high-e�ciency GPU code
currently resides inside highly tuned libraries. Such libraries are
generally tuned for only a small subset of GPUs – typically only
those from a single vendor. As they are developed independently,
they are often incompatible and support di�erent sets of operations.
They are also generally not extendable by end users. So, having a
portable approach helps ensure compatibility and functional cor-
rectness across all platforms, both existing and new. Further, it
encourages collaboration, which helps ease both extensiblity and
the ability to e�ciently target new hardware platforms.

3 Approach
Our general approach is to create a vertical framework that pro-
vides support for solving exactly the set of problems encountered
when trying to e�ciently implement convolutions on GPUs. We
choose a middle path between the traditional library and compiler
approaches to the mapping problem:

• Compared to a traditional library, our approach is more
complex but much more �exible.

• Compared to general-purpose compilation, our approach is
more limited but much simpler.

Compared to a full compiler, we do not aspire to support general
purpose programming, and we avoid all mandatory, pre-existing,
already-speci�ed intermediary layers present in typical compila-
tion �ows. Thus, we can avoid much of the complexity of full,
general purpose compilers. Although less general-purpose than a
traditional compiler, we embrace compiler-like metaprogramming
techniques, where the programmer writes code to dynamically
generate and transform other code. Thus, we have much more
�exibility to generate customized code for every possible combi-
nation of speci�c operations and hardware targets encountered at
runtime, unlike a traditional pre-compiled library. Overall, using
this approach, we can achieve high e�ciency for the set of opera-
tions required for our application, while keeping overall complexity
manageable. One key to e�ciency and reduced complexity is that,
at runtime, we need only handle the speci�c operations present
in the input. Unlike a traditional library, we need not write and
pre-compile code to handle the general case, and we are free to
use all input-speci�c runtime information to aid in optimization.
In particular, for each operation, we need only handle the speci�c
input sizes used. As the number of possible input sizes is very
large, such specialization is cumbersome and/or limited in the tradi-
tional library approach. Additionally, we can use information about
the speci�c sequences of operations present to perform additional
optimizations, such as fusion, as discussed in Section 3.4.

While we believe our approach is perhaps the most productive
way to achieve our particular goals, we also realize the bene�ts
of the traditional library and compiler approaches as well. In fact,
we would argue that, as progress is made on the key problems of
implementing e�cient GPU convolutions (using our approach), it
is then natural to: (1) generalize the techniques and embed them in
a compiler, or (2) apply additional e�ort (and perhaps compromise
speed) to allow for a �xed-library implementation.

NN 
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Compilation, ExecutionBoda
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Graph

Variant 
selection Autotuning
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Figure 2. Overall structure of Boda.

3.1 Framework Structure
An overview of our framework for mapping NN computations to
GPU hardware is shown in Figure 2. A compute graph is input to
Boda, which performs various tasks to map it to di�erent target
back-ends. As with the front-end, our framework is back-end neu-
tral. We require only that the target platform provide mechanisms
for:

• Run-time Compilation (for metaprogramming/specializa-
tion),

• Memory allocation and execution of code, and
• Per-function-call timing (for pro�ling/autotuning).

Note that we do not support arbitrary languages or programming
models throughout our framework, but only what is necessary
for the back-ends we wish to target. Conveniently, all modern
GPUs support similar programming models and input languages.
NVidia hardware supports both CUDA [12] and OpenCL [14]. Other
hardware vendors, such as AMD and Qualcomm, support only
OpenCL. Both OpenCL and CUDA o�er comparable interfaces for
memory allocation, compilation, and execution of code. Further,
the core language for describing computation supported by both
OpenCL and CUDA has C-like syntax and semantics.

Programmingmodel portability with CUCL. Now, we discuss
how our approach abstracts away the incompatibilities between
OpenCL and CUDA.While CUDA and OpenCL share C as a base,
they use di�erent syntax for various GPU-programming-speci�c
concepts. We start with the cross-compatible intersection of CUDA
and OpenCL to form a language we call CUCL. Then, we abstract
away the syntactic di�erences (e.g. CUDA’s threadIdx versus
OpenCL’s get_local_id) by adding special syntax to CUCL for
them (e.g CUCL’s LOC_ID_1Dmaps to get_local_id(0) in OpenCL
and (threadIdx.x) in CUDA; see the relevant back-end sources at
in ocl_util.cc and nvrtc_util.cc for a full list. When neces-
sary or desired, though, our framework allows the use of back-end
speci�c languages or features. Of course, use of back-end speci�c
features limits the portability of any code that uses them. Yet, a far
more limiting and important issue is that of performance portability.
While it is convenient to share a common syntax and semantics
for computation (i.e. C) across targets, this ensures only functional
equivalence. This is very helpful for development, testing, and
debugging. However, it does not address our goal of achieving
high e�ciency across all back-ends. Currently, GPU compilers are
unable to produce e�cient runtime code from high-level, portable
descriptions of convolutions. So, we instead aim to minimize the
e�ort needed in order to optimize and specialize (to whatever de-
gree in necessary) operations of interest across our limited set of
target back-ends.

ND-Arrays. Our �rst guiding observation is that the majority of
NN operation inputs and outputs are ND-Arrays. Hence, ND-Array
speci�c support, particularly for metaprogramming, forms a cor-
nerstone of our approach. Typically, ND-Arrays consist of a single
contiguous block of memory �lled with a �at array of elements.
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Importantly, in our application, the sizes of all such arrays are
known and �xed at the compute graph level. Thus, we may stati-
cally specialize all operations based on the sizes of their input and
output ND-Arrays. All indexing and bounding calculations on such
ND-Arrays may be reduced to multiplication, division, and modulo
by constants. The resulting expressions are amenable to e�cient
implementation and various optimizations. Further, in user-written
templates, we require that all dimensions of each ND-Array must
be named. This use of mnemonic, semantically-signi�cant names
for array dimensions helps clarify code using ND-Arrays. By anal-
ogy, imagine code that used C structures where each �eld was
simply referred to by index rather than name. Not only do named
ND-Array dimensions improve readability, but they are used to
implement a form of type checking for all ND-Array arguments.
All ND-Array arguments passed to a function must have the same
number of dimensions with the same names as given in their argu-
ment declarations. For example, a function expecting a 4D-Array
with dimension names in_chan:out_chan:y:x (i.e. a set of �lters)
could not be passed a 4D-array with dimension names img:chan:y:x
(i.e. a batch of images).

3.2 Metaprogramming
As discussed earlier, metaprogramming is, by necessity, commonly
used to create high e�ciency GPU implementations of NN opera-
tions. Thus, the novelty of our approach is not merely the usage
of metaprogramming, but in the speci�c design choices made to
balance speed, portability, and productivity. We start with allowing
the user to write only mildly restricted native GPU code in our CU-
DA/OpenCL subset language, CUCL. Compared to directly using
CUDA or OpenCL, CUCL:

• provides language-neutral idioms to replace those from
CUDA and OpenCL, and

• requires all ND-Array function arguments to be decorated
with their dimension names, and

• requires access to ND-Array metadata (sizes, strides) to use
a special template syntax: %(myarray_mydim_size ).

Many simpler operations can be directly written as a single CUCL
function template. To produce OpenCL or CUDA functions from a
CUCL function template, the framework: (1) replaces CUCL idioms
with OpenCL or CUDA ones, and (2) replaces references to ND-
Array sizes and strides with either (at the user’s explicit choice) (2a)
constants for the speci�c input ND-Array sizes, or (2b) references
to dynamically-passed ND-Array metadata. Typically, we care most
about the case where the sizes are replaced with constants, as this
gives the most possibility for optimizations and therefor e�ciency.
However, this does require instantiation of the given CUCL tem-
plate for every unique set of called argument sizes. Sometimes, for a
given operation, this is unnecessary for performance, and perhaps
even creates prohibitive overhead. Thus, at the user’s selection, our
framework also allows dynamically passing the sizes and strides of
ND-Arrays as automatically-generated function arguments. Note,
however, that CUCL code insulates the user from this issue, since
the same syntax is used to refer to ND-Array metadata regardless
of if it is dynamic or static, allowing easy experimentation with
both methods for each ND-Array.

In general, our approach does not require a GPU programmer to
learn any new languages. CUCL is simply a set of optional idioms
to allow portability between OpenCL and CUDA. For metapro-
gramming, the user can optionally write unconstrained C/C++ to
generate CUCL using a simple string-based template system. But,
to be clear: a user can, as a starting point, take existing OpenCL or
CUDA functions and run them inside Boda with only minor changes

(to meet the interface of Boda for inputs and outputs), without writ-
ing any metacode or using any CUCL idioms. However, to get
programming model portability, they will need to update their code
to use only shared subset of OpenCL and CUDA. In this case, the
CUCL idioms serve to aid the process, as they allow portable usage
of various OpenCL/CUDA features that exist in both languages
but with di�erent syntax. Similarly, to get performance portabil-
ity, they will likely need to employ metaprogramming. But, here,
Boda’s simple string-based metaprogramming system eases the
programmer into learning this skill.

Metaprogramming for NN Convolutions. NN convolution can
be viewed as generalized matrix-matrix multiplication. In fact, in
early approaches, NN convolution was often implemented using
BLAS (Basic Linear Algebra Subroutines) library SGEMM (Single-
precision General Matrix-Matrix multiply) calls for the bulk of the
computation. But, as discussed in Section 5, the use of special-
purpose code for NN convolutions is currently the dominant ap-
proach. However, writing e�cient NN Convolution code is di�cult,
as it requires:

• large blocks consisting of many moves or multiplies,
• supporting many regimes of input sizes and modes, and
• having �ne-grained control over data movement and exe-

cution.
All of these issues share a common solution: metaprogramming.
With metaprogramming, one can easily write loops at the metacode
level to generate long sequences of moves or multiplies. Multiple
input regimes can be handled with metacode level case-splits that
do not incur runtime overhead. Finally, one can generate speci�c
memory and register indexing patterns without repetitive, error-
prone manual e�ort. Prior e�orts have indeed uniformly used
metaprogramming to varying degrees to address these issues; see
Section 5 for more discussion and a detailed comparison with this
work. At a high level, we choose to take a very general and �exible
approach to metaprogramming. Rather than use some language-
level metaprogramming facility, we choose to directly write code
generators in our framework’s host language of C++. We use our
framework’s native support for ND-Arrays at the metacode layer
to (when desired) allow code generation to exploit �xed, exact sizes
for all inputs and outputs. For example, when cooperatively loading
data across threads on a GPU, one must typically employ a loop
with a conditional load. If there are N threads loadingW words,
the loop must iterate dW /N e times. For each iteration, the load
must be guarded on the condition that i ∗ N + thread_id <W . In
CUCL, OpenCL, or CUDA, here is a simpli�ed version of how such
a loop might appear:

for(int i = 0; i < ((W-1)/N)+1; ++i) {

int const ix = i*N + thread_id;

if(ix< W){ filts_buf[ix] = filts[ix];}

}

However, if N andW are �xed, we know we need exactly dW /N e
individual loads. Further, only the last load need be conditional,
and then only if (W mod N ) is non-zero. In some cases, just mak-
ing W and N constant may allow the platform-speci�c compiler
to unroll the loop and eliminate unneeded conditionals without
additional e�ort. We show our framework’s support for this simple
metaprogramming approach here, where we have replaced the W
and N variables with template variables that will be expanded to
integer string constants:

#pragma unroll

for(int i = 0; i < ((%(W) -1)/%(N))+1; ++i) {

int const ix = i*%(N) + thread_id;

if(ix <%(W)){ filts_buf[ix] = filts[ix];}

}
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Although simpler metaprogramming approaches (such as C++ tem-
plates, discussed more in Section 5) might be su�cient to handle
this case, we have observed that the platform-speci�c compiler of-
ten does not successfully unroll the loop and/or remove unneeded
conditionals (we provide an example later in this section). In such
cases, our framework allows us to smoothly and easily shift more
complexity to the metacode level and directly emit the sequence of
desired loads. To do this, we move the loop to the metacode level,
and replace it entirely with a template variable in the CUCL code:

%( filts_buf_loads );

Then, at the metacode level, we write code to generate the needed
sequence of loads, which is similar in structure to the original loop:

string ix_str , load_str;

for(int i = 0; i < ((W-1)/N)+1; ++i) {

int const max_ix = i*N + (N-1);

ix_str = str(i*N)+"+thread_id";

load_str = "filts_buf["+ix_str+"]";

load_str += "= filts["+ix_str+"];";

if(max_ix >= W){ // need bound check

load_str = "if("+ix_str+"<"+str(W)

+ "){"+load_str+"}";

}

emit( "filts_buf_loads", load_str );

}

While metaprogramming clearly adds complexity, the virtue of a
string-based C++ approach is simplicity. If the programmer can
write GPU-style C code, they can certainly write C (or C++) that
prints the same GPU-style C code. Then, they can easily promote
code from the code to the meta-code level to exploit run-time infor-
mation to specialize the �nal generated code. And, in the event of
errors at the generator level, or for pro�ling, they can easily inspect
the generated code. We argue that, compared to compiler-style
approaches, our approach is both valid and one that some fraction
of the rare programmers expert in e�cient low-level numerical
programming favor. Returning to our example, when this metacode
is run for the case of (N=96,W=256), the result is exactly the desired
sequence of loads:

filts_buf [0+ thread_id] = filts[thread_id ];

filts_buf [96+ thread_id] = filts [96+ thread_id ];

if(192+ thread_id <256){

filts_buf [192+ thread_id] = filts [192+ thread_id ];

}

In one case (with N=128,W=512), this approach resulted in 4
assembly-level load instructions. In contrast, a loop-based approach
failed to remove the conditional guarding the load, and yielded
dozens of instructions in including four conditional jumps. The
details of this example are too long to include here, but are available
in the Boda source as test/meta-smem-load-example.txt.

Further, generation of global-to-shared memory load sequences
(where access patterns are critical), and generation of register-
blocked, unrolled sequences of fused multiply-adds (which are
often hundreds of instructions long) were tasks that signi�cantly
bene�ted from metaprogramming. Although too complex to discuss
in detail here, the reader is referred to our full metacode implemen-
tation in the Boda source code in src/cnn_codegen.cc.

In summary, it is not easy to determine what sequences of C-
level code will execute well on a given platform, but our framework
aims to make the process easier. Further, metaprogramming al-
lows the programmer to exploit run-time knowledge to make many
values (such as sizes, strides, loop bounds, and o�sets) constant,
and to reduce the usage of loops and conditionals. Generally, this
allows the platform-speci�c compiler to generate more e�cient
binary code. But, perhaps more importantly, when the compiler
fails to automatically generate e�cient code, metaprogramming
allows for the ability to emit very low-level code, so that the �nal

instruction sequence can be carefully guided. This allows the ability
to productively experiment with di�erent compute and memory
access patterns without needing to manually rewrite large sections
of target-speci�c code. Access to detailed documentation, disassem-
blers and/or instruction-level pro�ling tools for each given platform
make this process much more productive. However, it is perhaps
when such aids are not available that Boda’s ability to speed the
cycle of experimentation is most vital.

Now, we discuss our overall meta-programming �ow, which
includes the framework layers shown in Figure 3.

Annotated
 CG

Compute 
Graph (CG)

Refined 
CG

Variant selection per-operation & 
setting tuning parameters 

Graph-level 
optimizations 

Performance portability 

Code generation with metadata 
& template substitution 

Pre-allocation 
& scheduling

Compilation
& execution

Programming 
model portability

Generated
function 

CUCL
function 

Figure 3. Boda �ow: from compute graph to code.

3.3 Variant Selection and Autotuning
As mentioned, NN Convolutions have a wide range of possible
input sizes and parameters. It is di�cult to write a single function,
even with metaprogramming, that runs well over a broad range
of input sizes. Furthermore, each back-end target may need spe-
ci�c optimizations, which may be di�cult to combine in a single
function. Perhaps one target can use a single function for many
input sizes, but requires special techniques for memory access. On
the other hand, perhaps a range of targets can share code, but only
for certain ranges of input sizes. Thus, depending on their speci�c
goals, we expect the user will create multiple variants of certain im-
portant operations (such as convolution). Further, each variant may
have various tuning parameters that a�ect code generation, so they
can run well in more cases. Such tuning parameters might control
thread blocking, memory access patterns, or load/store/compute
vector widths. Consider a typical set of tuning parameters and
their values: MNt=4:4,MNb=16:16,Kb=4,vw=4. These parameters
specify 4×4 register blocking, 16×16 thread blocking, an inner-
loop-unroll-factor of 4, and a vector/SIMD width of 4. Given an
input size and target platform, it may be tractable to manually or
heuristically choose a variant and its tuning parameters – partic-
ularly when variants are written with speci�c targets and input
size ranges in mind. However, when considering many operations
across many input sizes across many target platforms, this task be-
comes at best onerous and at worst intractable. Thus, an important
complimentary technique is autotuning, where such parameters
can be selected automatically by the framework. By performing a
brute-force, guided, or sampled exploration of the space of variants
and tuning parameters, we can both: (1) �nd the best parameters
for a given operation, as well as (2) learn much about a new target
platform.

Figure 4 demonstrates the key features of autotuning: automatic
per-platform variant selection and automated sweeps over tuning
parameters. Currently, we apply a simple brute-force search com-
bined with some heuristic parameter selection, which is tractable
given the relatively small number of operations, variants, and tun-
ing parameters. For example, in the experimental evaluation of
Section 4, which considers 43 operations on 3 targets, we needed
to compile and execute a total of 1150 functions. This took on the
order of 1 hour, with compilation time being the dominant cost. As
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future work, we plan to explore a wider tuning space, over which
using brute-force would be intractable. In that case, we plan to use
techniques such as those from OpenTuner [1] to limit the number
of points in the space that must be tested.

Convolution
3x227x227
96x55x55
stride=4

Platform Info
BW=1 TB/s

PC=9 TFLOPS Autotuner:
pick variant
& set tuning 

params

variant=tconv
vector_width=4

blocking=8:8:4:16

Figure 4. Autotuning in Boda.

3.4 Graph-level Optimizations
Next, we discuss graph-level optimizations: a critical but relatively
simple part of our �ow. In particular, there are two important
graph-level optimizations for NN compute graphs:

• Fusing of adjacent convolution and activation operations,
and

• Inserting any needed data-format-conversion operations.
Convolution operations are commonly followed by the applica-
tion of some element-wise activation function. In some cases, the
overhead to read and re-write the output ND-Array to apply the
activation function is signi�cant. In these cases, one may inline
the code for the activation function in the convolution operation
to avoid a read-modify-write of the output. While this may in-
crease the code size of the output-writing part of the convolution
operation, it is generally still favorable to do this, as activation
functions such as ReLU add only a few instructions per existing
output store. So, our framework simply always performs this fusion
when possible, using string substitution to insert an application of
the activation function for all output-value writes. The insertion of
data-format-conversion operations is necessary due to the fact that
some variants may use di�erent layouts or padding of their input
or output ND-Arrays. That is, since we are able to freely choose the
format of most internal ND-Arrays, we can exploit this to achieve
higher e�ciency within each variant. While the user must gener-
ally manually pick data layouts chosen to work well for a given
case, the framework’s support for ND-Array access and metadata
handling eases the burden of creating transformation functions and
experimenting with di�erent layouts. Also, as long as di�erent lay-
outs are distinguished by di�erent ND-Array signatures (di�erent
dimension cardinality or naming), the framework can error-check
that all ND-Arrays are in the proper format prior to each operation.
In many cases, data-format-conversion operations can be inserted
automatically, based on the context in which an ND-Array is used.

3.5 Code Generation, Scheduling, and Execution
Once we have generated and compiled callable functions for each
needed operation, we execute the compute graph. For this, we must
�rst perform operation scheduling and ND-Array allocation. For
our current target application, scheduling is not di�cult. The bulk
of execution time is spent on operations that can each individually
saturate the target hardware’s compute capacity by themselves. So,
we need not attempt to run multiple operations in parallel; any
topological sort of the compute graph yields a reasonable execu-
tion order. Further, for our current use cases, we are generally not
limited by GPU memory. Hence, we can employ a naive alloca-
tion strategy and simply pre-allocate all ND-Arrays in the compute
graph. However, with some additional work, our framework should
be easily capable of supporting more complex scheduling and allo-
cation policies if needed or desired. After allocation and scheduling,

we issue the resultant sequence of function calls to the target back-
end, which in turn performs all the desired computations. The
output ND-Arrays are then resident in GPU memory, ready to be
read back to the CPU or processed further as desired.

4 Results
We now report per-convolution-operation runtime results across
hardware targets and programming models, organized to illustrate
the key contributions of our work. The benchmark set of opera-
tions was chosen by extracting the unique convolutions from three
common DNNs: “AlexNet” [7], “Network-in-Network” [10], and
the �rst version of Google’s “Inception” network [16]. Further, we
choose to report a selection of 43 operations with:

• a batch size of 5, which models a streaming deployment
scenario with some latency tolerance, and

• have more than 1e8 FLOPS (as we focused our optimization
e�orts on these more computationally intensive sizes).

As show in Table 1, we organize the operations by sorting them by
FLOP count, which is a reasonable proxy for the di�culty of a given
operation. However, depending on the exact convolution parame-
ters, two operations with similar FLOP counts may substantially
di�er in both:

• their theoretical maximum e�ciency for a given hardware
platform (based on Roo�ine [19] analysis), as well as

• the empirical performance of any given convolution algo-
rithm.

So, while one expects a general trend that operations with larger
FLOP counts will take longer to execute, there is no expectation
of smoothness. Of particular note, the two operations with large
spikes in runtime in most graphs are Fully Connected layers, where
each �lter is the size of the full input image and thus there is only
one output pixel per image. Compared to other convolutions with
similar FLOP counts, such operations o�er less opportunity for
parallelism and data reuse, and thus tend to be slower to execute.
However, these fully connected layers can be handled with a faster,
less general version of convolution. This special case is not fully
implemented in Boda yet, and it appears cuDNN does not properly
invoke its specialized version for these cases, perhaps since they
are not explicitly marked as fully connected (though this can be
easily deduced). Adding optimizations for these special cases to
Boda is a good subject for future work.

The NVIDIA GPU used is a Titan-X(Maxwell). The AMD GPU
used is an R9-Nano. The Qualcomm GPU used is the Adreno 530
GPU portion of the Snapdragon 820 System-on-Chip (abbreviated
“SD820” hereafter). For the CUDA platform, we use the NVIDIA-
provided nvrtc library to allow run-time compilation for CUDA.
All timings are performed using CUDA and OpenCL level timing
functions, and thus should include only time spent on the GPU, and
should not depend on the host CPU or other machine con�guration
details. The input data given to the convolutions is all-non-zero
pseudo-random noise. Note that runtimes should not (in general)
depend on the input data, as long as it has proper range and sparsity.
All outputs are cross-checked for numerical correctness using a hy-
brid relative/absolute tolerance of 1e-3. It is generally the case that
NN calculations do not rely on precision for values with very small
magnitudes (i.e. large negative exponents). So, when comparing
each value between known-good and under-test implementations,
we calculate a relative di�erence, but clamp it to the maximum
absolute value of the two values being compared. Thus, as the
values to compare become smaller than the speci�ed relative error
tolerance, the tolerance becomes absolute instead of relative. See
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KSZ S OC B input X×Y×Chan FLOPs
5 1 32 5 28×28×16 1e+08
5 1 64 5 14×14×32 1e+08
1 1 256 5 7×7×832 1.04e+08
1 1 112 5 14×14×512 1.12e+08
1 1 128 5 14×14×512 1.28e+08
1 1 64 5 28×28×256 1.28e+08
1 1 64 5 56×56×64 1.28e+08
1 1 128 5 14×14×528 1.32e+08
1 1 144 5 14×14×512 1.45e+08
1 1 96 5 28×28×192 1.45e+08
1 1 384 5 7×7×832 1.57e+08
1 1 160 5 14×14×512 1.61e+08
1 1 160 5 14×14×528 1.66e+08
1 1 4096 5 1×1×4096 1.68e+08
1 1 192 5 14×14×480 1.81e+08
5 1 128 5 14×14×32 2.01e+08
3 1 320 5 7×7×160 2.26e+08
1 1 384 5 13×13×384 2.49e+08
1 1 128 5 28×28×256 2.57e+08
1 1 256 5 14×14×528 2.65e+08
1 1 96 5 54×54×96 2.69e+08
3 1 384 5 7×7×192 3.25e+08
3 1 208 5 14×14×96 3.52e+08
1 1 1000 5 6×6×1024 3.69e+08
1 1 1024 5 6×6×1024 3.77e+08
6 1 4096 5 6×6×256 3.77e+08
3 1 224 5 14×14×112 4.43e+08
1 1 256 5 27×27×256 4.78e+08
3 1 256 5 14×14×128 5.78e+08
5 1 96 5 28×28×32 6.02e+08
3 1 288 5 14×14×144 7.32e+08
3 1 128 5 28×28×96 8.67e+08
3 1 320 5 14×14×160 9.03e+08
11 4 96 5 224×224×3 1.02e+09
11 4 96 5 227×227×3 1.05e+09
7 2 64 5 224×224×3 1.18e+09
3 1 1024 5 6×6×384 1.27e+09
3 1 256 5 13×13×384 1.5e+09
3 1 384 5 13×13×256 1.5e+09
3 1 192 5 28×28×128 1.73e+09
3 1 384 5 13×13×384 2.24e+09
3 1 192 5 56×56×64 3.47e+09
5 1 256 5 27×27×96 4.48e+09

Table 1. List of benchmark convolution operations. KSZ: kernel
X/Y window size; S: X/Y stride; OC: # of output channels; B: # input
images per batch

the function min_sig_mag_rel_diff() in src/boda_base.cc for
the exact implementation.

Programming model portability – OpenCL vs. CUDA. On
NVIDIA hardware, we show that we can achieve almost identical
per-operation runtime, using the same CUCL code, regardless of
which programming interface we use (programming model porta-
bility). This is contrary to the common perception that CUDA
o�ers higher performance than OpenCL for NVIDIA hardware.
Although this may often be true in practice, the fact that Boda
emits only low-level code insulates the user from the di�erences
between OpenCL and CUDA. Instead of using complex program-
ming methods at the level of OpenCL and CUDA, Boda instead
shifts much of the implementation complexity into the metacode
layer, which is relatively programming platform neutral. Thus, the
resulting OpenCL and CUDA code is quite simple and portable,
using little beyond basic C constructs and the (common to OpenCL

and CUDA) GPU threading model. Also, we abstract away various
higher-level issues in terms of compilation, allocation, scheduling,
and execution that di�er between the two platforms. This is (to the
best of the author’s knowledge) a novel illustration of the lack of
importance of using CUDA versus OpenCL for a high-e�ciency,
di�cult-to-implement GPU programming task. A comparison of
CUDA vs. OpenCL e�ciency on our benchmark set of operations
is given in Figure 5. In the �gure, all runtimes are for running
each operation using the best function generated by Boda for that
operation, selected by autotuning. The two plotted cases di�er
only in the choice of backend (OpenCL or CUDA) for compilation
and execution; the generated CUCL code for both cases is identical.
In both the OpenCL and CUDA backends, it is possible to output
the compiled “binary” code (in this case, NVIDIA PTX portable
assembly code). For several cases that were inspected, the same
CUCL source code yields the nearly the same PTX when compiled
using either OpenCL or CUDA. However, there are some minor
di�erences: the addressing modes and internal LLVM compiler ver-
sions appear to slightly di�er between NVIDIA’s internal OpenCL
and CUDA compilation �ows. These issues, combined with normal
runtime variation/noise, can easily explain the remaining small
di�erences in runtime between the OpenCL and CUDA cases.

As a gauge of the overall absolute quality of our results, in
Figure 6, we show the performance of Boda relative to the highly-
tuned vendor CNN library cuDNN version 5. Note that Boda is
particularly slower in cases with 3x3 kernel sizes, where cuDNN
is using Winograd convolution [8], which is not yet implemented
in Boda. A case study to determine the e�ort/speed tradeo� of
implementing Winograd convolution in Boda is a key topic of
future work. However, overall, we are reasonably competitive, and
even faster than the reference library in a few cases.

Tuning for Qualcomm Mobile GPUs . In Figure 7, the boda-
initial values show the initial (poor) performance when running the
general-case fallback convolution variant on the SD820 platform.
When starting work on this platform, the general-case fallback
variant was the only variant that could be run, since bugs in the
Qualcomm OpenCL implementation and portability issues (primar-
ily related to usage of shared memory and high register usage)
prevented any of the existing optimized-for-NVIDIA variants from
running at all. The few missing bars in the boda-initial series de-
note cases where even the simple fallback variant failed to compile
or run. However, with a few weeks of e�ort, we were able to cre-
ate a new convolution variant that both worked around bugs in
the Qualcomm platform as well as used some platform-tailored
optimizations for memory access. Additionally, based on analysis
and experimentation, we added new points in the space of tuning
parameters (speci�c thread and register blocking constants) to be
searched over. The �nal results of using the combination of the
new variant and expanded tuning space are shown in the �gure
as boda-autotuned, with the same meaning as in other �gures: the
values show the runtimes of the best variant and tuning parameters
for each operation.

Improving e�ciency by autotuning. We now move to some ini-
tial results on AMD hardware that demonstrate the value of auto-
tuning. Using the expanded library of variants and tuning space
from targeting NVIDIA and Qualcomm hardware, we perform an
experiment to isolate the e�ect of autotuning. In Figure 8, we com-
pare two cases. First, we consider the runtimes one might achieve
without autotuning. In this case, it is too time consuming to select
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Figure 5. OpenCL vs CUDA. Runtime on NVIDIA Titan-X (Maxwell)
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Figure 6. Comparison of Boda with cuDNNv5 on NVIDIA Titan-X
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Figure 7. Initial vs. optimized results on Qualcomm Snapdragon 820
the best variant and tuning parameters for each operation individu-
ally. Instead, the boda-manual-tune values show the runtimes that
result from:

• using a simple “choose-most-specialized-possible” heuristic
to select the per-operation variant, and

• choosing the single overall best setting for tuning parame-
ters, judged by the sum of runtime over all cases.

The second step in this process, while automatic, is designed to
mimic the actual process and results of previous e�orts at manual
tuning that we performed prior to having autotuning support in our
framework. Thus, in addition to giving better results, autotuning

requires much less e�ort than manual tuning. Additionally, the
overall result of exploring the tuning space provides signi�cant
insight into this new platform. By seeing which variants and tuning
parameter settings work well, and which do not, and comparing
results across platforms, we can more quickly determine where to
focus future optimization e�orts. As with all new platforms, it is
di�cult to predict how much speed improvement is possible with
a given amount of optimization e�ort. However, we are now well
positioned to explore this question for the AMD platform as future
work.
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Figure 8. Manually-tuned and autotuned runtime on AMD R9-Nano (Fiji)
Performance portability on di�erent targets. In Figure 9, we
show the overall portability of our benchmark convolution oper-
ations across three di�erent platforms. Using a single framework
and library of variants and tuning parameters, we achieve reason-
able performance across three di�erent hardware platforms (AMD,
NVidia, and Qualcomm) and di�erent two programming platforms
(OpenCL and CUDA). Note that the generated code has no depen-
dencies on any platform-speci�c libraries (or any libraries at all),
and all code is generated and compiled at run-time speci�c to each
operation instance. In particular, for testing, the framework can run
the same operation on all platforms supported within a single pro-
cess and compare full results across platforms on the �y. Currently,
the results for the AMD platform are signi�cantly slower than those
on the NVIDIA platform, especially for the smaller (lower FLOP
count) operations. OpenCL is presented as a standard for portable
parallel computing across many types of hardware. This leads to
a common perception that OpenCL provides general (both func-
tional and performance) portability. However, these results clearly
demonstrate that, for these operations, OpenCL does not provide
performance portability even between two relatively similar plat-
forms (AMD and NVIDIA) with comparable peak computational
and memory performance. Of course, the intent of Boda is to al-
low programmers to close this portability gap, and proving that
this can be done for the AMD platform is an important topic for
future work. Similarly, while the SD820 results are much slower
than the NVIDIA results (by perhaps 2 orders of magnitude), it
must be remembered that the SD820 GPU is (by design) a much
smaller device with much lower power usage and correspondingly
lower peak performance. At this time, we present these results
mainly to show the functional portability of our entire framework,
including testing and pro�ling, and not to directly compare these
platforms. However, with modest additional optimization e�orts
on the AMD and Qualcomm platforms, one may be able to draw
fairer comparisons between these disparate platforms.

5 Related Works
Early NN frameworks such cuda-convnet [7] and Ca�e [5] per-
formed CNN convolutions by leveraging Nvidia’s cuBLAS [11]
matrix math (BLAS) library. However, this BLAS-based approach
is limited in that it: (1) does not reuse data between spatially over-
lapping input windows, (2) sometimes requires expensive input
and output transformations to convert 4D-Arrays into 2D matrices,
and (3) does not allow fusion of an activation function with the
convolution operation. Additionally, the underlying matrix-matrix

multiply function may not be well optimized for the problem sizes
required.

Various purpose-built libraries to perform NN convolution have
improved speed and e�ciency over BLAS-based approaches. NVIDIA’s
popular cuDNN [2] library achieves much higher e�ciency than
BLAS-based approaches [3], but is closed-source and limited to
NVIDIA hardware. Thus, it is not extensible to support new opera-
tions or to target other hardware platforms.

With similar performance to cuDNN, a more open family of
libraries based on an assembly-language-level metaprogramming
�ow is embodied in Nervana System’s “neon” framework [9] [15].
However, as with cuDNN, this approach is limited to NVIDIA hard-
ware. Further, the use of perl-based metaprogramming to generate
low-level GPU assembly code creates signi�cant hurdles to extend-
ing this approach for new operations or platforms. We operate
instead at the higher abstraction level of CUCL, and use a C++-
hosted string-template based metaprogramming approach. We
argue that our approach of writing C++ code that generates C code
is relatively easier to work with and extend than writing perl to
generate assembly. In particular, using C, many constructs look
roughly the same at the metacode and code levels. As shown in the
example in Section 3, to statically unroll a loop, one simply moves
the loop from the code to the metacode, and “escapes” the body
of the loop to print the code it previously contained. In essence,
we claim the similarity and compatibility between the metacode
and code languages eases the burden on the programmer to op-
erate across both levels. Further, rather than simply creating a
convolution library, we span the entire �ow from compute graph to
execution, which allows for additional freedom and optimizations.

One common approach to metaprogramming is to use built-
in language level metaprogramming facilities. In particular, C++
templates are commonly used for high performance GPU metapro-
gramming with CUDA. However, C++ templates have the following
disadvantages as compared with this work:

• C++ template support for OpenCL is only starting to become
available.

• All C++ template programs must run at compile time, and
thus cannot use run-time information.

• Like perl, C++ templates are a di�erent language than C,
and are generally considered di�cult to use.

• C++ templates do not o�er the practical ability to implement
complex, signi�cant operations tasks at the meta level.

• C++ templates do not allow the ability to inspect the gen-
erated C level code for a given instantiation for debugging
and analysis.
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Figure 9. Autotuned runtime on NVIDIA Titan-X, AMD R9-Nano, and Qualcomm Snapdragon 820
In general, there is a lack of mature related work with which to

compare our work against, especially for targeting mobile GPUs.
In particular, Greentea LibDNN [18] and cltorch [13] do not have
published results for mobile GPUs, and it is not clear that they
even support such platforms. Further, the lack of maturity of the
codebases makes them di�cult to independently benchmark. Again,
we do admit that such comparisons are important and are a good
subject for future work and collaboration if available. Also, based
on published results [13] [3], cltorch and Greentea do not appear to
be currently competitive with cuDNN on NVIDIA platforms (unlike
this work).

On the topic of programming model portability, any compar-
ison must consider both performance portability and program-
ming model portability at the same time, which requires a common
benchmarking methodology. The OpenCL-based cltorch project
also provides a comparison with a similar CUDA based approach
(CUDA torch). However, being separate projects, this comparison
does not imply programming model portability for cltorch – nor is
the speed of cltorch and CUDA torch particularly close [13].

One compiler-style approach, Latte [17], focuses more on front-
end generality and the ability to support arbitrary NN code. How-
ever, since it targets Intel CPUs and accelerators, as opposed to
popular GPUs, direct comparison is di�cult.

6 Conclusions
Boda is a new approach for productive development of e�cient
GPU code for NN operations. In particular, it supports metapro-
gramming and autotuning to enable programming model and per-
formance portability. Experimental results show that Boda eases
the path to portable, e�cient implementations. On NVIDIA hard-
ware, we achieve performance competitive with the vendor library
using either OpenCL or CUDA. On Qualcomm hardware, we show
that we can quickly develop new variants and otherwise tune our
generated code to achieve reasonable performance on a mobile
GPU. On AMD hardware, we show that autotuning and pro�ling
pre-existing code on a new platform provides a good foundation for
platform-speci�c optimization e�orts as future work. Further, as
an open, vendor-neutral framework, we avoid dependencies on any
speci�c hardware platforms or inextensible vendor libraries. Thus,
our framework provides a productive method for implementing
existing and new NN operations while targeting various hardware
platforms.
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