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∗Technische Universität Darmstadt, Germany

Email: {rinke, wolf}@cs.tu-darmstadt.de
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‡Jülich Aachen Research Alliance, Section JARA-HPC, Forschungszentrum Jülich, Germany
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Abstract—The neural network in the brain is not hard-
wired. Even in the mature brain, new connections between
neurons are formed and existing ones are deleted, which is
called structural plasticity. The dynamics of the connectome is
key to understanding how learning, memory, and healing after
lesions such as stroke work. However, with current experimental
techniques even the creation of an exact static connectivity map,
which is required for various brain simulations, is very difficult.
One alternative is to use simulation based on network models
to predict the evolution of synapses between neurons, based
on their specified activity targets. This is particularly useful as
experimental measurements of the spiking frequency of neurons
are more easily accessible and reliable than biological connectivity
data. The Model of Structural Plasticity (MSP) by Butz et
al. is an example of this approach. However, to predict which
neurons connect to each other, the current MSP model computes
probabilities for all pairs of neurons, resulting in a complexity
O(n2). To enable large-scale simulations with millions of neurons
and beyond, this quadratic term is prohibitive. Inspired by
hierarchical methods for solving n-body problems in particle
physics, we propose a scalable approximation algorithm for MSP
that reduces the complexity to O(n log2n) without any notable
impact on the quality of the results. An MPI-based parallel
implementation of our scalable algorithm can simulate neuron
counts that exceed the state of the art by two orders of magnitude.

I. INTRODUCTION

The brain is not as hard-wired as traditionally thought. Neu-
rons are connected to each other in a dynamically changing
biological network of synapses, also known as the connectome.
Even in the mature brain, new connections between neurons
(i.e., synapses) are continuously created and existing ones are
deleted, which can be described as structural plasticity. Study-
ing the dynamics of connectivity in the brain is fundamental to
understanding how learning, memory, and healing after lesions
in the brain such as strokes work. Unfortunately, accurately
observing the connectome and its evolution empirically is
very hard. Limiting factors are, for example, the resolution of
sensors and restricted access to the brain areas of interest [1].
Thus, even creating an exact connectivity map of a small
region of the brain is extremely challenging. However, it is
exactly such a connectivity map that is needed as the basis of
state-of-the-art brain simulations [2], [3].

An alternative to acquiring biological connectivity data is to
determine the connections between neurons using a network
model. For example, when the spiking frequency of a neuron

is too low, it starts to form more synapses, with the aim
of increasing its electrical activity. Conversely, synapses are
deleted when the electrical activity of a participating neuron
is too high. One big advantage of the spiking frequency is
that it is easier to observe experimentally than the connectome
itself. In addition to generating static connectivity maps, such
a network model can also help investigate the dynamics of
connectivity, such as (i) structural plasticity in a cell-type-
dependent manner [4], (ii) the creation of structures due to
external stimuli [5], and (iii) functional reorganization and
restructuring after a lesion [6], [7].

The Model of Structural Plasticity (MSP) by Butz et al. [8]
is a network model with activity-dependent dynamic creation
and deletion of synapses. In traditional models, connectivity
is fixed while plasticity merely arises from changes in the
strength of existing synapses, typically modeled as weight
factors. MSP, in contrast, is suitable for simulating the reorga-
nization of the connectome. Instead of representing a synapse
by a weight factor, MSP models a synapse as a connection
between an axonal “plug” and a dendritic “socket”. These
synaptic elements grow and shrink independently on each
neuron. When an axonal element of one neuron connects to the
dendritic element of another neuron, a new synapse is formed.
Conversely, when a synaptic element bound in a synapse
retracts, the corresponding synapse is removed. The governing
idea of the model is that plasticity in cortical networks is driven
by the need of individual neurons to homeostatically maintain
their average electrical activity. Consequently, neurons form
new synaptic elements if their activity is below a desired
threshold, and remove elements if it exceeds the threshold. As
empirical observation shows, MSP lets networks of neurons
robustly grow towards a stable homeostatic equilibrium of
activity and connectivity. It was shown that this structural-
plasticity rule can account for network rewiring after a partial
loss of external input (deafferentation) [8]. The simulation
results exhibited strong similarities with biological data from
network rewiring in the primary visual cortex after focal retinal
lesions [6], [7]. To make MSP available to a larger community
and combine its capabilities with the features of a state-of-the-
art brain simulator, the model was recently integrated [1] into
the NEST neural network simulator [2].

Although a parallel implementation of MSP with MPI



has already been able to successfully simulate the structural
plasticity of up to 105 neurons with NEST [1], the computa-
tional complexity of MSP in terms of the number of neurons
seriously limits its scalability. To decide which pairs of axonal
and dendritic elements will form a synapse, MSP follows a
probabilistic approach. It considers all pairs of neurons with
a vacant axonal element on one side of the pair and a vacant
dendritic element on the other, and calculates the probability of
them establishing a connection between them. The shorter their
distance, the higher this probability becomes. Given that every
neuron creates a certain amount of both axonal and dendritic
elements (limited by a constant due to biological restrictions),
ultimately all pairs of neurons have to be considered. Thus, the
cost grows quadratically (O(n2)) with the number of neurons.
However, as soon as we start investigating the connectivity
across individual brain regions and the number of neurons
involved rises above a hundred thousand, this cost becomes
prohibitive. Note that the human brain has 1011 neurons. For
this reason, we urgently need a scalable algorithm for MSP.

A similar challenge arises in n-body problems, where pairs
of bodies have to be considered for force calculations. To
improve the scalability of the force calculations, powerful
approximation methods have been developed [9], [10]. They
are based on the observation that particles sufficiently far
away from a target particle do not need to be considered
individually. It is our goal to leverage their underlying ideas
and adapt them to the problem of structural brain plasticity.
The most influential algorithms are Barnes-Hut [9] and the
Fast Multipole Method [10] (FMM). However, they cannot
be applied to our problem directly. They calculate the force
exerted on (Barnes-Hut) or the potential of (FMM) each
body, whereas we need to select pairs of neurons (bodies) for
synapse creation. Moreover, n-body simulations continuously
subject each particle to force calculations. In the brain, after an
initial network creation phase, only a small subset of neurons
exhibits vacant axonal elements. Thus, vacant dendrites only
have to be found for this smaller subset.

In this paper, we present a scalable approximation method
for simulating structural plasticity based on MSP. Our algo-
rithm, an adaptation of Barnes-Hut, reduces the complexity
of MSP from O(n2) to O(n log2 n). We further show that
the approximations of our method are still precise enough to
resemble neural networks created by the original MSP. An
MPI-based parallel implementation of our scalable algorithm
is the first to enable the model-based creation of neural
networks consisting of up to 107 neurons—with the potential
for far greater problem sizes.

II. RELATED WORK

Today’s largest brain simulations contain about 109 neurons.
C2 [3] and NEST [11] are examples of state-of-the-art brain
simulators able to reach such a large scale. Both require
the user to describe the connectivity between neurons before
the simulation starts. During the simulation, the connectivity
map remains static. However, the strength of the synapses it
defines may change over time. Well-known models that strive

to capture structural plasticity include the compensation model
by Dammasch et al. [12] and the activity-dependent neurite
outgrowth model by van Ooyen et al. [13]. However, while the
compensation model ignores topology altogether, van Ooyen’s
model is too restrictive in that neurons always connect to their
direct neighbors before connecting to more distant neurons.
These limitations are addressed in the Model of Structural
Plasticity [8], the subject of this paper, where synapses are
randomly created in a distance-dependent way.

An example for using n-body simulation in brain research
has been presented by Prasad et al. [14], where cortical brain
regions are represented as particles with mass proportional
to the region’s volume. Particles attract each other with a
force proportional to the strength of the connectivity between
the regions they represent. The connectivity between regions
was derived from diffusion imaging data from patients with
Alzheimer’s disease and healthy subjects. Based on these
parameters, the authors use a gravitational n-body simulation
to obtain a connectivity matrix between brain regions. This
matrix is then examined with the goal of distinguishing
between patients and healthy subjects. Our work differs from
this approach in that we do not perform an n-body simulation.
Instead, we adopt ideas of hierarchical n-body methods to
reduce the complexity of a structural plasticity model.

The concepts of force between particles and distance-
dependent probability for pairs of neurons are similar enough
to make the adaptation of n-body methods [9], [10] to our
problem a realistic option. Another motivation is that the data
locality and approximation of advanced n-body methods seem
to better mimic biological behavior in the brain. In particular,
while “actively” trying to find a vacant dendrite, a neuron’s
vacant axon has only partial knowledge of other available
neurons. Our choice of n-body methods for adaptation is
the Barnes-Hut algorithm [9], a decision we will outline in
Section IV. An example showing the good scalability of
the Barnes-Hut approach for n-body problems is the PEPC
code [15], which has already been used to efficiently simulate
systems with about 64 · 109 bodies on 458, 752 cores of an
IBM Blue Gene/Q system.

III. THE MSP MODEL OF STRUCTURAL PLASTICITY

This section describes the Model of Structural Plasticity [8],
which consists of three basic steps to simulate network connec-
tivity in an activity-dependent fashion: (i) update of electrical
activity, (ii) update of synaptic elements, and (iii) update of
connectivity.

1) Update of electrical activity: The electrical activity
of each neuron is continuously calculated on a millisecond
timescale. Intracellular calcium concentration is updated ac-
cording to the electrical activity. As calcium concentration and
average firing rate are linearly proportional, the model uses
calcium concentration to guide the growth dynamics of the
synaptic elements.

2) Update of synaptic elements: The detailed morphology
of synaptic elements is abstracted and represented only by the
number of synaptic contacts on axons (axonal boutons) and



dendrites (dendritic spines). We call these contacts collectively
synaptic elements. A homeostatic rule determines for each
neuron when axonal and dendritic synaptic elements are
created or deleted. If the calcium concentration is below the
desired set point, they are created. If it is above the set point,
they are deleted. Creation or deletion proceeds until the desired
level of electrical activity has been reached.

3) Update of connectivity: At discrete points in time,
existing synapses are deleted and new synapses are formed,
depending on the current number of synaptic elements. A
synapse is deleted after either the participating axonal or
dendritic element has been removed during the update of
synaptic elements. If a synapse is removed, a synaptic element
that was previously bound in this synapse becomes vacant
again. If a source neuron with a vacant axonal element is
assumed, then the target neuron which the axonal element
will try to connect to is determined by considering every
neuron as a potential target and calculating the probability
of establishing a connection. The probability depends on
the distance between source and target, and the number of
unbound dendritic elements available at the target. Given the
three-dimensional position (x, y, z) of a source neuron j and a
target neuron candidate i, we can evaluate a three-dimensional
Gaussian-shaped kernel:

Kij = exp

(
− (xj − xi)2 + (yj − yi)2 + (zj − zi)2

σ2

)
(1)

σ is a simulation parameter that controls the width of the
curve. To avoid creating autapses (i.e., source neuron connect-
ing to itself), we set Kij = 0 for i = j. Kij is then weighted
by a factor wi denoting the number of vacant dendritic ele-
ments at the target neuron. This yields |Neurons| (number of
neurons) values of the form {wi·Kij | j is source neuron ∧ i ∈
Neurons} for the source neuron j. The sum of the elements
in this set is not necessarily 1. To construct probabilities, all
the elements are finally scaled so that their sum equals 1.
Finally, a random number in the interval [0, 1] selects the target
neuron out of all candidates. Constructing the probabilities
in this way ensures that the closer the two neurons are,
and the more dendrites the target neuron candidate offers,
the higher the probability for the target neuron candidate to
be chosen for synapse formation is. During the connectivity
update, every vacant axonal element selects a target neuron, as
described above. Note that multiple axonal elements may try
to connect to the same target neuron. If the neuron does not
have sufficient vacant dendritic elements, some of the axonal
elements are rejected. In this case, they try to find another
target neuron during the next connectivity update. The extent
of changes in the neural network is determined by the update
of synaptic elements. As these elements grow rather slowly,
the connectivity update occurs only infrequently.

Performance considerations: Steps 1) and 2) consider
every neuron and thus run in O(n). In step 3), every neuron is
examined to decide which of its synapses have to be deleted.
As the number of synapses per neuron is limited through a
constant (due to biological reasons), synapse deletion runs in
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Fig. 1. The number of synapses MSP creates over time for 105 neurons.
To save simulation time, every neuron is initialized with one vacant axonal
element and two vacant dendritic elements. Otherwise, we would have to
wait until synaptic elements have grown to form synapses. At the beginning,
no synapses exist and the network is empty. Neurons start forming synapses
to reach their desired level of electrical activity. From 3 · 106 msec on, the
neurons enter equilibrium and only a few synapses are being formed. Note
that some synapses are also deleted as the simulation progresses, which is not
shown here.

O(n). However, for synapse creation in step 3), probabilities
are calculated for all pairs of neurons, which takes O(n2). This
worst case occurs in the early phase of network creation where
no synapses exist yet and all neurons still have vacant axonal
elements available. Figure 1 depicts this situation. Note that
the number of synapses created during the first 5 ·105 msec is
in the order of the number of neurons and much higher than
during the remainder of the simulation. The peaks in the plot
appear because we apply the same growth curve to all synaptic
elements. That is, after all axonal elements have been bound
in synapses during connectivity updates, new axonal elements
grow and become available for all neurons at about the same
time. Especially if major structural changes occur, that is, at
the beginning or after introducing lesions, synapse creation
prevents MSP from being scaled to large neural networks.
Thus, reducing the complexity of MSP’s synapse creation is
a prerequisite for simulating larger portions of the brain.

IV. A SCALABLE ALGORITHM FOR MSP

We shall now describe our scalable approximation algorithm
for MSP, an adaptation of the Barnes-Hut n-body method
to our specific problem. Although the O(n) complexity of
FMM is lower than the O(n log n) complexity of Barnes-
Hut, we chose Barnes-Hut because FMM is harder to tailor
to our needs and to implement. One noteworthy difference is
that FMM groups not only target but also source particles,
whereas we need to group only target neurons, which more
closely matches Barnes-Hut. Moreover, we anticipate that the
number of neurons in the human brain (1011) is the largest
problem that our algorithm will ever be required to handle
efficiently, which means that the superior scalability of FMM
may ultimately not be needed. For these reasons, we believe
that following the design philosophy of the simpler Barnes-
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Fig. 2. A two-dimensional example of grouping neurons. Neurons 3-6 and
7-8 are in the same respective squares. They form two groups. The length
of their squares is denoted by l, which can be seen as the spatial extent of
the group. The two groups are represented by a virtual neuron (black solid
circle). The source neuron is neuron 1. Instead of considering all individual
neurons as target neuron candidates, grouping reduces the work at this stage to
considering only two virtual neurons and two normal neurons (neuron 2 and
the source neuron itself). To avoid autapses, the source neuron’s probability
is set to zero. A dashed line depicts the distance d from the source neuron to
the other neurons under consideration, which are neuron 2 and the two virtual
neurons.
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Fig. 3. A two-dimensional tree-construction example. On the left, we see the
subdivision of the simulation domain. On the right, we see the resulting tree.
Neurons are numbered from 1 to 8. The inner nodes in the tree are virtual
neurons, while the leaves are real neurons belonging to their subdomains.

Hut algorithm is a reasonable choice that will be sufficient for
our purposes without sacrificing essential performance goals.

Calculating the probabilities for creating synapses is the
most time consuming part of MSP. Similarly to Barnes-Hut,
we combine distant neurons into groups whenever possible
instead of considering them individually. Neurons in the same
group have a similar distance to the source neuron. We
represent a group of neurons through a virtual neuron whose
position is a linear combination of the positions of the group
members. Weight factors position the virtual neuron closer to
neurons with many vacant dendritic elements. The number
of vacant dendritic elements of the virtual neuron is the
sum of vacant dendritic elements present in the entire group.
This approach resembles the concept of the center of mass
in gravitational versions of the Barnes-Hut algorithm. Only
neurons close to the source neuron are considered individually
because they differ more in their relative distance to the source
neuron. Otherwise, the probability error, caused by using the
averaged position of the virtual neuron, could become too
large. Figure 2 shows an example. Neuron 2 is too close to the
source neuron and hence not considered as part of a group.
Below, we explain the three steps of our algorithm: (i) tree
construction, (ii) tree update, and (iii) target neuron selection.

a) Tree Construction: Similarly to the Barnes-Hut algo-
rithm, we start by forming a tree of neuron groups. However,

compared to particles in an n-body simulation, our neurons do
not move. Thus, the tree is created only once at the start of the
simulation. The tree construction proceeds as follows: Given
a cube that contains all neurons in our simulation domain, we
create a spatial tree representation of the domain step-by-step.
If the domain contains more than one neuron, we subdivide
it into eight cubical subdomains of the same size. Each of
the eight subdomains is then recursively subdivided if it
contains more than one neuron. The recursion ends when every
subdomain contains at most one neuron. As a result, we obtain
an octree (i.e., a tree with at most eight children per node)
with the root representing the cube containing all neurons.
Its children are the eight subdomains that it was divided into
and so on. Every leaf in the tree represents a single neuron,
every inner node represents a virtual neuron in its subdomain.
This hierarchy of subdomains defines the groups of neurons
that we need. For ease of illustration, we have used two-
dimensional examples in our figures. In comparison to three
dimensions, we have subdivided a domain into four squares
and the resulting tree is a quadtree (i.e., a tree with at most four
children per node). Figure 3 shows the final subdivision of a
domain and the resulting tree. The depth of the tree depends on
the distribution of the neurons. The closer neurons are located
to each other, the more domain subdivisions are required
and the tree depth could in principle grow indefinitely [16].
Fortunately, biological constraints ensure that neurons are not
positioned at purely arbitrary distances from each other within
the brain. Although organized in layers, they are still rather
homogeneously distributed. For this reason, we assume that
the depth of the tree is Θ(log n). This roughly corresponds to
the distance between homogeneously distributed neurons. As
in Barnes-Hut, we create the tree by successively inserting all
neurons into the tree. Since our tree is of depth Θ(log n), tree
creation takes O(n log n).

b) Tree Update: Neurons do not move, but the number
of their vacant dendritic elements is subject to change. For
this reason, the tree has to be updated before creating new
synapses. For every leaf (i.e., real neuron), we store the current
number of vacant dendritic elements. For every inner node
(virtual neuron), we not only update the number of vacant ele-
ments but also the position of its virtual neuron. The number of
vacant dendritic elements is simply the sum of those available
on its (direct) children. Let v be a virtual neuron. Then the
number of vacant dendritic elements is Dv =

∑
i∈childrenDi.

The position is a linear combination of the positions of its
children and their vacant dendritic elements. After updating its
vacant element count, the x-coordinate of the virtual neuron
v is calculated as xv = 1/Dv

∑
i∈children xiDi. The y and

z-coordinates are obtained in a similar way. We update the
information in the tree bottom-up from the leaves to the root
via postorder traversal, which takes time O(n).

c) Target Neuron Selection: After a tree update, we
form new synapses by finding a target neuron for every
vacant axonal element. To minimize the number of probability
calculations, we already decide at the coarser level of neuron
groups which neurons the source neuron will not connect to



and which we therefore do not need to consider any further.
If the source neuron decides to connect to a virtual neuron,
we unfold the group it represents. This makes all its (virtual)
constituent neurons visible, from which we again select one.
Every group selection decreases the number of target neuron
candidates. The recursion ends once a single real target neuron
has been selected. Selecting a target neuron for a given source
neuron means choosing a path from the root to a leaf. To
decide which subdomains we consider as a whole on the path
down the tree, we use the acceptance criterion (AC) of the
Barnes-Hut method. Let d be the distance from the source
neuron to the virtual neuron. Let l denote the length of the
virtual neuron’s subdomain. If l/d < θ, we calculate a single
connection probability for the entire subdomain. Otherwise,
we unfold it and recursively apply the AC to its constituent
subdomains. Here, θ is a configurable precision parameter that
ensures that subdomains for which we calculate probabilities
are distant enough from the source neuron in relation to their
size. Note that a subdomain can be unfolded for two reasons,
either because it has been selected to form a connection or
because it does not satisfy the AC.

The reason for using the Barnes-Hut AC is as follows. Neu-
rons in a subdomain that satisfy the criterion have relatively
small individual chances of being selected as a target neuron.
In addition, they have similar distances to the source neuron.
Thus, the distance of their virtual neuron seems to properly
approximate their individual distances to the source neuron.
On the other hand, the neurons in a subdomain that does not
meet the AC may show greater relative differences in their
distance to the source neuron. Consequently, their probabilities
differ more and a single virtual neuron would not properly
represent all neurons in the group.

Figure 4 continues our previous example. Starting from the
root, the AC is applied. Because the root does not satisfy
l/d < θ for its domain, we need to unfold it. The same is true
for its first child. At this point, the recursion stops because
both its children are leaves. The other two children of the root
satisfy the AC and remain closed for now. The gray shaded
area marks the first set of nodes for which we now calculate
probabilities, as described in Section III. The difference to the
original MSP is that we only consider a subset of neurons,
with some of them being virtual. Based on their probabilities,
we select one neuron from this subset. It is the second child
of the root (framed square), a virtual neuron. In the next
step (Figure 4b), we unfold the subdomain of the selected
neuron and apply the AC to one virtual neuron and neuron
6. Both are accepted (gray area). Note that a real neuron is
trivially accepted since unfolding is not possible. We calculate
the connection probabilities and select one neuron, which is
neuron 6. It is a real neuron and thus the target neuron for
source neuron 1. Now, the selection terminates at this point.

The complexity of the target neuron selection depends on
the number of nodes to consider. With θ = 0, all subdomains
are unfolded and we consider every neuron for a given source
neuron. That is, the algorithm is exact and behaves as the
original MSP with complexity O(n2). For θ > 0, we start
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(b) Step 2

Fig. 4. A two-dimensional example of target neuron selection in two steps
(a) and (b). Neuron 1 is the source neuron. Areas shaded in gray identify the
set of (virtual) neurons from which one must be selected. The selection is
framed. In (b), arrows indicate the path from the root to the target neuron 6.

considering groups of neurons. Here, the complexity depends
on the depth of the tree, which we assume to be Θ(log n),
as previously stated. When randomly selecting nodes on the
path down from the root to the target neuron, after every
selection the depth of the remaining subtree is reduced in the
worst case by one only. That is, we have to perform Θ(log n)
steps (depth of the tree) until we find a target neuron. To
determine the complexity of each step, we follow the argument
of Barnes and Hut for homogeneously distributed particles [9].
In particular, when increasing the number of neurons, the
new additional subdomains not containing the source neuron
incur a certain amount of extra probability calculations. This
amount depends on θ but not on the number of neurons.
Consequently, increasing the number of neurons by a constant
factor only increases the number of probability calculations
by an additive constant (for θ). That is, the complexity of
each step is O(log n). Therefore, it takes time proportional to
O(log2 n) to find a target neuron for one source neuron. Under
the biologically motivated assumption that the tree is of depth
Θ(log n), the complexity of finding a target neuron for every
neuron in one connectivity update is therefore O(n log2 n).

d) Error Analysis: In Figure 4, the chain of subdomains
that contain the source neuron (root and its first child) is
completely unfolded until the source neuron is encountered.
This is very helpful for avoiding autapses, as is usually
desirable in brain simulations. To avoid autapses, MSP sets the
probability of a neuron to connect to itself to zero. However,
during the recursive descent, every virtual neuron’s probability,
which depends on the position and number of dendrites,
is based on all neurons in its subdomain. As we have no
information about whether or not the source neuron is included
in a particular virtual neuron’s domain, we cannot exclude
the source neuron’s contribution from the virtual neuron.
Consequently, the probability assigned to a virtual neuron
whose group contains the source neuron is too high. This is
because the zero probability of the source neuron applies only
if it is considered directly and not through a virtual neuron. As
a side effect, the selection also becomes biased towards other
neurons in the same domain through the inflated probability
of the source neuron. To eliminate this bias, we define the AC
in such a way that the source neuron can never become part
of a virtual neuron’s domain during probability calculations.
We accomplish this by setting θ ≤ 1/

√
3.

According to the AC, every subdomain with l/d ≥ θ is



unfolded, with d again being the distance from the source
neuron and l the edge length of the subdomain. The ratio
l/d decreases with increasing distance d between the source
neuron and the subdomain’s virtual neuron. This is also true
for subdomains of different sizes l that contain the source
neuron. For those, d =

√
l2 + l2 + l2 = l

√
3 is the greatest

possible distance between the source neuron and the virtual
neuron (in three dimensions). After substituting l

√
3 for d,

l/d ≥ l
l
√
3

= 1/
√

3 becomes the smallest possible ratio
between l and d. As a result, setting θ ≤ 1/

√
3 and defining

the AC as l/d < θ unfolds all subdomains containing the
source neuron. Note that 1/

√
3 > 0.5. That is, setting θ ≤ 0.5

is a practical usage guideline for our algorithm. To achieve the
same behavior in two dimensions, we need to set θ ≤ 1/

√
2.

Before a target neuron tk at depth k in the tree is selected for
synapse creation, all virtual neurons vi, i = 0, . . . , k−1 on the
path to the target neuron are selected. This path is of length k.
Thus, the probability of selecting tk is P (v0∩ . . .∩vk−1∩tk),
a product of conditional probabilities. It depends on the choice
of the precision parameter θ and the path length k. With
θ = 0, our approximation method uses the same probabilities
as the exact MSP for selecting a target neuron. Here, the
error of our approximation becomes zero, while the complexity
becomes quadratic. Of course, an error analysis is supposed
to indicate the extent to which the approximated probabilities
differ from the exact MSP. However, it seems difficult to
determine analytically which effect the error has on the actual
structure of the resulting neural network. Hence, we run
simulations with different precision parameters and analyze
their effect on the resulting networks in Section V.

e) Summary: The execution flow of our scalable MSP
algorithm is depicted in Figure 5. The steps within the for loop
are executed in every iteration. As can be seen, the connectivity
update, which depends on the number of synaptic elements,
has the greatest complexity. As synaptic elements grow much
slower compared to the frequency at which neurons fire, the
connectivity update is run only every 100 simulation steps.
However, as our experimental results in Section V show, even
a single connectivity update using the exact MSP takes as
long as about 50 min for 106 neurons, which makes it the
clear bottleneck. This is why we must update the connectivity
more quickly. Our algorithm brings the complexity from
O(n2) down to O(n log2 n), which now becomes the overall
computational complexity of the approximated MSP.

V. RESULTS

Let us now evaluate our algorithm in terms of performance
and impact of the approximation on the result quality. Our
simulation parameters correspond to layer 5A of the rat cor-
tex [17], which is about 500 µm thick with a density of 54,500
neurons per mm3. Of these, 20% are inhibitory, the remaining
80% are excitatory. We randomly distribute the neurons in a
volume of height 500 µm and let the other two dimensions
grow with the number of neurons. Initially, no synapses exist.
Every neuron is initialized with vacant synaptic elements:
one excitatory and one inhibitory dendritic element plus one

1: Create empty network without synapses . O(n)
2: Initialize number synaptic elements per neuron . O(n)
3: Construct tree from domain . O(n log n)
4: for i← 1, simulation steps do
5: UPDATEELECTRICALACTIVITY . O(n)
6: UPDATESYNAPTICELEMENTS . O(n)
7: if i mod 100 = 0 then
8: UPDATECONNECTIVITY { . O(n log2 n)
9: Delete synapses & update network . O(n)

10: Create synapses {
11: Update tree . O(n)
12: Find target neuron for every
13: vacant axonal element . O(n log2 n)
14: Update network } } . O(n)
15: end if
16: end for

Fig. 5. The simulation flow of MSP when using our hierarchical algorithm.
The complexity of each step is shown on the right. The number of simulation
steps is a parameter provided by the user.

axonal element. The type of the axonal element depends on the
type of the neuron. Excitatory neurons form excitatory axonal
elements while inhibitory neurons form inhibitory axonal
elements. However, both neuron populations grow excitatory
and inhibitory dendritic elements. Synapses are only possible
between synaptic elements of the same type. That is, excitatory
axonal elements only connect to excitatory dendritic elements.
A similar rule applies to inhibitory synaptic elements. In our
experiments, we compare parallel versions of the original MSP
algorithm and our scalable MSP approximation algorithm. In
both cases, neurons are evenly distributed across processes.
We run our experiments on the Lichtenberg cluster at TU
Darmstadt. Our compute nodes are equipped with two Intel
Xeon E5-2670 (8 cores each) and 32 GiB RAM. The cluster
network is InfiniBand FDR.

a) Performance: With the exception of synapse forma-
tion, which is accelerated via approximation, the time-step
loop of our scalable algorithm performs the same steps as the
original MSP algorithm. Another difference is the construction
of the octree, which our algorithm performs once before the
simulation starts. Nevertheless, even for 107 neurons tree
construction does not exceed 2 min. We do not include this
time in our measurements as it is a one-off expense. Figures 6a
and 6b show weak scaling results for one connectivity update
for the original MSP and our algorithm. We simulate the
very first connectivity update where no synapses yet exist
and every neuron has vacant elements as described above.
That is, every neuron is trying to find a target neuron for
its vacant axonal element. The original MSP needs about 50
min for 106 neurons, while our algorithm terminates in 2.5
min. On the other hand, even for high precision with θ = 0.1,
our algorithm is still in the range of 5 min for 107 neurons.
This large number of neurons is practically out of reach for
the original MSP. The results also show that reducing the
precision of our method from 0.1 to 0.2 can help to further
reduce the execution time by at least a factor of 2.5. Figure 6c
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Fig. 6. Scaling results. (a-b) Weak scaling execution times with different precision parameters. The legend in (a) also applies to (b). The number of neurons
per core (MPI process) is 104. The numbers of neurons (cores) are: 105 (10), 5 ·105 (50), 106 (100), 5 ·106 (500), 107 (1000). (c) Strong scaling execution
time with θ = 0.3.

depicts strong scaling results for our method. The smaller
decrease in execution time for 32 cores was consistent across
measurements (10 for 105 neurons, 5 for 106). We believe the
reason for this dent can be found in the hardware topology
of the target system. Although only responsible for a subset
of the neurons, in both implementations each process stores
the data of all neurons. Otherwise, the design of the octree
would have been more complicated. That is, our algorithm
replicates the entire octree on each process. This is why the
total number of neurons is currently limited by the amount of
memory available per compute node. Work has already begun
on a further implementation of our scalable algorithm, with
a distributed octree that truly partitions the neurons and only
stores locally those neurons a process is responsible for. This
will enable our algorithm to perform even larger simulations
of structural plasticity than it can handle now.

b) Accuracy: To validate the accuracy of our algorithm,
we compare the neural networks it generates to those of the
original MSP. We consider a neural network as a weighted
directed graph where neurons are the vertices and synapses are
the directed edges pointing from a source neuron to a target
neuron. The number of synapses reaching from the source to
the target is the edge weight. Our comparison is based on
the following graph topology metrics that Butz et al. [18] use
to describe the structure of neural networks: (i) number of
edges, (ii) average Euclidean distance, (iii) average shortest
path length, (iv) global efficiency, (v) average betweenness
centrality, and (vi) average clustering coefficient. We compare
networks of the original MSP and our algorithm with 103, 104,
and 105 neurons. The quadratic computational complexity of
some of the graph metrics prevents us from evaluating them
for larger neuron counts. We start with an empty network and
initially vacant synaptic elements. The biological simulation
time is 6·106 msec, which allows 60,000 connectivity updates.
At this time, the neuronal electrical activity and the network
have reached their equilibrium and change only insignificantly.
Figure 7 shows the metrics of the networks generated by our
algorithm relative to those of the original MSP. Except for the

average clustering coefficient, the networks produced by our
algorithm differ only by about 1% from the original MSP. This
is even true for low precisions. However, for 104 neurons the
average clustering coefficient differs by about 5% with even
a small θ = 0.2. To investigate this case further, we calculate
the average and standard deviation of the metrics over 11
simulations for both algorithms (Figure 8). We use a different
random number seed for every run. Interestingly, even for the
exact MSP, individual average clustering coefficients vary by
about 5% across measurements. That is, the 5% difference
can also be found between different runs of the exact MSP.
Figure 8 gives an overview of how the results vary. It can
be seen that the difference between the average of the exact
MSP and our algorithm is below 1% for all metrics. Also
the standard deviations are similar except for the average
Euclidean distance. However, although the “spread” around
the average is different for this metric, the actual average of
our method only differs by 0.14%. Hence, we do not consider
the difference in the standard deviation as significant. These
experiments support our claim that our approximated networks
are still precise enough to represent neural networks of the
exact MSP. Nevertheless, to account for the variation of the
results due to MSP’s probabilistic approach, several simulation
runs are necessary to reliably capture the essential structure of
a neural network at the end of the simulation. This is true for
both, the exact MSP and our approximation of it. Thus, the
scalability of the MSP algorithm is even more critical.

VI. CONCLUSION

The quadratic complexity of MSP in terms of the num-
ber of neurons limits the largest possible structural-plasticity
simulations to networks with 105 neurons [1], which is less
than the number of neurons in the brain of a mouse. Our
approximation algorithm for MSP reduces the complexity to
O(n log2 n). The execution time difference between parallel
implementations of both versions for 105 neurons is a factor
of 20 in favor of our approximation algorithm. In addition,
we are now able to complete simulations with 107 neurons
for the very first time. After distributing the octree across the
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Fig. 7. Network comparison between the original MSP and our algorithm for 103, 104, 105 neurons. The bars at each cluster correspond from left to right
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Fig. 8. Network comparison between the original MSP and our algorithm with θ = 0.2 for 104 neurons. The results per method are based on 11 simulations
with a different random number seed for each run.

available processors, we expect to be able to handle even larger
configurations in the future. Judging by the abilities of highly
scalable Barnes-Hut implementations such as PEPC [15], we
consider 109 neurons a realistic intermediate goal. Given that
neurons do not shift their positions, which eliminates the need
for expensive dynamic load balancing, and considering the
further evolution of supercomputers, we foresee room for even
more.
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