
How Many Threads will be too Many?
On the Scalability of OpenMP Implementations

Christian Iwainsky1(B), Sergei Shudler2, Alexandru Calotoiu2,
Alexandre Strube3, Michael Knobloch3, Christian Bischof1, and Felix Wolf1

1 Technische Universität Darmstadt, 64293 Darmstadt, Germany
{iwainsky,bischof}@sc.tu-darmstadt.de, wolf@cs.tu-darmstadt.de

2 German Research School for Simulation Sciences, 52062 Aachen, Germany
{s.shudler,a.calotoiu}@grs-sim.de

3 Forschungszentrum Jülich, 52425 Jülich, Germany
{a.strube,m.knobloch}@fz-juelich.de

Abstract. Exascale systems will exhibit much higher degrees of paral-
lelism both in terms of the number of nodes and the number of cores
per node. OpenMP is a widely used standard for exploiting parallelism
on the level of individual nodes. Although successfully used on today’s
systems, it is unclear how well OpenMP implementations will scale to
much higher numbers of threads. In this work, we apply automated per-
formance modeling to examine the scalability of OpenMP constructs
across different compilers and platforms. We ran tests on Intel Xeon
multi-board, Intel Xeon Phi, and Blue Gene with compilers from GNU,
IBM, Intel, and PGI. The resulting models reveal a number of scalability
issues in implementations of OpenMP constructs and show unexpected
differences between compilers.

Keywords: Performance modeling · OpenMP · Scalability

1 Introduction

In recent years, we saw a clear trend towards systems with more processing
cores per node. All types of processors used in high-performance computing,
including CPUs, GPUs, or accelerators such as Intel Xeon Phi, are nowadays
either multicore or manycore processors. As a result of this trend, the degree of
intra-node parallelism in supercomputers is on the rise. Before reaching exascale,
it will still have to grow by one or two orders of magnitude [1]. However, this poses
the question whether current implementations of multithreaded programming
models can scale to the large number of threads this will entail.

In this paper, we try to answer this question for OpenMP, a mature and
widely used API for multithreaded programming, and evaluate whether current
implementations would scale to much larger numbers of threads. To this end, we
adopt the automated performance-modeling method by Calotoiu et al. [2] and
generate empirical scaling models of the most common OpenMP constructs.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 451–463, 2015.
DOI: 10.1007/978-3-662-48096-0 35



452 C. Iwainsky et al.

The method takes measurements of execution time or other metrics at smaller
scales as input and produces human-readable growth functions as output which
describe the behavior for larger scales. To capture the cost of individual OpenMP
constructs, we extended the EPCC OpenMP micro-benchmark suite [3,4] and
combined it with the modeling toolchain. We evaluated OpenMP implementa-
tions from GNU, IBM, Intel, and PGI on Xeon, Xeon Phi, and Blue Gene. Our
main discoveries are:

– Previously unknown and potentially serious scalability limitations in imple-
mentations from GNU, IBM, and PGI

– Different behavioral classes depending on whether the number of threads is a
power of two or not

Among all the evaluated compilers, the GNU compiler is the most problematic
in terms of scalability.

The next section introduces the model generator we used to create the scaling
models and how it was customized for our study. In Sect. 3, we explain the
EPCC OpenMP benchmark suite along with our own extensions. Experimental
results for selected OpenMP constructs with particularly noteworthy behavior
are presented in Sect. 4. Then, we discuss related work in Sect. 5 and draw our
conclusion in Sect. 6.

2 Model Generation

The approach underlying our study rests on the identification of scalability bugs
using automated performance modeling [2]. A scalability bug is a part of a
program whose scaling behavior is unintentionally poor, that is, much worse
than expected. As computing hardware moves towards exascale, developers need
early feedback on the scalability of their software design so that they can adapt
it to the requirements of larger problem and machine sizes.

The input of the model generator is a set of performance measurements where
only one relevant parameter, in our case the number of threads, is varied while
all others are kept constant. The idea is to create functions that describe how a
metric, such as the execution time, the number of floating point operations, or
the number of bytes injected into the network, changes as the chosen parameter
is modified. Depending on the availability of measurements, such models can
be created for each function in a program or just one particular code region of
interest.

When generating performance models, we exploit the observation that they
are usually composed of a finite number n of terms, involving powers and loga-
rithms of the parameter x of interest:

f(x) =
n∑

k=1

ck · xik · logjk2 (x)

This representation is, of course, not exhaustive, but works in most practical sce-
narios, since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF).



On the Scalability of OpenMP Implementations 453

In this paper, we vary the number of threads t and model the time overhead of
OpenMP constructs, i.e., the thread-management time lost in the OpenMP run-
time system when executing certain constructs. While changes of the arithmetic
intensity may restrict models of user code to specific segments of the domain
of t [5], we believe that such effects do not have to be considered when judging
the scalability of OpenMP runtime operations. Their critical resource is almost
always the latency of memory accesses and, in particular, of cache coherence pro-
tocols. Moreover, our experience suggests that neither the sets I, J chosen from
the set Q of rational numbers from which the exponents ik and jk are chosen
nor the number of terms n have to be arbitrarily large or random to achieve a
good fit. A possible assignment of all ik and jk in a PMNF expression is called a
model hypothesis. Trying all hypotheses one by one, we find coefficients ck with
optimal fit. Then we apply cross-validation [6] to select the hypothesis with the
best fit across all candidates.

For this study, we selected n = 2, I =
{
0, 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1,

5
4 ,

4
3 ,

3
2 ,

5
3 ,

7
4 , 2

}
, and

J = {0, 1, 2}. Our choices for I and J reflect a range of behaviors, from perfect
to poor scalability, in 39 shades (13 options for i times 3 for j). In the case
of OpenMP constructs, we are not aware of any literature that specifies pre-
cise scalability expectations. This is why we operate under the not uncommon
assumption that anything significantly worse than logarithmic is unacceptable on
the path towards exascale. Given the jitter present in measurements of OpenMP
constructs with their minuscule execution times, we only allow one active term
plus a constant. Trying to model behaviors past the leading term is likely to
capture only noise. Note that we are not trying to create accurate models for
OpenMP constructs but rather want to draw the attention to unscalable behav-
ior. Making accurate predictions for the execution times of OpenMP constructs
at larger scales is beyond the scope of this work.

3 Benchmark Design

Our goal is to investigate the costs of individual OpenMP constructs for dif-
ferent compilers with a focus on the OpenMP runtime system, disregarding
actual workloads. For this purpose, we define time-based metrics that character-
ize the behavior of OpenMP constructs and that can be further used as an input
to the model generator. Because initial experiments indicated a high noise-to-
measurement ratio on some of the target platforms, we filter the raw data to
reduce noise and remove extreme outliers.

3.1 EPCC OpenMP Micro-Benchmarks

The EPCC OpenMP micro-benchmark suite [3,4] is an established and com-
prehensive collection of benchmarks that covers almost all OpenMP constructs.
The micro-benchmarks compare the cost of the constructs by measuring the
difference between a parallelized workload and the workload itself, while the
workload per thread is kept constant. Multiple executions (inner repetitions) of



454 C. Iwainsky et al.

a given OpenMP construct scale the cost of the construct for easier measure-
ment and comparison with the reference workload. This inner measurement is
again repeated multiple times (outer repetitions) to calculate the average and the
standard deviation of the target construct. We modified the EPCC measurement
system to directly interface with our model generator.

3.2 Custom Benchmarks

While the EPCC benchmarks are well-designed to capture the overhead of copy-
ing data environments, they are less suited to precisely capture synchronization
overheads. Since they do not measure the costs of individual OpenMP con-
structs directly, the resulting timings are much more prone to noise. To mea-
sure the costs of OpenMP constructs in isolation, we therefore had to develop
additional benchmarks, which are designed as follows: (i) compute local clock
offsets between master and all the other threads; (ii) synchronize threads using
adjusted window-based mechanism (see next sub-section); (iii) take a per-thread
time stamp and call the OpenMP construct; (iv) take another per-thread time
stamp directly after the construct, or in the case of parallel or for, directly in
the construct. From these measurements, we then derive our metrics, providing
information on minimum construct cost (first out - last in), average cost (average
of end times - last in), etc. For example, in this way we can deduce the minimum
time a barrier was active across all threads.

3.3 Window-Based Adjusted Synchronization Mechanism

The quality of our models depends on how accurately we can measure the timings
of OpenMP constructs. All the threads should enter the construct at the same
time, such that we have a uniform start time that does not depend on the
particular construct being measured. A simple barrier synchronization is not
enough, since the only guarantee it provides is that all threads will have arrived
at the barrier before any thread leaves it. The solution, therefore, is to use a
synchronization mechanism that forces all the threads to exit the synchronization
construct at the same time. In this study, we use a variation of the window-based
synchronization mechanism for MPI collective operations [7]. This mechanism
forces the threads to wait until the agreed time-point is reached and only then
allows them to enter the target construct.

The window-based synchronization mechanism assumes that all threads use
the same clock. However, we discovered that this assumption does not apply
to all test platforms equally. On some platforms, such as the BCS systems of
RWTH Aachen University, which is described in Sect. 4.1, which consist of mul-
tiple motherboards, the high-precision timer used for our measurements was not
well synchronized across all boards. Since we observed considerable clock skew,
we had to calibrate clock offsets relative to the master thread using the cache
coherency mechanisms as communication medium. This type of synchronization
is similar to the NTP protocol [8].



On the Scalability of OpenMP Implementations 455

4 Results

For the sake of brevity, we focus on a few very important OpenMP constructs:
parallel, barrier, single, and for with all three schedule types (static,
dynamic and guided) and the firstprivate modifier. Since our benchmarks
consume a negligible amount of memory bandwidth, we can safely ignore band-
width saturation effects. This also applies to the firstprivate measurement,
which, in our case, uses a single eight-byte variable, which is sure to fit in the
cache. We specified a chunk size of 16 for all loop schedules.

All models shown in the following sections depend on the number of threads
as their sole parameter. Table 1 shows the performance models generated for the
above-mentioned constructs together with their adjusted coefficient of determi-
nation as an indicator of model quality. Figures 2, 3 and 4 provide fit-comparisons
between measurement and model. In general, we consider models with R̂2 � 0.95
valid descriptions of the observed behavior and define constructs with valid mod-
els of significantly faster than logarithmic growth to exhibit problematic scaling
behavior.

4.1 Setup

We conducted our study on three different systems: (i) a node of the BCS clus-
ter at RWTH Aachen University, (ii) an Intel Xeon Phi 7120 coprocessor, and
(iii) a node of an IBM Blue Gene/Q system. The BCS cluster [9] is an Intel Xeon
X7550-based hierarchical NUMA machine, where four boards with four sockets
each are connected via the Bull Coherence Switch (BCS) to create a shared-
memory domain of 128 physical cores. The Xeon Phi and the Blue Gene/Q
node have 61 and 16 physical cores, respectively, with 4-way simultaneous multi-
threading (SMT), i.e., four hardware threads per core. We used the GNU 4.9,
IBM XL 12.1, Intel 15, and PGI 14 compilers. To reduce the effects of noise,
we configured all benchmarks to generate at least 100 individual data points
for each metric, i.e., we set the outer-repetitions of EPCC to 100 and com-
piled our own benchmarks with 100 internal repetitions after the warmup phase.
We ran our benchmarks using numbers of threads that are either a power of
two, multiples of eight, or a sequence between two and the number of physi-
cal cores of a single CPU. Each benchmark was executed in both spread or
close configuration using OMP PROC BIND, with an additional binding to cores
via OMP PLACES="threads". Afterwards, we eliminated outliers by removing the
25 % best and 25 % worst values of a series. Since the close measurements were
noisier than the spread measurements on Intel platforms and largely identical
to spread measurements on Blue Gene, we exclusively focus on spread in this
paper.

4.2 GNU 4.9, Intel 15, and PGI 14 Compilers on BCS

Parallel. We obtain a timestamp on the master thread just before entering
the parallel construct and on each thread when it is ready for work in the



456 C. Iwainsky et al.

parallel region. Then, we calculate the difference between the master timestamp
before entering the construct and the average of all timestamps after entering
the construct. We expect either close to constant behavior, e.g., if a thread pool
is used, or logarithmic behavior otherwise, as one could ideally implement a
tree-based thread-creation scheme.

Unfortunately, indiscriminately feeding data points for all thread counts into
the model generator did not yield any meaningful models. A subsequent man-
ual analysis of the available data showed separate trend functions for different
subsets of the data: for powers of two and for multiples of 16 with and without
an eight-thread offset. We call these classes PO2 (t = 2x), EVEN (t = 16x but
t �= 2x), and ODD (t = 16x + 8 but t �= 2x) with x ∈ {0, 1, .., 7}. The effects
observed for EVEN and ODD are most likely the result of the multi-board hard-
ware configuration of the BCS system. However, regardless of internal hardware
boundaries, PO2 measurements consistently follow their characteristic pattern
even if these thread counts are multiples of 16 with and without an eight-thread
offset.

8 16 32 64 128
0

5 10 5

1 10 4

1.5 10 4

2 10 4

Threads

O
pe

nM
P

P
ar

al
le

l
St

ar
tu

p
O

ve
rh

ea
d

GNU 4.9
Intel 15
PGI 14

.

.

.

. –

–

–

–

Fig. 1. Measurements of parallel on
the BCS node in spread configuration.
To make trends or their absence more
visible, we the connected the measure-
ment points with solid lines.

For example, as we can see in Figs. 2c
and d, the behavior in the ODD case
(half-circles) precludes the existence of a
unifying simple model for the GNU com-
piler. Models for EVEN have very low
R̂2 and will not be considered. Note that
the number of thread counts in EVEN
is very small because many multiples of
16 are at the same time powers of two
and, thus, belong to a different behavioral
class. In the remainder of the paper, we
therefore concentrate exclusively on PO2
and ODD. In contrast to GNU and PGI,
the Intel compiler shows no observable
differences between PO2 and ODD con-
figurations. We therefore omit ODD mod-
els for Intel on BCS in Table 1 and Fig. 2.
Obviously, not all compliers are sensitive to the machine architecture.

In Fig. 1, we see notable differences between GNU, Intel, and PGI compilers.
Using the PO2 and ODD configurations, we obtain two separate models each for
both the GNU and the PGI compiler (Fig. 2a). These four models show super-
logarithmic scaling behavior. In contrast, the Intel compiler exhibits a uniform
trend, but with low R̂2. The almost constant time visible in Fig. 1 for Intel
suggests the use of some form of stand-by threads that can be cost-efficiently
activated.

Barrier. We observe two different behavioral classes for the GNU compiler, while
we observe similarly uniform behaviors for Intel and PGI (Fig. 2b). The PO2
implementation of GNU shows super-linear growth in contrast to its somewhat



On the Scalability of OpenMP Implementations 457

8 16 32 64 128
0

5 10 5

1 10 4

1.5 10 4

2 10 4

Threads

O
p
en

M
P

P
a
ra

ll
el

S
ta

rt
u
p

O
v
er

h
ea

d
GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(a) BCS parallel

8 16 32 64 128
0

5 10 5

1 10 4

1.5 10 4

2 10 4

2.5 10 4

3 10 4

Threads

O
p
en

M
P

B
a
rr

ie
r

O
v
er

h
ea

d

GNU PO2
GNU ODD

Intel PO2
PGI PO2
PGI ODD

(b) BCS barrier

8 16 32 64 128
0

5 10 5

1 10 4

1.5 10 4

2 10 4

2.5 10 4

3 10 4

Threads

O
p
en

M
P

F
o
r,

S
ta

ti
c

S
ch

ed
u
le

O
v
er

h
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(c) BCS static

8 16 32 64 128
0

5 10 4

1 10 3

1.5 10 3

2 10 3

2.5 10 3

3 10 3

Threads

O
p
en

M
P

F
o
r,

D
y
n
a
m

ic
S
ch

ed
u
le

O
v
er

h
ea

d GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(d) BCS dynamic

8 16 32 64 128
0

5 10 4

1 10 3

1.5 10 3

2 10 3

2.5 10 3

3 10 3

Threads

O
p
en

M
P

F
o
r,

G
u
id

ed
S
ch

ed
u
le

O
v
er

h
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(e) BCS guided

8 16 32 64 128
0

1 10 4

2 10 4

3 10 4

4 10 4

Threads

O
p
en

M
P

F
ir

st
P

ri
va

te
O

v
er

h
ea

d

GNU PO2
GNU ODD
Intel PO2
PGI PO2
PGI ODD

(f) BCS firstprivate

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

. –

Fig. 2. Measurements (points) and models (lines) on the BCS node.

better-scaling ODD implementation. All but PGI ODD show worse-than-
logarithmic growth, indicating that logarithmic implementations are possible.

Loop Schedules. For the static schedule (Fig. 2c), we expect constant overhead
as no synchronization between threads is necessary and for dynamic (Fig. 2d) and
guided (Fig. 2e) some thread-dependent growth for synchronizing the assign-
ment of the remaining iterations. We obtained no acceptable PO2 models for



458 C. Iwainsky et al.

Intel and PGI with static, as the model generator did not detect a clear trend;
visual analysis of the data suggests close to constant overheads (Fig. 2c).

Firstprivate. This modifier requires the compiler to broadcast the values of one
or more variables (in this particular case an 8-byte double) from the master
thread to all participant threads. We expect this operation to be very sensitive
to the hardware, as the latency between cores, sockets, and motherboards plays
a crucial role. The Intel compiler exhibits logarithmic overheads for copying the
data to each thread, whereas the overheads of both PGI and GNU grow faster.
Again, the GNU compiler shows two clearly separable behaviors. Models for Intel
and PGI show no sensitivity to the BCS hardware layout (Fig. 2f).

4.3 Intel 15 Compiler on Xeon Phi

On Xeon Phi, we expect less noise and more scalable OpenMP constructs. In
Fig. 3a, we observe distinct behaviors for the first 2 to 61 threads, between 62 and
122 threads, and between 123 to 244 threads. This coincides with the physical

Table 1. Scaling models for the BCS node, XeonPhi, and Blue Gene/Q. Measurements
with a † were generated using EPCC, measurements with � were generated using our
supplemental benchmarks. Each row showing models is followed by a row with the
corresponding adjusted coefficient of determination (R̂2). Since we are only interested
in the scaling behavior and do not strive to predict the overhead in absolute terms, all
models are shown in big O notation.



On the Scalability of OpenMP Implementations 459

structure of the Xeon Phi, which has 61 cores supporting four hardware threads
each. The first 122 threads show less spread in comparison with thread counts
above 122. Because the erratic runtimes above 122 threads prevent the use of
our model generator, we model the first two clusters only. We consider the first
2–61 threads in linear fashion, called LINEAR, and multiples of eight up to and
including 120 threads, called 8X. In addition, we also analyze powers of two
up to and including 64 threads, again called PO2. All results are available in
Table 1.

816 32 61 122 183 244
0

5 10 6

1 10 5

1.5 10 5

Threads

O
p
en

M
P

P
a
ra

ll
el

S
ta

rt
u
p
O

v
er

h
ea

d

PO2
LINEAR

8x

(a) XeonPhi parallel

816 32 61 122 183 244
0

1 10 5

2 10 5

3 10 5

4 10 5

Threads

X
eo

n
P

h
iB

a
rr

ie
rO

v
er

h
ea

d

PO2
LINEAR

8X

(b) XeonPhi barrier

. –

. –

. –

. –

. –

. –

. –

Fig. 3. Measurements (points) and models (lines) on XeonPhi.

Parallel. The LINEAR and PO2 thread distributions have similar scalability
models and closely model the first 61 threads. For thread counts beyond 61, the
deviation becomes larger. The model derived from 8X configurations captures
the overall behavior of Xeon Phi thread creation quite well, including thread
counts above 122. The erratic runtimes for thread counts above 122 (Fig. 3a)
cannot be explained with our model normal form. When comparing the different
configurations, models generated from 8X base points seem to scale better.

Barrier. The behavior we observe is similar to the parallel construct. The PO2,
LINEAR and 8X configurations provide a good fit for their respective domains.
The erratic behavior above 122 threads is even more dominant here, which is why
again no models could be generated for this part of the domain (Fig. 3b). How-
ever, the measurements above 122 threads still suggest some undesirable perfor-
mance effect, potentially resulting from Xeon Phi’s internal network, something
that is traditionally hard to model

4.4 IBM XL 12.1 Compiler on Blue Gene/Q

Blue Gene/Q nodes are single-socket systems without any explicit cache hier-
archy. Analysis of our measurements showed very reliable data with very little
noise and no indication of multiple algorithms or thread-count depended hard-
ware scalability limitations. We therefore used only power-of-two configurations
as input for our model generator.



460 C. Iwainsky et al.

Parallel and Barrier. Contrary to our expectations, either the IBM implemen-
tation of OpenMP or the Blue Gene/Q architecture exhibits problematic scaling
behavior. We observe that metrics exhibit superlinear growth (see lower lines in
Fig. 4). The model for the barrier exhibits similar behavior with just an order of
magnitude lower overheads.

8 16 24 32 40 48 56 64
0

5 10 5

1 10 4

1.5 10 4

2 10 4

2.5 10 4

Threads

V
ar

io
us

O
pe

nM
P

O
ve

rh
ea

ds

Guided 16
Parallel
Static 16
Barrier

. –

. –

. –

. –

. –

Fig. 4. Measurements (points) and
models (lines) on BlueGene/Q.

Loop Schedules. For static scheduling,
which should have constant overhead, we
detected non scalable growth. The static
schedule showed runtimes and behavior
almost identical to the dynamic sched-
ule, suggesting that both use the same
algorithm; the guided scheduling clause
behaves similarly. While these results are
less of a concern for today’s Blue Gene/Q
systems with only 64 threads per node,
the scaling model indicates problematic
overheads of the OpenMP constructs for
larger thread counts on future systems
with similar architecture and software.
In comparison with the often logarithmic
implementations of the Intel Compiler, the IBM XL compiler shows considerable
room for improvement.

5 Related Work

Performance models can provide important insights into application and
systems. Manually-produced models were very effective in describing many
qualities and characteristics of applications, systems, and even entire tool
chains [10–12]. Recent work suggests to use source-code annotations [13] or spe-
cialized languages [14] to support developers in the creation of analytical perfor-
mance models.

There are other automated modeling methods besides the one underlying
our study. Many of these tools focus on learning the performance characteris-
tics automatically using various machine-learning approaches [15]. Zhai et al.
extrapolate single-node performance to complex parallel machines using a trace-
driven network simulator [16], whereas Wu and Müller extrapolate traces to
predict communications at larger scale [17]. Similar to our method, Carrington
et al. extrapolate trace-based performance measurements using a set of canonical
functions [18].

Several studies investigated the overheads of OpenMP constructs on various
platforms [19–22]. Similar to our work, many of them used the EPCC OpenMP
benchmark suite [4]. While they mainly concentrated on the implications the
overhead of OpenMP may have on the scalability of scientific applications, our
goal is to identify scalability issues in OpenMP implementations. One of the
first performance evaluation of OpenMP on XeonPhi was performed by Cramer



On the Scalability of OpenMP Implementations 461

et al. [23]. Eichenberger and O’Brien evaluated the overhead of the OpenMP
runtime on Blue Gene/Q [24].

6 Conclusion

In this work, we analyzed the scalability of OpenMP constructs using
automatically generated empirical performance models. We conducted exten-
sive evaluations of OpenMP implementations from Intel, GNU, PGI and IBM
on Intel-based nodes as well as on IBM Blue Gene/Q nodes. In many cases, the
behavior of OpenMP constructs deviated from our expectations and numerous
scalability issues became apparent. We expected either logarithmic or constant
growth of OpenMP overheads, but discovered mostly linear and super-linear
growth. Neither of the evaluated compilers proved to be the best implementa-
tion in all situations. The Intel compiler showed the best absolute performance
and scaling behavior for most of the metrics in our tests, but it was still sur-
passed by the PGI compiler on two occasions. Considering the increasing degree
of intra-node parallelism, OpenMP compilers will have to tackle theses scala-
bility issues in the future. Our benchmarking method is designed to support
this process, as it can be used to continuously evaluate implementations as their
scalability is improved.

Acknowledgment. This work was performed under the auspices of the DFG Priority
Programme 1648 “Software for Exascale Computing” (SPPEXA). The authors thank
Christian Terboven for the fruitful discussions on scalability expectations for OpenMP
and for providing access to the BCS machine at RWTH Aachen University.

References

1. Stevens, R., et al.: Architectures and Technology for Extreme Scale Computing.
Technical report, ASCR Scientific Grand Challenges Workshop Series, December
2009

2. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2013), p. 45 (2013)

3. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)

4. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH
Comput. Archit. News 29(5), 41–48 (2001)

5. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

6. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat.
Assoc. 79(387), 575–583 (1984)

7. Hoefler, T., Schneider, T., Lumsdaine, A.: Accurately measuring collective opera-
tions at massive scale. In: Proceedings of the IEEE International Parallel & Dis-
tributed Processing Symposium, IPDPS 2008, pp. 1–8 (2008)



462 C. Iwainsky et al.

8. Mills, D.L.: Internet time synchronization: the Network Time Protocol. IEEE
Trans. Commun. 39(10), 1482–1493 (1991)

9. Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen, T.W., Müller, M.S.,
Hentschel, B.: Visualization of memory access behavior on hierarchical NUMA
architectures. In: Proceedings of the First Workshop on Visual Performance Analy-
sis, VPA 2014, Piscataway, NJ, USA, pp. 42–49. IEEE Press (2014)

10. Mathis, M.M., Amato, N.M., Adams, M.L.: A general performance model for paral-
lel sweeps on orthogonal grids for particle transport calculations. Technical report,
College Station, TX, USA (2000)

11. Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of par-
allel and distributed computing systems: a survey of the state of the art. In: Pro-
ceedings of the 1st International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), pp. 279–284 (2007)

12. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q.
In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003), p.
55 (2003)

13. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance mod-
eling. In: Proceedings of the International Conference on Supercomputing (ICS),
pp. 221–230 (2014)

14. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. SC 2012, Los Alamitos, CA, USA,
pp. 84:1–84:11. IEEE Computer Society Press (2012)

15. Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.:
Methods of inference and learning for performance modeling of parallel applica-
tions. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2007), pp. 249–258 (2007)

16. Zhai, J., Chen, W., Zheng, W.: PHANTOM: predicting performance of parallel
applications on large-scale parallel machines using a single node. SIGPLAN Not.
45(5), 305–314 (2010)

17. Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for
SPMD programs. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP 2011), pp. 113–122 (2011)

18. Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC appli-
cations through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013).
doi:10.1142/S0129626413400082

19. Fredrickson, N.R., Afsahi, A., Qian, Y.: Performance characteristics of OpenMP
constructs, and application benchmarks on a large symmetric multiprocessor. In:
Proceedings of the 17th Annual International Conference on Supercomputing, pp.
140–149. ACM (2003)

20. Fürlinger, K., Gerndt, M.: Analyzing overheads and scalability characteristics
of OpenMP applications. In: Daydé, M., Palma, J.M.L.M., Coutinho, A.L.G.A.,
Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 39–51. Springer,
Heidelberg (2007)

21. Liao, C., Liu, Z., Huang, L., Chapman, B.: Evaluating OpenMP on chip multi-
threading platforms. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony,
A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 178–190. Springer,
Heidelberg (2008)

http://dx.doi.org/10.1142/S0129626413400082


On the Scalability of OpenMP Implementations 463

22. Bronevetsky, G., Gyllenhaal, J., de Supinski, B.R.: CLOMP: accurately character-
izing OpenMP application overheads. In: Eigenmann, R., de Supinski, B.R. (eds.)
IWOMP 2008. LNCS, vol. 5004, pp. 13–25. Springer, Heidelberg (2008)

23. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP programming on
Intel Xeon Phi coprocessors: an early performance comparison. In: Proceedings of
the Many-core Applications Research Community (MARC) Symposium at RWTH
Aachen University, pp. 38–44, November 2012

24. Eichenberger, A.E., O’Brien, K.: Experimenting with low-overhead OpenMP run-
time on IBM Blue Gene/Q. IBM J. Res. Dev. 57(1/2), 8–1 (2013)


	How Many Threads will be too Many? On the Scalability of OpenMP Implementations
	1 Introduction
	2 Model Generation
	3 Benchmark Design
	3.1 EPCC OpenMP Micro-Benchmarks
	3.2 Custom Benchmarks
	3.3 Window-Based Adjusted Synchronization Mechanism

	4 Results
	4.1 Setup
	4.2 GNU 4.9, Intel 15, and PGI 14 Compilers on BCS
	4.3 Intel 15 Compiler on Xeon Phi
	4.4 IBM XL 12.1 Compiler on Blue Gene/Q

	5 Related Work
	6 Conclusion
	References


