10,000 Performance Models per Minute —
Scalability of the UG4 Simulation Framework

Andreas Vogel' ®9 | Alexandru Calotoiu?, Alexandre Strube?,
Sebastian Reiter!, Arne Nigel', Felix Wolf*, and Gabriel Wittum?®

! Goethe Universitit Frankfurt, Frankfurt am Main, 60325 Frankfurt, Germany
vogel@gcsc.uni-frankfurt.de
2 German Research School for Simulation Sciences, 52062 Aachen, Germany
3 Forschungszentrum Jiilich, 52425 Jiilich, Germany
4 Technische Universitat Darmstadt, 64293 Darmstadt, Germany

Abstract. Numerically addressing scientific questions such as simulat-
ing drug diffusion through the human stratum corneum is a challenging
task requiring complex codes and plenty of computational resources. The
UG4 framework is used for such simulations, and though empirical tests
have shown good scalability so far, its sheer size precludes analytical
modeling of the entire code. We have developed a process which com-
bines the power of our automated performance modeling method and the
workflow manager JUBE to create insightful models for entire UG4 sim-
ulations. Examining three typical use cases, we identified and resolved a
previously unknown latent scalability bottleneck. In collaboration with
the code developers, we validated the performance expectations in each
of the use cases, creating over 10,000 models in less than a minute, a feat
previously impossible without our automation techniques.

1 Introduction

A broad variety of research questions in natural sciences is formulated in terms
of partial differential equations. The range of applications reaches from clas-
sical continuum field descriptions - such as fluid dynamics, electromagnetism,
or structure mechanics - over biological settings - e.g., drug diffusion through
the human skin or computational neuroscience - to non-physical settings such as
computational finance. Numerical simulations can be used to predict or compare
with measured physical behavior and help to gain insight into the underlying
physical processes. A software framework focusing on the grid-based solutions
of these problems is UG4 [28].

Such simulation codes demand increased computational resources to perform
larger and more refined simulations. Therefore, they must scale to the largest
computing clusters to benefit from available computing power. However, code
developers face two challenges: First, the source code is large, making manual
analysis and optimization of the code time consuming and error prone. This
creates a strong need for an automated workflow supporting scaling analysis.

© Springer-Verlag Berlin Heidelberg 2015
J.L. Traff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 519-531, 2015.
DOI: 10.1007/978-3-662-48096-0_40

520 A. Vogel et al.

Second, code developers have to consume lots of computing resources for test-
ing and can only run tests up to their currently available process counts. This
requires a workflow that allows performance modeling using data from smaller
process counts and hence offers the possibility to resolve performance bottle-
necks at an early stage of code development. As a byproduct, the models for
the resource consumption provide users with an estimate for the requirements
of production runs.

We expanded the automated performance modeling approach by Calotoiu
et al. [7] to meet the mentioned requirements. This approach creates performance
models from a small number of test measurements with a small numbers of
processes. The models are used to detect potential performance bottlenecks and
to predict the resource consumption at larger core counts. We have combined this
approach with the workflow manager JUBE [30] to facilitate the submission and
collection of numerous test simulations that serve as inputs for the performance
modeling approach. In this paper we focus on the applicability of our approach in
realistic code development scenarios and show how scalability issues are detected.

We demonstrate the power of our automated performance modeling process
by applying it to the software framework UG4. Given its approximately half a
million lines of C++ code, manually modeling the performance of UG4 is practi-
cally impossible, which is why it provides a good example for the benefits of our
approach. The major contributions of our work are:

— An automated modeling approach in combination with an automated work-
flow manager for a fast and streamlined detection of scalability issues.

— Demonstration of the tool chain by applying it to the large simulation frame-
work UG4 focusing on human skin permeation simulations.

— Discussion of two performance issues detected by our approach.

— Validation of the UG4 scaling behavior.

The remainder of this paper is organized as follows. In Sect.2, the UG4
simulation environment is presented, Sect. 3 outlines the modeling approach
and Sect. 4 gives an overview on the benchmark environment JUBE. Then, in
Sect. 5 we present three test cases where the tools are used in order to analyze
the UG4 simulation code. Sections6 and 7 are dedicated to related work and
concluding remarks.

2 The UG4 Simulation Framework

The UG4 simulation framework (unstructured grids 4.0) [28] addresses the
numerical solution of partial differential equations and is implemented as a
C++ library. It uses grid-based discretization methods such as the finite ele-
ment method or the vertex-centered finite volume method [6]. Complex physical
geometries are resolved by hybrid, unstructured, adaptive, hierarchical grids in
up to three space dimensions. In addition, a strong focus of the software frame-
work is on efficient and highly scalable solvers, using algebraic and geometric
multigrid methods. The framework is parallelized using MPI. To simplify the

10,000 Performance Models per Minute — Scalability of the UG4 521

Py Py
-3 o o o o o o o o [e/c-—[0] ¢ ¢ o o o o o o 1=3
=2 o—eo——o o Jo] <> 1=2
‘/ C *- d =1
=1 e . fe]

Fig. 1. Illustration for a 1d parallel multigrid hierarchy distributed onto two processes.
Parallel copies are identified via horizontal (darker blue) and vertical interfaces (lighter
blue) (Color figure online)

usage, a separate library called PCL (parallel communication layer) has been
developed, which encapsulates the MPI calls and which provides lightweight struc-
tures for graph-based parallelization. A key feature of PCL is that parallel copies
of objects are not identified by global IDs. Instead, containers, called interfaces,
are used to store the parallel copies on each process in a well-defined order such
that identification can be done by these interfaces in an efficient way [20,21,28].

A typical simulation run consists of several phases, each with its own char-
acter, especially with respect to parallelization. At first, a computing grid is
required. In this specific work, we proceed as follows: A coarse grid describing
the domain is loaded onto one process. The grid is refined, creating new levels of
the multigrid hierarchy and after some refinements the finest grid level is distrib-
uted to empty processes, proceeding with the refinement in parallel. This process
can be iterated, successively creating a tree structure of processes holding parts
of the hierarchical grid. The grid refinement is mainly performed process-wise
and communication is only needed at redistribution stages [20]. An illustration
of the resulting hierarchy for a 1d distribution is shown in Fig. 1.

On the grid, the partial differential equations are discretized by assembling
large sparse matrices and corresponding vectors based on the grid element contri-
butions. Using only lower-dimensional parallel overlap (i.e., each full-dimensional
element is present on exactly one process, but the lower-dimensional boundary
has parallel copies on several processes), the assembly process can be performed
by traversing the full-dimensional elements only and therefore it is an inherent
parallel process. Given optimal load balancing, i.e., an equal distribution of the
elements across the processes, perfect scalability is expected for the assembly.

The most difficult part, from a parallelization perspective, is the subsequent
solution of the matrix equation. Since the algebraic structures are distributed,
solvers naturally involve parallel communication. Multigrid methods are of opti-
mal complexity (linear in the degrees of freedom) and thus a good candidate
for weak scaling. They compute corrections iteratively to approximate the solu-
tion. On every level, simple iterative schemes, called smoothers, are applied and
the problem is transferred to coarser grids in order to compute coarse correc-
tions [6,13]. Our multigrid solver is based on the above-mentioned hierarchically
distributed multigrid. Especially on coarser grid levels, where less computational
work has to be done, fewer processes are involved in the solution algorithm. In
addition, Krylov methods such as CG and BiCGStab are implemented [14].

522 A. Vogel et al.

Their parallelization is mainly based on the parallelization of the matrix-vector
and vector-vector products that appear in their formulation.

3 Automated Performance Modeling

We developed an automatic performance-model generator [7,8] for the purpose
of simplifying the identification of scalability bottlenecks in complex codes. Our
targets are scalability bugs defined as parts of a code that scale worse than
expected. To this end, we create performance models for each part of the code
at the level of function calls to better identify potential problems. Our focus is
to create simple, easy to read, insightful models quickly, as opposed to detailed,
precise models. In our studies, not only execution time is considered as a perfor-
mance metric, but also requirements such as the number of bytes injected into
the network or the number of floating-point operations are taken into account.
This helps developers not only to uncover the existence of potential scalability
bottlenecks, but also to explain their causes. For brevity, we will only present a
short overview of the method.

When conducting a scalability study, our tool takes measurements of metrics
(e.g., time, flops, bytes sent, ...) at different processor counts {p1, ..., Pmaz} for
each individual program region (e.g., function call) as input. This is accomplished
by instrumenting the application and generating parallel profiles at runtime,
which are then analyzed post-mortem. Models describing the growth are gener-
ated for each region, called kernel, and can be analyzed either in an interactive
GUI, which displays a call tree of the application annotated with performance-
model information, or in text form as a ranked list, ordered by either predicted
execution time at a larger scale p; > Pmaqr, Or asymptotic by behavior.

3.1 Model Generation

Our model generator rests on the observation that the models describing the
behavior of parallel programs as a function of the number of processes are usu-
ally finite combinations of terms composed of polynomials and logarithms. For
practical purposes, models with two or three terms are often sufficient. The per-
formance model normal form (PMNF) below describes our representation, which
covers the practical cases encountered so far by virtue of the way that computer
algorithms are designed.

fp)=> " cr-p* - logl (p)
k=1

Moreover, the sets I, J C Q from which the exponents i, and jj are chosen
from can be quite small and still allow a large number of different behaviors to
be modeled. After creating the sets I and J and choosing n, all possible model
assignments, called model hypotheses, can be tried and the best candidate is then
selected via cross-validation [19].

10,000 Performance Models per Minute — Scalability of the UG4 523

Platform definition ‘ ‘Analysis script
Application
Benchmark » Prepare Compile || | Execute Aczlglfze/ » Result
settings y
[[[[
[[[[

JuBE runtime system

Fig. 2. JUBE workflow ([30])

3.2 Recursive Multigrid Extension

One of the core assumptions of our method is that a code will generate the same
call tree for each of the different processor counts {py, ..., Pmaz }- This allows us
to traverse the call tree and compare each individual function call and its behav-
ior. However, within a weak scaling study, the number of grid levels increases
with the process count. Since the multigrid algorithm is based on recursive calls
for each grid level, the involved code kernels are visited recursively more often.
This leads to a different call tree for different processor counts, which required
us to develop a special method to be able to analyze multigrid applications. To
handle this issue, we developed an extension to our method that compares the
different performance measurements and creates a call tree containing only such
kernels which are present in all measurements. The information of kernels which
have to be removed is not lost, but rather added to the parent kernel of the one
pruned from the call tree.

4 Automated Benchmarking Environment

The automated modeling of numerical software codes demands numerous exper-
iments with varying execution parameters — such as process counts, used solvers,
or physical parameters — and multiple repetitions, in order to ensure statistical
significance. Configuring, compiling, running, verifying its correctness, and col-
lecting results means a lot of administrative work and produces a large amount
of data to be processed. Without a benchmarking environment, all these steps
have to be performed manually. To facilitate all these tasks, Forschungszentrum
Jiilich provided and improved JUBE (Juelich Benchmarking Environment) [30],
a script-based framework created to easily perform benchmark runs for different
sets of parameters, execution sizes, compilation options, computer systems, and
to evaluate the results thereafter.

Figure 2 shows the steps that are performed by JUBE in sequence: prepa-
ration, compilation, and execution, where each step might exist multiple times.
Each of these steps can be adjusted to a given code or application by modifying
XML-based setup scripts. The created runs can be verified and parsed by auto-
matic pre- and post-processing scripts that filter out the desired information
and store it in a more compact form for manual interpretation. With JUBE, it

524 A. Vogel et al.

0,1um

30um

Fig. 3. Computing grids for the skin problem showing corneocytes (green) and lipid
channels (red). Left: geometry ratios. Right: 3d grid for 10 layers of corneocytes (Color
figure online)

is easy to create combinatorial runs of multiple parameters. For example, in a
scaling experiment, one can simply specify multiple numbers of processes, differ-
ent solver setups, and physical parameters. JUBE will create one experiment for
each possible combination, submit all of them to the resource manager, collect
all results, and display them together.

5 Results

Using the tools from Sects. 3 and 4, we analyze the UG4 code in three substudies:
In the first two tests, we focus on modeling drug diffusion through the human
skin. First, we analyze the code behavior under weak scaling, then we vary
the diffusivity of the skin cells over several ranges of magnitude. In the third
study, we compare two different types of solvers, again under weak scaling: the
geometric multigrid solver and the unpreconditioned conjugate gradient (CG)
method.

Drug Diffusion though the Human Skin. The outermost part of the epi-
dermis (stratum corneum) consists of flattened, dead cells (corneocytes), that
are surrounded by an inter-cellular lipid. The stratum corneum is the natural
barrier to protect underlying tissue, but still allows for the throughput of certain
concentrations (e.g., drugs, medicine). The latter process can be modeled by a
diffusion process, in which the diffusion coefficient within the corneocytes differs
from the one in the lipid. Different geometric representations of the stratum
corneum have been used to compute the diffusional throughput [17].

In the following two studies, we use a brick-and-mortar model (Fig.3).
Assuming diffusion driven transport in the two subdomains s € {cor, lip} (cor-
neocyte, lipid), the governing equation is given by

Oes(t,x) = V- (D Ves(t, x)).

The diffusion coefficient Dy is assumed to be constant within each subdomain
s € {cor,lip}, but may differ between subdomains. For the scalability analysis,
we compute the steady state of the concentration distribution.

As solver, we employ a geometric multigrid method, accelerated by an outer
conjugate gradient method. The multigrid uses a damped Jacobi smoother, two

10,000 Performance Models per Minute — Scalability of the UG4 525

Table 1. Skin 3d study: Models for kernels creating MPI communicator groups (top),
sparse matrix assembling, and multigrid (bottom). |1 — R?|, the absolute difference
between R? and the optimum scaled by 1073, which can be considered a normalized
error, confirms the good quality of all models

Time Bytes sent

Kernel Model |1 — R?| Model |1 — R?|
time = f(p) [ms] [10~3] bytes = f(p) [10~3]

LoadUGScript — MPI_Allreduce 9.334+0.91 - logp 42.6 4 - O(MPI_Allreduce) 0.000
init_levels — MPI_Allreduce 27.3 + 1.3 - log p? 19.6 80.03 - p - O(MPI_Allreduce) 0.003
init_top_surface — MPI_Allreduce 3.71 + 5.18 - p'/* 9.88 4 - p - O(MPI_Allreduce) 0.000

Time Invocations

Kernel Model |1 — R?| Model 1 — R?|
time = f(p) [10~3] invocations = f(p) [10~3]

GMG — PreSmooth — jacobi 1.89 .10~ 2 +0.04 - 10~ 2 - logp 42.6 70.6 + 1.4 - log p 76.9
GMG — prolongate 4.24-1072 4+0.10 - 1072 - logp 84.4 23.5 4+ 0.5 - logp 76.9
assemble_linear 1.68 01 0

(resp. three) smoothing steps in 2d (resp. 3d), a V-cycle, and an LU base solver.
The iterations are completed once an absolute residuum reduction of 10710 is
achieved. The main difficulty of this problem is the bad aspect ratio of the
computational domain (0.1 um vs. 30 wm for the lipid channels). This is resolved
by three (resp. five) steps of anisotropic refinement to enhance those ratios. Base
solvers are applied at a level where ratios are satisfactory.

Weak-scaling Analysis of the 3d Skin Model. Using the 3d skin model
described above, we fix the diffusion parameter to D¢, = 1073. Table 1 shows
models for a scalability issue we detected. In these kernels, we create MPI com-
municator groups for each level of the multigrid hierarchy, excluding processes
from the group that do not own a grid part on the level. In order to inform
every process on these memberships, we employ an MPI_Allreduce for an array
of length p, resulting in a p - O(MPI_Allreduce) dependency, that will lead
to scalability issues for large process counts. In these kernels, we substituted
MPI_Comm_split for MPI_Allreduce, also eliminating the linearly growing input.
First tests do not show a significant improvement in runtime, however now the
dependency is O(MPI_Comm_split), whose scaling properties have been analyzed
for exascale purposes [22]. Enhanced algorithms for MPI_Comm_split are known
to scale with O(log? p) [24].

Besides the above-mentioned issue, no further scalability bugs were detected,
i.e., no kernel scales worse than logarithmically (see Table 1 for examples). The
accumulated wallclock times for coarse-grain kernels (Fig. 4) show good scaling
behavior, and bounded iteration counts are observed. Our empirical approach
even reveals a rather small but apparent O(log2 p) dependent kernel during solver
initialization where the matrix diagonal is communicated.

526 A. Vogel et al.

30
p L DoF ngmg
25 W 16 6 290,421 25
 20F o 128 7 2271049 27
= : 1024 8 17,961,489 29
2 15 = Init 18192 9 142,869,025 29
2, A Assemble 65536 10 1,139,670,081 29
' = = m W

5 1 Kernel Model for time [s]
s A 4 4 4 Solve 10.75+ 0.32 - log, p
0 57 90 918 o6 Init 8.17+0.002-loglp

p Assemble 1.78
rocesses

Fig. 4. Left: Measured wallclock times (marks) and models (lines) for the assembly,
the multigrid solver initialization, and the solution of the skin 3d problem. Right, top:
Number of grid refinements (L), degrees of freedom (DoF) and number of iterations of
the solver (ngmg). Right, bottom: Performance models for the kernels

= i [

—
[————] =0.75

“05 -05

En.zs Eu.zs

Fig. 5. Instationary (left) and stationary (right) solution for a 2d geometry

Varying the Diffusion Parameter. Our second substudy highlights the
demand for a workflow manager. Biological case studies can require a variation
of input parameters over 10 orders of magnitude. Combining this with 5-10 dif-
ferent process counts in scaling studies, several solver setups and repetitions for
jitter reduction, easily hundreds of measurement runs have to be performed. We
use the JUBE manager for this task. This allows us to easily schedule, collect, and
analyze these runs. As an illustration, we present a study resembling results by
Négel et al. [17]: Fixing the lipid diffusion coefficient to Dy;;, = 1, we vary the dif-
fusion in the corneocytes in the range of D, = 102,10%,...,10~7,10~8. Figure 5

Table 2. Results of the parameter variation study of a 2d skin problem using 1024
MPI processes on 9 levels (43,476,225 DoF's)

Deor 102 |10* [10° [107' [107% |107® |107* |107® |107% |1077 |107®
Foor |1.7¢119.4¢%(1.7€% 11.9¢71 [2.1e72|3.1¢73| 1.0e 72 |8.0e | 7.8¢7* | 7.7e™* | 7.7e*
Niter |27 126 |26 |26 26 26 25 25 25 25 25

10,000 Performance Models per Minute — Scalability of the UG4 527

p L DoF ncg Ngmg
10 16 7 66,049 524 14
_ oG 64 8 263,169 1003 14
o o MG 256 9 1,050,625 1977 13
E A Assonb 1024 10 4,198,401 3875 13
g 1 ssemble 4096 11 16,785,409 7588 13
',—’:—/:’/:/:’d Kernel ~ Model (time [s])
0.1 T T CG 0.227 +0.310 - /p
94 96 98 910 912 GMG 0.219 + 0.0006 - log3 p
Processes Assemble 0.1498

Fig. 6. Left: Measured times (marks) and models (lines) for the assembling and solver
execution for the conjugate gradient (CG) and multigrid (GMG) methods. Right, top:
Number of grid refinements (L), degrees of freedom (DoF) and number of solver itera-
tions (g, Nemg). Right, bottom: Performance models for the kernels

illustrates the solution at an early time step and the stationary case. The biolog-
ically interesting fluxes at the bottom of the domain, Fy,; := f P Ve dS, and
the iteration count for the multigrid solver are collected using JUBE (Table 2).
The relatively constant iteration count over the whole range of physical parame-
ters shows the robustness of the solver. The performance validation of the solver
could have never been so thorough without the use of our automated process,
allowing us to handle, analyze, and refine hundreds of experimental runs and to
provide insights to developers as quickly as possible.

5.1 Analysis of Algebraic Solvers

This section demonstrates the usability of the presented approach to validate
performance expectations. We analyze two solvers with known weak scaling
properties: the nicely scaling multigrid method and the unpreconditioned con-
jugate gradient method with known weak-scaling issues. Our tests will confirm
the theoretical expectations.

Weak Scaling Comparison of Multigrid and Conjugate Gradient. To
allow a theoretical analysis, we choose a well known test problem: For the model
equation —Ac(x) = f(x),x € [0,1]?, discretized on a regular grid with mesh
size h, it is known that the extreme eigenvalues of the resulting matrix are
given by A\pin = 8h~2sin?(7h/2) and A\ar = 8h~2cos?(wh/2) and therefore,
the condition number is given by x := A\pnaz/Amin = tan=2(7wh/2) [14]. For the
CG method, it is known that the error reduction factor in each iteration step
e
a prescribed reduction of the initial error by a factor of § can be estimated by

Niter (9) < %\/E ln(%) +1. For the model problem under consideration and a fixed
reduction factor §, one can use the known condition number, the Taylor-series

can be estimated by [14] and the number of iterations needed to achieve

528 A. Vogel et al.

Table 3. Models for CG solver kernels in the weak scaling study. |1 — R?|, the absolute
difference between R? and the optimum scaled by 1073, which can be considered a
normalized error, confirms the good quality of all models

Time Invocations
Kernel Model |1 — R?| Model |1 — R?|
time = f(p) [ms] [1073] invocations = f(p) [1073]
CG — norm 3.74 +4.65 - \/p 0.764 75.6 + 117.7 - \/p 0.102
CG — dotprod 8.83 4+ 13.3-/p 0.475 149.2 +235.4 - \/p 0.102
CG — SparseMatrix axpy 96.3 - \/p 0.398 75.6 + 117.7 - \/p 0.102
CG — VecScaleAdd 13.7 +22.3 - \/17 0.088 222.9 + 353.1 - \/f) 0.102

approximation of tan, and the fact that % is proportional to 2™f, where nef is
the number of refinements of the unit square, to estimate that the number of
iterations njter ~ Kk = tan_l(ﬂh/Q) ~ % ~ % ~ 2™t jg related to the grid
refinement and will increase roughly by a factor of two with each refinement.
In contrast, for the multigrid method it is known that the reduction rate is
independent of the mesh size and, thus, a constant number of iterations can be
expected [13].

The multigrid results are equivalent to the skin tests. However, for the unpre-
conditioned conjugate gradient method, our empirical performance models reveal
an O(,/p) dependency, expected via the explanation above. We increase the
process count and work load by a factor of four under weak scaling. Ideally, a
constant time is expected, but due to the increase by a factor of two for the iter-
ation count, models as shown in Table 3 are observed. We emphasize that one
invocation of matrix-vector or vector-vector products does scale and the increase
is due to the iteration count increase. A remedy of this issue can not be achieved
by implementation alone, but must be achieved by a change of the mathematical
method, e.g., using multigrid. Figure 6 shows a wall-clock time comparison.

6 Related Work

Performance modeling has a long history. Manual models proved to be very effec-
tive in describing many qualities and characteristics of applications, systems, and
even entire tool chains [5,18]. Recent approaches advocate source-code annota-
tions [27] or specialized languages [25] to support developers in the creation of
analytical performance models.

Various automated modeling methods exist. Many of these focus on learn-
ing the performance characteristics automatically using various machine-learning
approaches [15]. Zhai et al. extrapolate single-node performance to complex par-
allel machines using a trace-driven network simulator [32], and Wu and Miiller
extrapolate traces to predict communications at larger scale [31]. Similar to our
method, Carrington et al. extrapolate trace-based performance measurements
using a set of canonical functions [9].

10,000 Performance Models per Minute — Scalability of the UG4 529

Numerous codes for the solution of partial differential equations exist, and
several employ multigrid methods. There are a number of highly scalable geo-
metric multigrid methods [4,12,23,26,29] and highly scalable algebraic multi-
grid [1-3]. Gahvari and Gropp model the performance of geometric [11] and
algebraic multigrid methods [10]. Négel et al. present an overview of how to
treat skin permeation numerically [16].

7 Conclusion

UG4 is a framework with around half a million lines of code employed to solve
problems such as drug diffusion through the human skin. With UG4, we have
demonstrated the power of our performance modeling process as a fast and
streamlined way to detect scalability bugs and validate performance expectations
of simulation codes. The JUBE workflow manager vastly simplifies and acceler-
ates the acquisition of performance measurements and our performance modeling
method automates model creation. After removing a previously unknown per-
formance bottleneck and validating the scalability of entire simulations, we can
confidently claim that UG4 is ready for exascale.

Acknowledgment. Financial support from the DFG Priority Program 1648 Software
for Ezascale Computing (SPPEXA) is gratefully acknowledged. The authors also thank
the Gauss Centre for Supercomputing (GCS) for providing computing time on the GCS
share of the supercomputer JUQUEEN at Jiilich Supercomputing Centre (JSC).

References

1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers for ultra-parallel
computing. STAM J. Sci. Comput 33, 2864-2887 (2011)

2. Baker, A.H., Falgout, R.D., Gamblin, T., Kolev, T.V., Schulz, M., Yang, U.M.:
Scaling algebraic multigrid solvers: on the road to exascale. In: Competence in
High Performance Computing 2010, pp. 215-226. Springer (2012)

3. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous galerkin
discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl.
19(2), 367-388 (2012)

4. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively parallel multigrid
method for finite elements. Comput. Sci. Eng. 8(6), 56-62 (2006)

5. Boyd, E.L., Azeem, W., Lee, H.H., Shih, T.P., Hung, S.H., Davidson, E.S.: A hier-
archical approach to modeling and improving the performance of scientific appli-
cations on the KSR1. In: Proceedings of the International Conference on Parallel
Processing (ICPP), pp. 188-192 (1994)

6. Braess, D.: Finite elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, Cambridge (2001)

7. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC13). ACM, Denver, CO, USA, November 2013

530

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Vogel et al.

Calotoiu, A., Hoefler, T., Wolf, F.: Mass-producing insightful performance models.
In: Workshop on Modeling and Simulation of Systems and Applications. University
of Washington, Seattle, Washington, August 2014

Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC appli-
cations through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013)
Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Mod-
eling the performance of an algebraic multigrid cycle on HPC platforms. In: Pro-
ceedings of the International Conference on Supercomputing, pp. 172-181. ACM
(2011)

Gahvari, H., Gropp, W.: An introductory exascale feasibility study for FFTs and
multigrid. In: International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1-9. IEEE (2010)

Gmeiner, B., Kostler, H., Stiirmer, M., Riide, U.: Parallel multigrid on hierarchical
hybrid grids: a performance study on current high performance computing clusters.
Concurrency Comput. Pract. Experience 26(1), 217-240 (2014)

Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer, Heidelberg
(1985)

Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer,
New York (1994)

Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.:
Methods of inference and learning for performance modeling of parallel applica-
tions. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2007), pp. 249-258 (2007)

Nagel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration—an
overview. Adv. Drug Deliv. Rev. 65(2), 191-207 (2013)

Négel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional
models for the simulation of the permeability of human stratum corneum. Eur. J.
Pharm. Biopharm. 72(2), 332-338 (2009)

Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q.
In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003), p.
55 (2003)

Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Statist.
Assoc. 79(387), 575-583 (1984)

Reiter, S.: Efficient algorithms and data structures for the realization of adap-
tive, hierarchical grids on massively parallel systems. Ph.D. thesis, University of
Frankfurt, Germany (2014)

Reiter, S., Vogel, A., Heppner, 1., Rupp, M., Wittum, G.: A massively parallel geo-
metric multigrid solver on hierarchically distributed grids. Comp. Vis. Sci. 16(4),
151-164 (2013)

Sack, P., Gropp, W.: A scalable MPI_Comm_split algorithm for exascale comput-
ing. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010.
LNCS, vol. 6305, pp. 1-10. Springer, Heidelberg (2010)

Sampath, R., Biros, G.: A parallel geometric multigrid method for finite elements
on octree meshes. SIAM J. Sci. Comput. 32, 1361-1392 (2010)

Siebert, C., Wolf, F.: Parallel sorting with minimal data. In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
170-177. Springer, Heidelberg (2011)

25.

26.

27.

28.

29.

30.

31.

32.

10,000 Performance Models per Minute — Scalability of the UG4 531

Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC 2012, pp. 84:1-84:11. IEEE
Computer Society Press, Los Alamitos (2012)

Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel
geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. p. 43. IEEE Computer Society Press (2012)

Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance mod-
eling. In: Proceedings of the International Conference on Supercomputing (ICS),
pp. 221-230 (2014)

Vogel, A., Reiter, S., Rupp, M., Nagel, A., Wittum, G.: UG 4: a novel flexible
software system for simulating PDE based models on high performance computers.
Comp. Vis. Sci. 16(4), 165-179 (2013)

Williams, S., Lijewski, M., Almgren, A., Straalen, B.V., Carson, E., Knight, N.,
Demmel, J.: s-step Krylov subspace methods as bottom solvers for geometric multi-
grid. In: 28th International Parallel and Distributed Processing Symposium, pp.
1149-1158. TEEE (2014)

Wolf, F., Bischof, C., Hoefler, T., Mohr, B., Wittum, G., Calotoiu, A., Iwainsky, C.,
Strube, A., Vogel, A.: Catwalk: a quick development path for performance models.
In: Lopes, L., et al. (eds.) Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 589—600.
Springer, Heidelberg (2014)

Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for
SPMD programs. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP 2011), pp. 113-122 (2011)

Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel appli-
cations on large-scale parallel machines using a single node. SIGPLAN Not. 45(5),
305-314 (2010)

	10,000 Performance Models per Minute -- Scalability of the UG4 Simulation Framework
	1 Introduction
	2 The UG4 Simulation Framework
	3 Automated Performance Modeling
	3.1 Model Generation
	3.2 Recursive Multigrid Extension

	4 Automated Benchmarking Environment
	5 Results
	5.1 Analysis of Algebraic Solvers

	6 Related Work
	7 Conclusion
	References

