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Abstract—On large-scale clusters, tens to hundreds of appli-
cations can simultaneously access a parallel file system, leading to
contention and in its wake to degraded application performance.
However, the degree of interference depends on the specific file
access pattern. On the basis of synchronized time-slice profiles, we
compare the interference potential of different file access patterns.
We consider both micro-benchmarks, to study the effects of
certain patterns in isolation, and realistic applications to gauge
the severity of such interference under production conditions.
In particular, we found that writing large files simultaneously
with small files can slow down the latter at small chunk sizes
but the former at larger chunk sizes. We further show that such
effects can seriously affect the runtime of real applications—
up to a factor of five in one instance. In the future, both our
insights and profiling techniques can be used to automatically
classify the interference potential between applications and to
adjust scheduling decisions accordingly.

I. INTRODUCTION

The computational demand of HPC applications is continu-
ously growing, raising the performance expectations of cluster
users to unprecedented levels. To accommodate such demands,
HPC systems frequently employ specialized designs such as
multi-dimensional torus networks, GPGPU-based accelerators,
and powerful parallel file systems. The latter are needed to
service an enormous amount of file accesses in parallel. Such
parallel file systems are installed as centralized resources with
a middle layer of I/O servers connected to storage devices
at one end and to compute nodes at the other. Decoupling
compute resources from I/O resources allows for better man-
agement and scalability of the I/O subsystem. However, the
centralized design also means that multiple applications may
share the same file system. This can lead to contention in the
event of simultaneous file access and can substantially degrade
application performance. Applications that perform frequent
file access requests or access massive amounts of data are
especially sensitive to such conditions, adding an element of
variability to their performance [1].

Such HPC applications that perform frequent or massive
file access requests are also common. Examples include data-
intensive codes such as the cosmic microwave background
analyzer MADCAP [2] and the global cloud system resolv-
ing model GCRM [3]. They both write massive amounts of
data during execution, resulting in large write requests. In
contrast, the continuum mechanics solver OpenFOAM [4] and

Community Atmosphere Model (CAM) [5] of the Community
Earth System Model (CESM) [6] frequently checkpoint their
state, resulting in small but recurring writes. Overall, very
different classes of file-access patterns can be distinguished.
These patterns differ not only in how they access the file
system themselves but also in their sensitivity to simultaneous
file accesses by other applications. Furthermore, they generate
different levels of interference for other I/O-intensive applica-
tions, making access patterns an important factor in the degree
of contention for file system resources.

File system contention and the associated performance
degradation are well known [7]. File-access patterns, specif-
ically read patterns [8], and the effects of request size and
application scale [9], have also been studied before in this
context from a single-application perspective. The novelty of
our research is that we study common write patterns found in
HPC applications from the perspective of simultaneous access
from different applications. To this end, we first developed
a benchmark capable of producing three distinct file access
patterns, simulating those of real applications. Two of these
patterns mimic application checkpointing and small data ac-
cesses, while the third pattern mimics large file writes. We
explored the interference potential of these patterns by running
them simultaneously against each other, either in the form
of micro-benchmarks or realistic applications covering check-
point-intensive and data-intensive access patterns. We not only
observed different levels of interference between different
patterns, but also saw some consistent behaviors such as
data-intensive I/O dominating checkpointing at smaller write-
request sizes, with the trend being reversed for larger write-
request sizes. We summarize our contributions as follows:

• An experiment design that allows the quantification of
interference between different file access patterns

• An I/O-server monitoring capability added to the
hitherto purely application-centric interference profiler
LWM2 [10], enabling us to isolate distinct interference
phenomena even in noisy environments

• An analysis of the interference potential of common
file write patterns in HPC applications, including
the identification of a typical combination with high
interference potential

Taken together, our results pave the way for an effective



reduction of interference in the future. Specifically, it brings us
much closer to the automatic recognition of applications with
high interference potential, allowing their I/O to be separated
either in space or time.

The remainder of the paper is organized as follows. We
first provide the necessary background information on parallel
file systems in Section II. In Section III, we then present
our approach, including a taxonomy of file-access patterns, an
explanation of our experiment design, an introduction to the
interference profiler LWM2, and a description of the I/O server
monitoring added to LWM2 for the purpose of this study.
After that, we present our results in Section IV, ranging from
benchmark-only experiments to measurements with realistic
applications. Finally, we review related work in Section V
before we draw our conclusions and outline future perspectives
in Section VI.

II. PARALLEL FILE SYSTEM

To accommodate an increasing number of concurrent file
accesses, cluster file systems evolved from a simple client-
server model in the style of NFS to usually dedicated clusters
of servers and storage devices called parallel file systems. In
the most common configuration, a parallel file system connects
servers and storage devices via a dedicated network, while
it connects servers to compute nodes via a shared message-
passing network, as depicted in Figure 1. Clients running on
compute nodes forward file-access requests to the I/O servers.
The I/O servers then distribute them to the attached storage
devices—according to the mapping of files onto storage de-
vices. This allows handling simultaneous file accesses with bet-
ter performance. Additionally, striping individual files across
multiple storage devices supports efficient parallel access to a
single file. Following these general design principles, several
implementations such as Lustre, GPFS, FhGPS, PVFS, PanFS,
and HDFS have been developed and publicly released. Below,
we describe in more detail two popular parallel file systems
we used in our experiments.

A. Lustre
Lustre is a file-storage system for clusters used by many

of the Top500 HPC systems [11]. It offers up to petabytes of
storage capacity and provides up to gigabytes per second of
I/O throughput. Its architecture distinguishes two basic types of
servers: metadata servers (MDSs) and object storage servers
(OSSs). An MDS stores file-system structure information,
including directory layout and file attributes. An OSS stores
the actual file-data stripes on the attached object storage
targets (OSTs). When an I/O request is made, MDS and OSS
internally perform different types of file accesses. The MDS
performs seeks and small read and write operations on the
file structure information, while the OSS performs potentially
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Fig. 1: Structure of a parallel file system with a separate
metadata server.

large reads and writes on the actual file. Decoupling metadata
from data makes it possible to optimize each server type for
its most frequent access pattern.

B. GPFS
The General Parallel File System (GPFS) is a proprietary

parallel file system developed by IBM [12]. It is often found
on Blue Gene systems but is also available on other HPC clus-
ters such as TSUBAME. It supports multiple configurations,
including the shared-disk-cluster configuration, in which every
compute node manages a part of the file system. However, on
large HPC systems, a separate I/O subsystem is more common.
In such a configuration, GPFS can span an I/O subsystem
with thousands of nodes. GPFS stores data files and their
associated metadata on the same block-based devices called
network shared disks (NSDs). This makes GPFS also suitable
for applications with small file accesses such as Web servers.
GPFS stripes data files across all disks in a storage pool,
achieving high performance. In addition, internal storage pools
can be defined to provide different levels of availability and
performance for certain files.

III. APPROACH

Many HPC applications perform extensive I/O operations.
They employ different I/O libraries and file formats and create
different process-to-file ratios. Because a significant proportion
of applications still use POSIX-IO or MPI-IO in a classic one-
file-per-process manner [13], we concentrate our experiments
on this configuration, while also evaluating MPI shared-file
scenarios. Given that using MPI-IO with one file per process
is essentially equivalent to POSIX-IO [2], at least on our test
systems and on many others, we restrict ourselves to MPI-IO
in this study.

A. I/O access patterns
HPC applications exhibit a variety of file access patterns,

of which frequent checkpointing and writing of large output
files are considered here. We implemented three characteris-
tic patterns corresponding to these two use cases as micro-
benchmarks, ran them with a range of file sizes and measured
their interference potential when executed against each other
as well as against realistic applications. Figure 2 shows the
pseudo-code of the three patterns.

1) Open-write-close: The first pattern we consider is called
open-write-close (OWC) (Figure 2a). In this pattern, each
process opens a file, writes data to it and then closes it. The
pattern is commonly used for checkpointing in many appli-
cations, such as OpenFOAM [4], CESM [6] and Flash [14].
This access pattern generates a large number of metadata
operations while the actual amount of data written to files
is comparatively small. On systems with limited metadata
resources such patterns can quickly create a bottleneck at scale.

2) Write-seek: In the write-seek (WS) pattern (Figure 2b),
a process opens a file at the beginning. It then writes a chunk
of data to it, and then seeks back to the beginning of the file. At
the end of execution, the process closes the file. This pattern is
similar to the open-write-close pattern and performs massive
small file accesses. However, it generates less metadata traffic
as the file is continuously kept open. Between individual
writes, only seek operations take place.
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procedure OPEN-WRITE-CLOSE
loop

File Open
Write chunksize
Flush I/O Writes
File Close

end loop
end procedure

(a) Open-Write-Close

procedure WRITE-SEEK
File Open
loop

Seek to the beginning
Write chunksize
Flush I/O Writes

end loop
File Close

end procedure
(b) Write-Seek

procedure AGGREGATE-WRITE
File Open
loop

Write chunksize
end loop
File Close

end procedure
(c) Aggregate-Write

Fig. 2: Three I/O access patterns.

3) Aggregate-write: In the aggregate-write (AW) pattern
(Figure 2c), a process opens a file at the beginning and then
continues to append chunks of data to it. The file is closed
at the end of execution. This pattern is similar to large writes
in applications such as MADCAP [2] and GCRM [3]. The
pattern involves few metadata operations but many write op-
erations, resulting in large file sizes. At scale, this pattern can
substantially challenge the performance of an I/O subsystem.

Careful investigation of the client-side I/O caching behav-
ior created the necessity of flushing I/O traffic after every write
operation for the open- write-close and the write-seek patterns.
Otherwise writes of small chunks remain cached in buffers
for each OST in Lustre client software and get overwritten
with the next write. This issue does not occur for writes of
large chunks as the chunk size is larger than the OST buffer
size. This issue also does not effect aggregate-write, in which
small writes are aggregated to the OST buffer and eventually
committed to the file system. To have a consistent benchmark,
writes were flushed for both Lustre and GPFS, and for all
chunk sizes.

B. Capturing interference
To capture incidents of interference, we run the patterns

side by side and measure the change in throughput in com-
parison to an isolated run. We call the benchmark whose
throughput degradation we are interested in the probe. The
throughput degradation serves as a quantification of the passive
interference it suffers. The benchmark causing this degradation
through active interference is called the signal. To study how

interference effects evolve over the runtime of a specific, more
complex probe application, we let the signal benchmark also
produce its pattern in a periodic fashion, with the I/O activity
being interrupted by phases of no I/O activity. Whenever the
signal shows activity, the probe may suffer a dent whose depth
indicates the severity of the interference.

To measure how the I/O throughput of an application
changes, we use the profiler LWM2 [10] after extending it to
suit our requirements. LWM2 is a lightweight profiler designed
to collect the most basic performance metrics with as little
overhead as possible. The I/O metrics relevant to our study
are all measured in dynamically loaded interposition wrappers.
One aspect important for our study is LWM2’s ability to
represent performance dynamics in time slices. In addition
to producing a compact performance summary covering the
entire runtime, LWM2 splits the execution into fixed-length
time slices and generates a profile for each of them. The time
slice boundaries are synchronized across the entire system
by aligning them with the system time. As a result, the
simultaneity of performance phenomena occurring in different
applications can be easily established. This is useful because it
may indicate a causal relationship between these phenomena.
The duration of time slices is configurable. In our experiments,
we use a time-slice length of 4 seconds and a period length of
24 seconds for the periodic version of our micro-benchmarks.
In this way, each period covers at least a few time slices.

However, the mostly application-centric perspective of
LWM2 confronts us with two challenges: noise from other
applications not related to our experiments and irregular be-
haviors of the I/O servers themselves. Ideally, I/O interference
experiments should be conducted in a fully controlled, noise-
free environment. In practice, however, reserving an entire
production cluster for an extended period of time is very
expensive. Moreover, the throughput delivered by I/O servers is
often non-uniform. For example, the exhaustion of cache space
may result in a sudden throughput drop. As a consequence,
such irregularities may further blur the interference effects we
want to study.

To be able to keep our measurements as clean as possible
from these two effects, we extended LWM2 to monitor also the
activities of the I/O server during execution of an application.
The server activities are captured every time slice, allowing
us to correlate events across applications and I/O servers. In
particular, it allows us to filter out runs where file server
load is 10% larger than the application I/O traffic captured by
POSIX/MPI I/O wrappers. In addition, the server-side moni-
toring allowed us to learn more about certain non-uniform but
to some degree predicable behaviors, which we are now able to
exclude from our measurements, as explained in Section III-C.
For both GPFS and Lustre, we estimated the I/O traffic to and
from the servers by profiling the InfiniBand counters of the
servers. Moreover, for Lustre we parsed the diagnostic data
updated by the Lustre client software running on each node to
capture the amount of reads and writes from/to the I/O servers.

C. Server-side imbalance
In some experiments, we observed severe imbalance among

the processes of an application that occurred sporadically on
both file systems. In such cases, most processes finished within
the expected time, while the remaining ones had to keep
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Fig. 3: Server side imbalance when writing files (GPFS). The
darker the color, the higher the throughput in a time slice.

performing I/O for a significantly longer duration, sometimes
more than twice as long. One major factor revealed in a closer
investigation of the imbalance effect was unbalanced load on
the file-server side, as shown in Figure 3. In particular, with
Lustre, files were randomly assigned to an OST in one-file-per-
process mode. When an OST was shared by many processes,
its performance dropped, which in turn affected the throughput
of the associated I/O server. We confirmed this observation
by artificially enforcing an equal number of files per OST
in a small experimental run, which reduced the disparity of
execution time by more than 75%. However, such enforcement
is not feasible in a real world scenario as it requires the number
of processes to be a multiple of the number of OSTs. With
GPFS, the process imbalance effect occured to a lesser extent
with large files because they were automatically striped over
all NSDs, but more predominantly with small files below the
stripe size presumably due to the same reason. Besides the
OST/NSD load-imbalance, other factors, such as the straggler
phenomenon [15], might also contribute to the imbalance.

To accommodate the variance resulting from this imbal-
ance, while still being able to discern interference effects, we
considered only the balanced part of a run. This approach is
justifiable since the imbalance affects only the later stage of
an run, in which a small portion of the total I/O volume is
written. In practice, we found that the I/O traffic in this tail-off
stage is usually less than 10%. As a result, we calculated the
throughput drop and runtime dilation, our comparison metrics,
only up to the moment when the first of the two simultaneously
running programs had written 90% of its data volume. Even
though this empirical technique did not completely remove the
effects of the server-side imbalance, it reduced the resulting
imprecision significantly and consistently, while preserving the
effect of interference.

IV. EVALUATION

This section presents the results of our interference exper-
iments. In these experiments, we first ran pairs of our micro-
benchmarks against each other to study the interaction of the
different patterns in their purest form. We then confirmed our
findings by executing the benchmarks against two realistic
applications, OpenFOAM and MADbench2, used for fluid
dynamics and cosmic simulations, respectively. Finally, we
analyzed the interference effect between two instances of these
realistic applications.

A. Environment
The results were obtained on the TSUBAME2.5 supercom-

puter [16] hosted at Tokyo Institute of Technology, Japan. The
cluster comprises nodes in different configurations. The nodes

PFS Mount point Metadata server File server NSDs/OSTs Throughput
GPFS /data0 N/A 4 14/server 20GB/s
Lustre /work1 1 (+1 standby) 8 13/server 50GB/s

TABLE I: Specifications of file systems on TSUBAME used
in our experiments.

used in our experiments make up the majority of the cluster
and are equipped with two Intel Xeon X5670 (Westmere-
EP, 2.93GHz) 6-core processors, three NVIDIA Tesla K20X
(GK110) GPUs, and 58GiB DDR3 main memory. The cluster
employs a two-rail fat-tree InfiniBand 4X QDR network,
used both for message passing and file I/O traffic. The peak
performance of the cluster is 2843 TFLOPS. It was ranked
11th in the Top500 list of November 2013.

TSUBAME offers GPFS and Lustre file systems for par-
allel I/O at different mount points. The GPFS on /data0 is
hosted on four file servers (NSD servers), each connected to
14 RAID storage devices (NSDs), while the Lustre on /work1
is hosted on eight file servers (OSSs), each of them connected
to 13 RAID storage targets (OSTs). We used only these mount
points in our experiments. On Lustre, metadata requests are
handled by one MDS server with one additional standby
server. The qos_threshold_rr parameter of Lustre is set
to 16%, meaning that storages are selected mostly in a round
robin fashion. Additionally, TSUBAME also provides 120GB
SSDs on compute nodes as scratch space. All file servers are
equipped with two InfiniBand 4X QDR adapters connecting
them to one of the two rails of the fat-tree network. Table I
provides a summary of the two file systems on the mount
points we used.

For validation purposes, we also re-ran a limited set of
our experiments on JUROPA, a 2208-node cluster at Jülich
Supercomputing Centre, Germany, and on a 48-node cluster
at the Fujitsu HPC Benchmark Center, Paderborn, Germany.
We were able to completely reserve the later system, allowing
us to run our experiments in a noise-free fully-controlled
environment. Both of the systems only had Lustre file systems
available with different I/O server setups. Nonetheless, our
observations regarding interference trends for the three patterns
on all the systems were consistent.

B. Experiment configuration
In our experiments on TSUBAME, a single instance of an

application consisted of 256 processes, utilizing 64 compute
nodes. As the experiments were carried out on a production
system, care was taken to filter out runs with more than
10% external noise. The filtering was done by using the I/O
server monitoring module of LWM2. We also repeated each
experiment five times and took the best-performing, least-
interfered run.

We executed the patterns with file sizes ranging from 1MiB
to 128MiB on a logarithmic scale. For the open-write-close
pattern and write-seek pattern, this meant that a file of the
specified size was written repeatedly, while for the aggregate-
write pattern this meant that each write operation had the
specified buffer size. At the end of the execution, the resulting
files for aggregate-write pattern had accumulated up to 2GiB
per process in the one-file-per-process mode, or up to 512GiB
in the single-shared-file mode.
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C. Micro-benchmarks
To understand the interaction of different I/O access be-

haviors, we first paired up the three access patterns to form a
collection of interference scenarios. We ran each of the three
patterns against itself and against the other two, resulting in
six experiments. For the purpose of interference quantification,
however, we had to consider each benchmark once as a
signal and once as a probe, resulting in a total number of
nine scenarios (i.e., {OWC,WS,AW}2). The severity of
the interference effect was then quantified in terms of the
percentage degradation in throughput T , defined as:

T =
Tstandalone − Tinterfered

Tstandalone
× 100

A high value of the degradation indicates severe interfer-
ence inflicted by the signal pattern. We executed the complete
set of combinations on both GPFS and Lustre for chunk sizes
of 1MiB and 16MiB.

1) GPFS: Figure 4a shows the throughput drop observed
with all pattern combinations, for chunk sizes of both 1MiB
and 16MiB. With the smaller chunk size, we found aggregate-
write to have a clearly higher interference potential than the
other two patterns. When open-write-close and write-seek
are executed against each other, their throughput drops by
about 50%. This can be explained by equal sharing of I/O
resources between them. However, concurrent execution of
aggregate-write against the other two patterns reduces the lat-
ter’s throughput by more than 80%, while the effect of the two
other patterns on aggregate-write itself is much smaller. This
indicates that aggregate-write dominates these two patterns at
a chunk size of 1MiB, occupying most of the I/O resources.
At a chunk size of 16MiB, the I/O resources are distributed
more evenly among the patterns. It can be seen that open-write-
close is less affected by aggregate-write compared to the 1MiB
case, while aggregate-write is more affected by the other two
patterns. However, even at a chunk size of 16 MiB, write-seek
still shows less active interference potential and is influenced
more by other patterns.

As chunk size seem to be a crucial factor in the interference
potential of the above patterns, we investigated this more
closely by running open-write-close and write-seek against
aggregate-write for chunk sizes ranging from 1MiB to 128MiB
on a logarithmic scale. The results are shown in Figure 5a.
For open-write-close, there is a clear trend for I/O resources
to be shared more evenly among the two patterns as the chunk
size increases, with 64MiB being more or less the break-even
point. Beyond this point, open-write-close starts to dominate,
thus degrading aggregate-write more than it suffers throughput
reduction itself. Write-seek shows a similar trend but with a
shifted slope. Only after a 32MiB chunk size does write-seek
with interfere aggregate-write significantly. Beyond this point,
the progression is similar to open-write-close, as I/O resources
start to be shared more evenly. At the last data point of 128MiB
aggregate-write still dominates. If the trend continued, and if
it was similar to open-write-close, write-seek would start to
dominate aggregate-write at larger chunk sizes.

2) Lustre: We repeated the same set of experiments on
Lustre. The results from the nine pair-wise combinations of
patterns for 1MiB and 16MiB are shown in Figure 4b. The
general trend of the interference potential for the two chunk
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Fig. 4: Throughput drop when the patterns are executed against
each other. A higher bar means less throughput and higher
passive interference. The top patterns indicate the probe, while
the patterns below the x-axis indicate the signal.

sizes is the same as on GPFS but with different intensities. At
a chunk size of 1MiB, aggregate-write again generates most
of the interference, while being itself the least affected one.
However, the disparity is not as strong as on GPFS. At a chunk
size of 16MiB, the interference potential of all the patterns is
roughly the same.

We also explored the sensitivity of interference to chunk
sizes by running open-write-close and write-seek against
aggregate-write for a range of chunk sizes from 1MiB to
128MiB on a logarithmic scale. The results are summarized
in Figure 5b. The trends of both patterns against aggregate-
write are similar to each other, and also have similarities to
the trends on GPFS but with aggregate-write being dominated
earlier. Open-write-close and write-seek are affected more by
aggregate-write at smaller chunk sizes but begin to dominate
as the chunk size increases. The break-even point is between
8MiB and 16MiB, beyond which aggregate-write is increas-
ingly dominated. However, the slopes start to flatten for very
large chunk sizes. As a comparison, the interference potential
of write-seek on Lustre is higher compared to GPFS, as write-
seek starts to dominate aggregate-write beyond 16MiB.

3) Discussion: From the above results it is clear that
different I/O access patterns show different interference po-
tentials. The chunk size is also an important factor in deter-
mining which pattern is dominated. At smaller chunk sizes,
large writes (aggregate-write) prevails over frequent small
writes (i.e., open-write-close and write-seek), causing a notable
degradation of throughput for the latter while showing little
impact on the former. However, as the chunk size increases,
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Fig. 5: Drop in throughput suffered by open-write-close and
write-seek when executed against aggregate-write with differ-
ent chunk sizes. A higher value means less throughput and
higher passive interference.

the balance is shifted in favor of the smaller writes. At a certain
point, both types of behaviors suffer equally, beyond which
the performance of large writes drops to a greater degree. On
Lustre, open-write-close and write-seek show similar degrada-
tion trends, while on GPFS, write-seek has comparatively less
interference potential. The precise reason for our observations
is unclear, but it seems that both metadata operations including
open, close and seek on the one hand and the number of
different file blocks an application writes make it sensitive
to interference. At least, this would explain the trend reversal
shown in Figure 5b. As the chunk size, and with it the number
of different blocks written by aggregate-write, increases, the
density of metadata operations shrinks.

4) Shared files: Not to ignore this increasingly common
mode, we also performed a set of experiments on shared files.
The file was shared in such a way that each process occupied a
contiguous portion of the file. For open-write-close and write-
seek, the size of the contiguous portion exactly matched the
chunk size of the benchmark. For the aggregate-write pattern,
the contiguous portion matched the size of the total data
written by a process.

We present results for Lustre in Figure 6. In our ex-
periments, we observed that aggregate-write dominated the
other two patterns at 1 MiB chunk size, but showed reduced
interference potential at a chunk size of 16 MiB, where the
interference potential of all patterns seems balanced. Both of
these observations are consistent with the one-file-per-process
case. Only when running aggregate-write against itself at a
chunk size of 1 MiB did we observe much less interference
than with one file per process. Nevertheless, increasing the
chunk size of this pattern combination to 16 MiB blends it
seamlessly into the balanced overall picture.
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Fig. 6: Shared-file throughput drop on Lustre when the patterns
are executed against each other.

The interference potentials followed the same general trend
on GPFS. Aggregate-write dominated the other two patterns
significantly at a chunk size of 1 MiB. While at 16 MiB,
even though it was still dominant, aggregate-write generated
comparatively less interference for other patterns. These ob-
servations are similar to the results with one file per process.
However, we observed some cases in the pair-wise execution of
the patterns, in which one instance would completely dominate
the other instance, effectively serializing the I/O traffic between
the pairs. This near serialization of the I/O traffic was seen both
when running patterns against themselves and against different
patterns. Based on these observations, and considering that
writing shared files is a topic of research in its own right with
its own characteristic set of access patterns, we believe that a
full coverage of shared files would justify a separate study.

D. MADbench2
MADbench2 is derived from the cosmic microwave back-

ground radiation analysis software MADCAP. MADbench2
performs dense linear algebra calculation using ScaLA-
PACK [17]. It has very large memory demands and its required
matrices generally do not fit in memory. As a result, the calcu-
lated matrices are written to disk and re-read when required.
During a normal execution, MADbench2 writes large amounts
of data with periodic seeks in between, making its behavior
similar to write-seek. Due to its I/O intense nature, it has been
used to benchmark I/O performance of HPC systems [2]. For
our experiments, we configured MADbench2 to run in I/O-
mode. In this mode, MADbench2 replaces all computations
with busy-waits, while still maintaining the I/O behavior of
the actual software. We further configured MADbench2 to use
MPI-IO with one file per process and ran it against all the three
patterns. MADbench2 was executed on both GPFS and Lustre
with chunk sizes of 1 MiB and 16 MiB. To more accurately
gauge the throughput drop values in the experiments, we only
considered the time slices in which file writes were performed.

1) GPFS: At a chunk size of 1 MiB the interference
of aggregate-write was so strong that some of the runs
were not completed in an acceptable time, which is why
we cannot calculate the throughput drop. But the runtime
dilation suggests that aggregate-write was the biggest source
of interference among the three patterns. At a chunk size of 16
MiB, aggregate-write slowed the throughput of MADbench2
slightly more than the other two patterns, similar to our micro-
benchmark-only results in the three rightmost column pairs of
Figure 4a.
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Fig. 7: Throughput drop when MADbench2 is executed con-
currently with the three patterns on Lustre.

2) Lustre: The results of the experiments on Lustre are
shown in Figure 7. Again, similar to our micro-benchmark-
only results, at 1 MiB aggregate-write has a much stronger
effect than the other patterns, a difference that almost disap-
pears when the chunk size is increased to 16 MiB.

E. OpenFOAM
OpenFOAM [4], which stands for Open source Field

Operation And Manipulation, is a free, open source compu-
tational fluid dynamics (CFD) software package developed
by OpenCFD Ltd of ESI Group and distributed by the
OpenFOAM Foundation. It was one of the first scientific
applications to leverage C++ for a modularized design. The
package provides parallel implementations of a rich set of li-
braries, from mathematical equation solvers to general physical
models. OpenFOAM uses standard C++ I/O for checkpointing
at regular intervals. At each checkpoint, new files of around a
few kilobytes are created and written by every process, making
its I/O behavior similar to the open-write-close pattern. As
LWM2’s C++ I/O profiling is still in progress, we were only
able to capture file close counts for our runs. However, as
OpenFOAM regularly opens and closes files as a consequence
of frequent checkpointing, we used the file close rate as a sub-
stitute for the throughput rate. In our experiments OpenFOAM
closed more than 14000 files per time slice. As this count is
significantly larger than the process count of the application, it
indicates that most of those files were written to and closed in
the same time slice, making the file-close count an indicator
of I/O throughput. Similarly, we used the dilation of execution
time, which occurs as a consequence of I/O performance drop,
to gauge the interference potential.

For our experiment, we ran the cavity example from the
official tutorial. Cavity involves processing of an isothermal,
incompressible flow in a two-dimensional square domain.
Specifically, we used the icoFoam solver, in which the flow
is assumed to be laminar. We executed the cavity example
in parallel with each of the three patterns. We set the chunk
size of the patterns to 1MiB, the smallest chunk size from our
experiments with the micro-benchmark. We executed the runs
on both GPFS and Lustre, and adjusted the runtime of the
patterns to fully overlap with OpenFOAM’s execution.

1) GPFS: OpenFOAM experienced degraded I/O perfor-
mance when executed concurrently with all the three patterns,
leading to degraded I/O performance. The throughput drop
caused by each of the patterns is shown in Figure 8. As
OpenFOAM’s I/O pattern is similar to open-write-close with a

small chunk size, the large interference potential of aggregate-
write at such a small chunk size is immediately visible, leading
to more than 90% drop in throughput. The other two patterns
of open-write-close and write-seek also generated interference,
but to a smaller degree, degrading OpenFOAM’s throughput by
55%. These observations are similar to our pattern vs. pattern
experiments, where we found that aggregate-write dominated
at small chunk sizes.

To further understand the I/O interference dynamics dur-
ing concurrent execution, we executed OpenFOAM against
periodic modes of open-write-close and aggregate-write. In
this mode, the benchmark’s I/O access phases alternate with
silence. This periodic mode highlights the effects of interfer-
ence during the I/O access phases. Figure 9a and Figure 9b
show the time slice view when OpenFOAM is concurrently
executed with open-write-close and aggregate-write respec-
tively. Against open-write-close, OpenFOAM’s performance
degrades by 60%-70% in I/O access phases of the pattern,
compared to the no I/O access phases. On the other hand,
against aggregate-write, OpenFOAM degrades by up to 95%
when the pattern performs I/O accesses. This is clearly visible
as the file close rate of OpenFOAM adopts a periodic behavior
under interference.

2) Lustre: On Lustre, we observed a similar degradation
trend when OpenFOAM was executed against the three pat-
terns, as shown in Figure 8. OpenFOAM experienced degra-
dation from all three patterns, but to a lesser extent from
the open-write-close and write-seek patterns, degrading the
throughput by about 40% and 30% respectively. Aggregate-
write, however, generated severe interference and degraded the
throughput by more than 80%. In contrast, the I/O throughput
of the aggregate-write pattern did not suffer from significant
degradation when run against OpenFOAM. This is again
consistent with our previous observation for small chunk sizes
in the pure micro-benchmark comparison.

F. Inter-application interference
With our knowledge of how isolated access patterns in-

terfere with realistic applications, we also investigated the
interference between realistic applications, as can occur in a
live production system. For this purpose, we ran MADBench2
and OpenFOAM first against themselves and later against each
other. At the process counts used in our experiments, the two
applications have a lower I/O intensity than our benchmarks.
As a result, some runs on Lustre showed no interference. The
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Fig. 8: Throughput drop of OpenFOAM vs. all three patterns
on GPFS and Lustre with a chunk size of 1 MiB.
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Fig. 9: Time-slice view of OpenFOAM when executed con-
currently with two patterns on GPFS.

higher peak bandwidth of the Lustre I/O subsystem, as shown
in Table I, offers an explanation.

Executing two instances of MADbench2 concurrently re-
sulted in 20% runtime dilation on GPFS, while producing
negligible interference on Lustre. Executing two instances
of OpenFOAM concurrently showed 20% and 25% runtime
dilation on Lustre and GPFS, respectively. Because our first
attempts to run MADbench2 vs. OpenFOAM on Lustre only
resulted in runtime dilation comparable to the run-to-run vari-
ation, we optimized MADbench2 to achieve higher throughput
according to recommendations in literature [2] and then exe-
cuted ten runs on Lustre. MADbench2 itself experienced neg-
ligible interference while OpenFOAM’s runtime was dilated
by 10%. Although these effects are smaller in magnitude than
those in our benchmark studies, the results confirm our general
observation that at this small chunk size data-intensive I/O has
a stronger effect on checkpoint-intensive I/O than vice versa.
Due to high run-to-run variation when running MADbench2
vs. OpenFOAM on GPFS, experiments on this file system are
still ongoing.

V. RELATED WORK

Inter-application interference can significantly reduce per-
formance [10], [18]. In particular, concurrent access to parallel
file systems leads to contention and performance degrada-
tion [1], especially at scale [19]. Such degradation has been
studied from a single application’s perspective [2], [20] and
from a complete system’s perspective using a single applica-
tion [21], [22]. The influence of an application’s process count
on the degree of inter-application interference at the level of the
I/O subsystem has also been investigated [23]. In our work, we
focus on the interference of simultaneous I/O requests issued
by multiple applications, with special emphasis given to their
file access patterns.

Interference on parallel file systems can be reduced by
separating I/O requests either in space or time. The latter

means avoiding co-scheduling of resources while the former
includes I/O-hardware level partitioning through I/O zoning—
potentially at the expense of reduced aggregate I/O band-
width [24], [25]. Burst buffers that reduce peak I/O traffic
include elements of both space and time partitioning [26].

Several authors have also characterized HPC applications
based on their file access patterns [26]. Specifically, Lofstead et
al. [8] analyzed read access patterns with NetCDF and HDF5
file formats, concentrating on end-to-end I/O performance of a
single application. Aggregate I/O throughput for different I/O
request sizes and client and server counts has been surveyed
for the PVFS2 file system, analyzing one behavior at a
time [9]. Here, we show how different write-access patterns
of concurrently running applications interfere.

Several tools offer functionality to analyze the performance
of file I/O. Darshan [13] is a performance tool that captures
the I/O profile of an application. It has also been deployed
system-wide on a Blue Gene system to characterize I/O
loads of various applications. IPM-IO is an extension of the
lightweight profiler IPM with I/O tracing capabilities [22].
PIOviz profiles MPI applications while also tracing PVFS2
server activities [27]. We use LWM2 for our analysis, utilizing
its unique feature of globally synchronized time-slice profiling
to capture application interference. For this particular analysis,
we extended its functionality to monitor the I/O server load
alongside application requests. Finally, the I/O subsystem
analysis tool SIOX [28], [29] identifies bottlenecks along the
complete I/O path and proposes application optimizations,
taking their access patterns into account. Our LWM2-based
infrastructure is designed to complement such efforts, adding
a cross-application pattern optimization facet.

VI. CONCLUSION

We analyzed different inter-application interference ef-
fects caused by the interaction between various I/O access
patterns, classified by their behavior, write chunk size, and
sharing mode. Specifically, we found that at small chunk
sizes data-intensive applications may significantly slow down
checkpointing-intensive applications, but not vice versa. In one
case, the runtime of a checkpointing-intensive application was
dilated by a factor of five. But the direction of the interference
is increasingly reversed as the chunk size is increased.

Given the shared nature of most parallel file systems,
preventing I/O interference in its entirety is challenging. As
a general strategy to reduce it, one should try to separate
I/O traffic with high interference potential either in space
or in time. However, to make such a separation successful
it is important to decide what traffic should be separated.
Leveraging techniques now demonstrated with LWM2, file
systems could be extended in the future to recognize aggressive
or sensitive patterns automatically and dynamically separate
them either in space or in time. For example, traffic to a
specific set of files could be (re-)routed to a specific group
of file servers or buffered locally to be written back at a later
point in time.

To support future interference-aware file-system designs,
we plan to further extend LWM2 to recognize application
I/O access patterns automatically and suggest appropriate I/O
resource scheduling policies. To this end, we want to take more
complicated patterns, chunk sizes and I/O frequencies into
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account with the objective of building a reliable I/O perfor-
mance interference model based upon quantifiable application
I/O characteristics. The interference model would also pay at-
tention to higher-level file formats such as NetCDF and HDF5.
Finally, with LWM2’s global time-slice view and the ability to
detect interference through correlation, we also see machine
learning techniques as a promising research direction for the
prediction of interference and ultimately for its avoidance.
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