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ABSTRACT
Load imbalance usually introduces wait states into the ex-
ecution of parallel programs. Being able to identify and
quantify wait states is therefore essential for the diagno-
sis and remediation of this phenomenon. An established
method of detecting wait states is to generate event traces
and compare relevant timestamps across process boundaries.
However, large trace volumes usually prevent the analysis of
longer execution periods. In this paper, we present an ex-
tremely lightweight wait-state profiler which does not rely
on traces that can be used to estimate wait states in MPI
codes with arbitrarily long runtimes. The profiler combines
scalability with portability and low overhead.
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1. INTRODUCTION
The number of processor cores on modern supercomput-

ers continues to increase at a rapid pace. In 2013, there was
not a single system among the top ten of the Top500 list
that featured less than a hundred thousand cores. However,
exploiting all the available parallelism efficiently presents a
major challenge. A common enemy of good performance
that especially affects codes with irregular and dynamic do-
mains is load and communication imbalance. Because imbal-
ance delays processes before they can synchronize with other
processes, classic symptoms created by this phenomenon are
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wait states, which are intervals during which a process sits
idle without doing useful work.

In message-passing programs, wait states usually mate-
rialize in point-to-point or collective communication opera-
tions, including barriers. In an all-to-all operation, a single
process can delay the progress of thousands of others. More-
over, wait states can easily propagate across process bound-
aries and proliferate [1]. Overall, their accumulated duration
can constitute a substantial fraction of total resource con-
sumption. As a first step towards eliminating the causes, we
need a diagnostic tool to locate and quantify them. On the
one hand, such a tool must be scalable and it should be suf-
ficiently accurate, which implies that its overhead must be
minimal. On the other hand, it should not be overly com-
plex. In the same way as the power envelope of an exascale
machine places a cap on its size, the manpower envelope of
the HPC community limits the effort it can invest in devel-
oping and maintaining production-quality tools.

Because wait states cause temporal displacements between
program events occurring in different processes, an estab-
lished method used to diagnose wait states is event tracing.
For example, Scalasca searches for wait states in MPI pro-
grams by measuring the time difference between matching
communication and synchronization operations that have
been previously recorded in event traces [3]. If the overhead
of the instrumentation is kept low, for example, through
the careful selection of instrumentation points, this method
is quite accurate. On the other hand, the huge amount of
trace data to be generated limits the scalability of tracing
in terms of both the number of processes and the length of
the execution interval being traced. The latter makes this
approach less suitable for long-running codes with high tem-
poral variability.

In this article, we describe how the extent of typical wait
states can be determined without tracing. In our profiling-
based approach, we compare the execution time of rele-
vant communication operations with a scaled minimum mea-
sured across the entire execution, which provides fairly ac-
curate estimates of typical wait states. Our method is in-



herently scalable, introduces only negligible overhead, and
works out-of-the-box regardless of how long the application
is running. While the method itself is astonishingly sim-
ple, our main contribution is to demonstrate that—in spite
of its simplicity—it provides good enough results to decide
whether a code suffers from a considerable amount of wait
states, and if so, to approximate their accumulated duration.

We start our discussion in Section 2 with a review of re-
lated work, followed by a high-level description of our ap-
proach in Section 3. In Section 4, we evaluate our approach
experimentally with respect to accuracy and overhead. Fi-
nally, in Section 5, we summarize our findings and describe
possible application scenarios and extensions.

2. RELATED WORK
The richness of the information stored in event traces

makes them attractive targets in the pursuit of wait states.
Such traces usually record the time when the program enters
and leaves communication calls as well as communication
parameters such as source or destination of a message and
its size. Vetter [12] transforms these traces into a table of
message exchange records with send and receive durations.
Microbenchmarks with known wait-state patterns are used
to train a decision tree that is later employed to classify
message exchanges with unknown patterns. As the training
is only valid for a specific hardware and software config-
uration, it has to be repeated for each new platform and
runtime environment. Scalasca [3] identifies wait states by
measuring temporal displacements between matching send
and receive calls through a parallel replay of the communi-
cation recorded in the trace. Although trace-based meth-
ods offer opportunities for powerful analyses such as finding
the delays ultimately responsible for the occurrence of wait
states [1], their scalability is limited—especially with regard
to the length of execution they can cover.

Trace-less methods like ours avoid these disadvantages,
albeit at the expense of convenient access to global infor-
mation. FPMPI [5] uses PMPI interposition wrappers to
replace receive calls with a semantically equivalent sequence
of calls. This sequence first probes continuously for incom-
ing messages. Once a message arrives, FPMPI measures the
time it spent probing, which corresponds to the extent of
the wait state, and eventually invokes the actual receive call
to complete the transfer. In a similar manner, FPMPI mea-
sures wait states in all-to-all operations by inserting a barrier
in front of them. However, as we show in Section 4.2, the
overhead of these extra operations is much higher than up-
dating minimum statistics as needed in our approach. Some
online tools [4, 9] use piggybacking to transparently send
the timestamp of the send operation along with the original
message. Comparing the remote with the local timestamp,
the receiver can then diagnose wait states at runtime. There
are three approaches to piggybacking: re-packing the origi-
nal message and the piggyback data into a contiguous buffer;
using a derived datatype based on the original memory lo-
cations; and sending separate messages. Unfortunately,
the inability of collectives to support piggyback semantics
makes the first two unsuitable for collective operations. In
any case, general solutions for piggyback messages layered
on top of MPI can significantly harm performance in specific
application scenarios [11].

Finally, an MPI implementation may also choose to ex-
pose the relevant internal events directly. For example, MPI

PERUSE [6] defines a callback interface to notify an appli-
cation of events such as the start of the actual data trans-
fer, which can serve as a basis for the estimation of wait
states. To the best of our knowledge, this interface is cur-
rently only implemented by Open MPI and is therefore not
a portable solution. Moreover, it only supports point-to-
point messages. Although the new MPI tool information
interface [10] of MPI-3 is expected to be more widely sup-
ported, it is rather unspecific about the type of information
an implementation must provide.

In essence, our own approach retains Vetter’s idea of clas-
sifying communication behavior, but with the difference that
we train our classifier with the target application itself and
during the same run it is supposed to be valid for. In ad-
dition, we classify only process-local summary information,
which eliminates the need for trace files.

3. APPROACH
In this section, we introduce our lightweight profiling ap-

proach to the identification of wait states in MPI programs.
Specifically, we focus on the well-known wait-state patterns
Late Sender and Wait at NxN because our experience sug-
gests that they play the most prominent role in practice.

As a prerequisite, we measure the duration of individual
MPI calls as in a classic profiler. For this purpose, we in-
tercept the events of entering and leaving MPI functions
using PMPI interposition wrappers, take timestamps, and
calculate the difference. However, the measured duration
includes not only waiting time but also the time needed for
the actual communication. Thus, we need a mechanism to
distinguish between the two.

The core assumption of our approach is that the duration
of wait-state-free communication calls is minimal. Follow-
ing this idea, we determine the minimum duration for each
(communication) call category across the entire execution.
We define this as the actual processing time. Subtracting
the minimum from the overall duration yields the waiting
time. The call category can be, for example, the MPI func-
tion, further distinguished by function parameters such as
message size or data type. Since our approach accumulates
waiting time as opposed to reporting individual wait-state
instances, it does not require event traces. Moreover, the ac-
cumulation makes it possible to defer the minimum subtrac-
tion until the end of the execution. All we need to do is to
count calls, accumulate durations, and maintain minimum
statistics in each category, some of which a profiler might
do anyway. To minimize overhead and maximize scalability,
we refrain from any global communication except for a small
number of reductions immediately before finalizing MPI to
calculate global minimum values. Otherwise, we consider
only process-local information.

The implementation of our method was integrated into
the call-path profiler of the performance measurement sys-
tem Score-P [7]. This means that we report wait states
separately for each call path of an MPI function. Although
Score-P’s current profiler is event-based (as opposed to sam-
pling-based), our method would also work with hybrid profil-
ers that sample user functions but still capture PMPI events.
Below, we explain in detail how we recognize and quantify
waiting time in different wait-state patterns. Since we assess
the accuracy of our method using traces with their richer in-
formation base as a yardstick, we also describe how the same
wait states can be found there.
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Figure 1: Late Sender. Because process A started the send
operation too late, process B must wait in MPI Recv.

3.1 Late Sender
The Late Sender pattern is depicted in Figure 1. In this

point-to-point communication, the receiver is blocked while
waiting for a message to arrive which has not yet been sent.
If the destination process posts the receive operation before
the source process initiates the matching send operation, we
can conclude that the receiver has to wait at least until the
send starts. This “pessimistic” assumption is the foundation
of the trace-based Late Sender quantification in Scalasca,
which we use as a reference. Scalasca simply measures the
temporal displacement between the start of send and re-
ceive, creating a need to compare timestamps across pro-
cess boundaries. Of course, the actual waiting time can be
longer, but determining this extra time is impossible based
on the data stored in the trace. In any case, the wait state
of this pattern always appears in the receive operation.

In comparison to Scalasca, our method of approximating
the true extent of wait states is much simpler. Everything
in excess of the minimal duration of a call category is classi-
fied as a wait state. However, the key is how we define this
minimum. That the time needed for processing a message
can vary depending on various communication parameters,
including message size, data type, source and destination
process, confronts us with a tradeoff decision. The more pa-
rameters we consider, the more differentiated our minimum
will become. But at the same time, the population from
which a meaningful minimum can be chosen will also shrink,
reducing the chance that we will see an instance without a
wait state among them. After all, the processing time may
also be affected by external factors such as OS jitter whose
extent is invisible to us. Therefore, considering more param-
eters will not automatically improve accuracy. In addition,
the space and effort needed for maintaining minimum statis-
tics will grow as the number of parameters increases. Fol-
lowing our lightweight philosophy, we currently distinguish
only between different receiving processes, MPI functions,
and ranges of message sizes, the latter on a logarithmic scale.
That is, each process p calculates local minima Mp(f, s) for
each combination of MPI functions f and range of message
sizes s.

Mp(f, s) = min
c∈Cf

n(c,p,s)

min
i=1

di(c, p, s)

In the above equation, n(c, p, s) denotes the number of times
the call path c is visited on a process p with a given message-
size class s. Cf is the set of call paths leading to the MPI
function f and di(c, p, s) denotes the durations of individual
visits to these call paths. S represents the set of message
size classes. Thus, the Late Sender time of a receive call
path c on process p can be written as follows:

L(c, p) =
∑
s∈S

[n(c,p,s)∑
i=1

di(c, p, s) − n(c, p, s) ·Mp(f(c), s)
]
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Figure 2: Wait at NxN. Because process B arrives late at a
synchronizing all-to-all collective (here allgather), processes
A and C must wait.

Here, f(c) denotes the function terminating a call path c,
in this case the MPI function for which we calculate the
minimum. The way the formula is written also highlights
the fact that the minimum calculation can occur in parallel
to the accumulation of individual durations, making this a
fully self-contained one-pass approach.

3.2 Wait at NxN
The Wait at NxN pattern is depicted in Figure 2. It can

occur in all-to-all collective operations such as MPI Alltoall,
MPI Allgather, or MPI Allreduce, which exhibit inherent
synchronization among all participating processes. Because
none of the participants in such an operation can complete
the operation before everyone else has entered it, wait states
can occur if at least one participant is late. Scalasca models
everything in the operation before the entry of the last pro-
cess as waiting time, as shown in Figure 2. This is, of course,
only an approximation because smart algorithms may al-
ready process data from a subset of the participants before
the last process enters the operation and therefore achieve
some progress. On the other hand, the PMPI interface does
not provide enough insight to support a more fine-grained
definition. Note that our current implementation considers
only blocking collectives.

In our lightweight profiling scheme, we detect and quan-
tify Wait at NxN in a similar manner to how we deal with
Late Sender. The biggest difference is that we use the global
instead of the process-local minimum. At runtime, all pro-
cesses calculate the local minimum across all visits of the
collective function, again differentiated by the size of the
data. During finalization, the profiler computes the global
minimum in a small set of all-reductions. Thus, for a pro-
gram with a set of P processes, the Wait at NxN time of a
call path c on process p can be written as follows:

W (c, p) =
∑
s∈S

[n(c,p,s)∑
i=1

di(c, p, s) − n(c, p, s) ·M(f(c), s)
]

where M(f, s) is the minimum for MPI function f and mes-
sage size class s over all processes:

M(f, s) = min
p∈P ;c∈Cf

n(c,p,s)

min
i=1

di(c, p, s)

Although choosing the local minimum for point-to-point and
the global minimum for collective communication is more
amenable to intuition, we also tried the alternate mode in
each case and found it inferior. For point-to-point, the differ-
ence was minor, for collectives it was significant. Given that
sub-communicators smaller than the world are more the ex-
ception than the rule, we refrain from considering anything
between the local and the global minimum.



3.3 Further Patterns
Although judging from the experiences gathered with Sca-

lasca the patterns we discussed so far are the most impor-
tant ones in practice, there are other situations to which our
method could be applied. For example, Late Receiver de-
notes a situation in which a sender communicating in syn-
chronous mode is blocked while waiting for the matching
receiver. Here, the wait state occurs in the send operation,
which is why the local minimum of the send durations has
to be used to calculate the waiting time.

Other collective patterns to which our method could be
applied are Late Broadcast and Early Reduce. The first pat-
tern denotes the situation where the root process of a broad-
cast arrives too late, therefore inducing wait states on those
non-root processes that enter the operation earlier. Here,
the minimum duration of MPI Bcast on non-root processes
becomes the relevant parameter. However, since the root
process does not incur any wait states, the profiler has to
distinguish between time spent in a broadcast when called as
root and when not called as root. Conversely, the Early Re-
duce wait state can only occur on the root process, and only
when it enters the reduction operation earlier than non-root
processes. Therefore, the minimum duration of MPI Reduce
becomes relevant only on the root processes, requiring a sim-
ilar distinction to that given above. Finally, one-sided op-
erations with their weakly specified blocking semantics also
seem natural candidates for our method and will be investi-
gated in the future.

4. EVALUATION
Because our lightweight profiling approach estimates wait-

ing time rather than measuring it directly, we evaluate its ac-
curacy by comparing it to direct measurements. Moreover,
we quantify its overhead in comparison to vanilla Score-P
and the approach used in FPMPI, which we deem closest
in spirit to our own. As test cases, we used the SPEC
MPI2007 benchmark suite, the NAS Parallel Benchmarks
(NPB), and Sweep3D. We ran Sweep3D and the NAS bench-
marks with 1024 processes on both the IBM Blue Gene/Q
system JUQUEEN and the Intel Xeon cluster JUROPA,
both located at Jülich Supercomputing Centre. The SPEC
MPI2007 benchmarks ran with 256 processes and only on
JUROPA. To lower the instrumentation overhead, we fil-
tered frequently executed, but otherwise uninteresting user
functions.

4.1 Accuracy
To evaluate the accuracy of the minimum-based estimates

of wait states, we compare it to the accuracy of trace-based
measurements of the same wait states. For this purpose,
we performed wait-state profiling runs during which we also
generated a trace file. The trace files were analyzed using
Scalasca to quantify the amount of wait states in each call
path. Since pure minimum-based wait state profiling is nat-
urally prone to jitter, we do not consider call paths whose
waiting time amounts to less than 0.5% of the execution
time of the whole program. We call this ratio between the
amount of waiting time present in a call path and the exe-
cution time of the whole program the wait ratio, and use it
as a comparison metric throughout this section. We devote
separate subsections to Late Sender and Wait at NxN.

4.1.1 Late Sender
The wait-state quantification results for blocking and non-

blocking communication differ. Blocking communication ap-
pears in LU from NPB and Sweep3D, all other codes use
only non-blocking communication. Figure 3a compares the
amount of waiting time we found using lightweight wait-
state profiling and Scalasca trace analysis in MPI Recv call
paths. For the blts and buts call paths in LU, the Scalasca
trace analysis reports a wait ratio of 8.2% and 5.7% on JU-
ROPA whereas wait-state profiling reports 10.2% and 6.8%,
respectively. On JUQUEEN, Scalasca reports 5.6% and
3.8% and wait-state profiling 7.2% and 5.3%. For Sweep3D,
the absolute difference in the detected wait ratios is less than
0.7 percentage points. Although the wait ratios obtained
using wait-state profiling are slightly higher, the difference
between the two methods in MPI Recv is small.

Figures 3b and 3c summarize our results for non-blocking
communication, that is for call paths ending in MPI Wait
and MPI Waitall. Except for SPEC’s 143.dleslie, where
wait-state profiling reports 3.8 percentage points more wait-
ing time than Scalasca, the wait ratios for MPI Wait do
not differ by more than 2 percentage points. The numbers
confirm the trend that the lightweight wait-state profiling
slightly overestimates the amount of waiting time.

The accuracy for call paths ending in MPI Waitall is lower
compared with our observations for MPI Wait on both sys-
tems, with differences of more than 2 percentage points in
7 cases. Moreover, SPEC’s 145.lGemsFDTD is the only
case where wait-state profiling underestimates the waiting
time reported by Scalasca, likely due to a persistent static
load imbalance in this benchmark. For the Waitall call
paths in NAS BT and SP, wait-state profiling again signifi-
cantly overestimates the waiting time on both JUROPA and
JUQUEEN. Only 121.pop2 shows little difference between
the two methods. While the minumim-based estimates for
MPI Wait are generally quite close to the measured values,
especially if the wait ratio is high, the substantial discrep-
ancy observed for MPI Waitall suggests that our approach
should not be used for this particular MPI function.

The reason why minimum-based wait-state profiling tends
to overestimate the amount of waiting time, especially for
non-blocking communication, is that a message may have
already been (partially) received at the time MPI Recv,
MPI Wait, or MPI Waitall is called. In this case, the MPI
function only copies the message in memory (if at all), which
is much faster than the full sequence of receive actions.
Unfortunately, such abbreviated receive calls are included
in the minimum selection, leading to a minimum that is
smaller and waiting times that are longer than desired. To
alleviate this problem, we tried to exclude MPI Wait and
MPI Waitall calls from the selection of the minimum and the
calculation of waiting times if a preceding call to MPI Test
or MPI Testall indicates that all requests are already com-
plete. In the case of 143.dleslie, this reduced the difference
between wait-state profiling and Scalasca’s trace analysis by
approximately 40%. In the case of SP on JUQUEEN, the
difference was reduced by percentages ranging from 7.7% to
12.2%. However, messages that are nearly complete when
the test is performed still render the minimum too small.
In conclusion, while this variation seemed promising at first
glance, it did not change the accuracy significantly enough
to justify the extra overhead. Nevertheless, the minimum-
based estimates for MPI Recv and MPI Wait still serve as a
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(c) MPI Waitall
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(d) Wait at NxN

Figure 3: Comparison of waiting times between Scalasca trace analysis and wait-state profiling for all call paths with a wait
ratio greater than 0.5%.



good indicator of an enlarged wait ratio—even without the
preceding test.

4.1.2 Wait at NxN
The quantitative results for all-to-all call paths are shown

in Figure 3d. The absolute wait-ratio difference between
the two methods is less than 0.45 percentage points and the
relative distance less than 10% in all cases. Overall, we can
conclude that minimum-based wait-state profiling estimates
this type of wait state very well.

4.2 Runtime Dilation
For all test cases, the overall runtime dilation caused by

Score-P instrumentation (frequently executed user functions
filtered) with our method enabled did not exceed 15%, and
was below 5% in most cases. To examine the additional over-
head introduced by wait-state profiling compared to regular
profiling in Score-P, we ran a series of microbenchmark ex-
periments for the affected MPI calls (Recv, Wait/Waitall,
and all-to-all collectives). On JUQUEEN, we find that the
per-call overhead increases by less than 8% when collect-
ing the extra statistics. Put into perspective, collecting
traces instead of profiles (as required for the Scalasca wait-
state analysis) increases the per-call overhead by 8 (point-to-
point) to 20% (all-to-all collectives). In comparison, other
on-line wait-state detection techniques lead to much higher
intrusion. Modifying the MPI wrappers in Score-P to im-
itate FPMPI’s methods of distinguishing between waiting
and communication time increased the overhead for collec-
tive MPI calls by 88% and for MPI Recv by 192%, respec-
tively. Likewise, piggybacking increased the overhead for
MPI Recv in Score-P by 220%.

5. CONCLUSION AND OUTLOOK
In this paper, we presented a lightweight, inherently scal-

able, and platform-independent profiling technique to diag-
nose typical wait states in MPI point-to-point and collec-
tive operations, which we integrated into Score-P. It neither
requires voluminous trace files, nor does it incur any no-
ticeable extra cost in comparison to vanilla Score-P. The
enhanced Score-P provides fairly accurate estimates of the
fraction of waiting time in both blocking and non-blocking
calls relative to the overall execution time. The exception is
MPI Waitall, where our technique often overestimates the
waiting time significantly. Future work will aim at closing
this gap. Further research will be devoted to the question
of whether non-contiguous data types deserve special treat-
ment. Moreover, we want to add support for additional
wait-state patterns such as Late Receiver. In combination
with phase profiling [8], our approach can help select inter-
vals worth being traced and subjected to a more fine-grained
investigation. Finally, it can benefit empirical performance
modeling [2] by providing a means to separate waiting time
from actual communication progress.
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