
1

A comparison between OPARI2 and the OpenMP tools
interface in the context of Score-P ?

Daniel Lorenz1, Robert Dietrich2, Ronny Tschüter2, and Felix Wolf1,3

1 German Research School for Simulation Sciences, 52062 Aachen, Germany
2 Technische Universität Dresden, Center for Information Services and High Performance

Computing, 01062 Dresden, Germany
3 RWTH Aachen University, Department of Computer Science, 52056 Aachen, Germany

Abstract. The upcoming OpenMP tools interface (OMPT) has been designed
as a portable interface for performance analysis tools. It provides access to
OpenMP-related information at program runtime and can thus extend the anal-
ysis capabilities of current performance tools. This paper compares the func-
tionality and convenience of OMPT with OPARI2 for event-based performance
analysis. For this purpose, we integrated OMPT into the measurement infras-
tructure Score-P, which previously accessed OpenMP-related information using
only source-level instrumentation with OPARI2. For comparison, we performed
Score-P measurements of the NAS Parallel Benchmark suite and the LULESH
code with OPARI2 instrumentation and with OMPT. In each case, we deter-
mined the overhead and evaluated the output. We found that the measurement
overhead is dominated by the measurement system, while the contribution of the
event source remains negligible. Moreover, OMPT and OPARI2 provide com-
plementary views of the performance behavior. Whereas OPARI2 maintains a
strictly source-code-centric perspective that reflects OpenMP standard abstrac-
tions, OMPT mirrors the behavior of the OpenMP runtime and exposes compiler
optimizations.

1 Introduction

OpenMP is a widely used parallel programming specification for shared-memory plat-
forms. Many compilers support it to exploit thread-level parallelism on modern hard-
ware architectures. In the past, several analysis tools [5,6,8,9,11,16] that are capable of
recording and displaying OpenMP related performance data emerged, assisting users in
the optimization of their parallel programs. However, the OpenMP specification does
not define a performance monitoring interface that enables tool developers to write
portable measurement libraries. The emerging OpenMP tools interface (OMPT) [3] is
intended to address this need.

In this work, we discuss OMPT in the context of the performance measurement
infrastructure Score-P [9]. So far, Score-P captures OpenMP-related performance data
using the source-to-source instrumenter OPARI2 [14]. However, since OMPT provides

? This material is based upon work supported by the Department of Energy under Grant No.
DE-FG02-13ER26158 / DE-SC0010668.

Published in “Using and Improving OpenMP for Devices, Tasks, and More”, LNCS 8766,
pp. 161-172, Springer, 2014. The original publication is available at www.springerlink.com

http://dx.doi.org/10.1007/978-3-319-11454-5_12

2

callbacks signaling the begin and the end of OpenMP constructs and other important
events, it offers an attractive alternative to the current OPARI2-based instrumentation.

To evaluate the capabilities of OMPT for the event-based acquisition of OpenMP
performance data, we integrated an OMPT adapter into Score-P and compared it in
a set of different profiling and tracing scenarios with the default instrumentation via
OPARI2. Our experiments are based on an OMPT implementation in the open-source
version of the Intel OpenMP runtime [12]. To compare OMPT and OPARI2, we ran the
NAS Parallel Benchmarks and the LULESH code, either with OMPT or with OPARI2
instrumentation. We determined the overhead for both cases, and evaluated the perfor-
mance reports generated by Score-P.

The paper is organized as follows. Section 2 describes related work, in particular,
further approaches to capture OpenMP-related performance data. Afterwards, in Sec-
tion 3, we discuss the differences between the approaches taken by OPARI2 and OMPT
in more detail. Section 4 outlines our prototypical OMPT adapter implementation in
Score-P and the event model it adheres to. An evaluation of the experimental results is
given in Section 5. Finally, in Section 6, we present our conclusions.

2 Related Work

Several tools [5,6,8,9,11,16] have emerged to provide insight into the parallel execution
of OpenMP applications. Because there is no tools interface defined in the OpenMP
specification yet, analysis tools rely on different methods to acquire their data. Per-
formance tools based on sampling do not depend on an instrumenter like OPARI2.
HPCToolkit [11], for example, collects the call path along with performance metrics
at every sampling point. The routines are identified by their name and embedded in a
calling-context. HPCToolkit recently implemented OMPT support to enable advanced
analysis features like blame shifting for OpenMP applications. Another data acquisition
strategy is instrumentation, which inserts hooks into the code to capture relevant events
subject to further analysis. Advantages and drawbacks of the two approaches have been
investigated in [13].

This work focuses on the measurement infrastructure Score-P [9], which uses in-
strumentation for data collection. Score-P is a joint performance measurement infras-
tructure for several analysis tools, including Vampir [8], Scalasca [6], TAU [16], and
Periscope [1]. Currently, the performance-data collection of OpenMP events rests on
the source-code instrumenter OPARI2 [14], which provides a portable way of instru-
menting OpenMP pragmas by inserting calls to measurement functions around those
pragmas into the program code. Score-P can produce both event traces and call-path
profiles.

An alternative to OPARI2 is the ROSE compiler [15], which has been developed at
Lawrence Livermore National Laboratory. It is an open-source compiler infrastructure
to build source-to-source program translation and analysis tools for large-scale C/C++
and Fortran applications. ROSE can be used to identify and instrument all OpenMP
3.0 constructs in the source code [10]. Instead of transforming the source code, Par-
aver with Extrae as trace generator instruments OpenMP runtime routines based on a
preloading mechanism (LD PRELOAD) or DynInst [2]. The major drawback of this

3

approach is the limited portability, as currently only Intel, GNU and IBM OpenMP run-
times are supported. Furthermore, only visible OpenMP runtime library routines can be
instrumented, which limits the obtainable information.

3 Instrumentation Approaches

Among event-based performance analysis tools, the instrumenter OPARI2 is widely
used. OMPT also aims to support event-based tools. This section gives an overview of
OPARI2 and OMPT in the context of event-based performance analysis.

3.1 OPARI2

OPARI2 [14] is a source-to-source instrumentation tool for OpenMP applications. It an-
notates OpenMP directives and runtime library calls with calls to the POMP2 measure-
ment interface. A performance measurement infrastructure can implement these calls to
obtain information about the execution of OpenMP parallel applications. OPARI2 is in-
dependent of a specific OpenMP implementation. It parses the source code and modifies
it directly. To instrument a program using OPARI2, the application must be recompiled.
The POMP2 event model provides events marking the begin and the end of an OpenMP
construct. If an OpenMP construct refers to a structured block, OPARI2 inserts extra
enter and exit events around this block—with the exception of loop constructs. If an
OpenMP construct implies an implicit barrier, OPARI2 replaces the implicit barrier
with an explicit barrier and instruments the explicit barrier. As an example, Listing 1.2
shows how OPARI2 instruments the OpenMP construct from Listing 1.1.

3.2 OMPT

OMPT [3] is an extension proposal for the OpenMP specification. It defines a standard-
ized interface to obtain information from the OpenMP runtime system. OMPT pursues
different objectives. First, the OpenMP tools API provides state information on the
OpenMP runtime to be queried by an analysis tool. This feature is mainly intended for
sampling. OMPT distinguishes three classes of states: mandatory, optional, and flexible.
In contrast to optional states, mandatory states have to be maintained by all standard-
compliant OpenMP implementations. Finally, implementations have some freedom if
and when they indicate the transition to a flexible state.

Second, OMPT allows event-based performance tools to register function callbacks
for events of interest. For most constructs, OMPT provides begin and end events that
are triggered when a thread encounters a construct and when it finishes its execution,
respectively. Furthermore, events exist to notify a tool when threads or tasks are cre-
ated, a thread switches between the execution of two tasks, or a thread starts waiting or
ends waiting in synchronization constructs. The event callbacks are classified as manda-
tory and optional. Mandatory events have to be implemented by all standard-compliant
OpenMP implementations. The set of mandatory events is small but sufficient for basic
performance analysis of OpenMP programs. For example, mandatory events include
the start and the end of threads, tasks, and parallel regions. Nevertheless, the majority

4

Listing 1.1: Example of a simple OpenMP parallel loop

#pragma omp parallel for
for (i=0; i < 100000; i++)

c[i] = a[i] + b[i];

Listing 1.2: Code generated by OPARI2 for a simple OpenMP parallel loop

POMP2_Parallel_fork(...);
#pragma omp parallel ...
{

POMP2_Parallel_begin(...);
{

POMP2_For_enter(...);
#pragma omp for nowait
for (i=0; i < 100000; i++)

c[i] = a[i] + b[i];
{

POMP2_Implicit_barrier_enter(...);
#pragma omp barrier
POMP2_Implicit_barrier_exit(...);

}
POMP2_For_exit(...);

}
POMP2_Parallel_end(...);

}
POMP2_Parallel_join(...);

of information needed by Score-P is available only as optional events. An OpenMP im-
plementation can support an arbitrary set of optional events and analysis tools can not
rely on the availability of any optional event.

3.3 Comparison

Functionality and portability: OPARI2 accesses only the source code of an applica-
tion. Therefore, OPARI2 is independent of a specific OpenMP runtime. The source
code is parsed and rewritten by OPARI2 before the code is compiled which may alter
code optimization decisions of the compiler. Performance measurement tools that want
to use OMPT need an OpenMP runtime that implements OMPT. Neither error-prone
source code parsing nor recompilation are needed with OMPT, shifting development
and maintenance costs from tool to OpenMP runtime developers. It is only necessary to
implement measurement adapters. However, tools have to live with the possibility that
certain optional events are absent.

Obtainable information: The callbacks provided by OMPT and the instrumentation in-
serted by OPARI2 follow a similar event model. For example, both methods indicate

5

start and completion of a construct. On the other hand, the view the two methods provide
of the application behavior is different in many regards. As a source-to-source instru-
menter, OPARI2 has access to source-code information, but not to runtime information.
Thus, it supplies many source-code details like the source-code location of constructs
or additional clauses. Essentially, the instrumentation reflects the source-code struc-
ture and is agnostic of compiler optimizations. In contrast, OMPT is implemented in
the OpenMP runtime library. Hence, it can access runtime information but lacks di-
rect knowledge of the source code. It therefore does not know the original source-code
structure but only the optimized binary code, which is why it can deliver insight into
compiler optimizations. However, this implies that OMPT provides function pointer
addresses for outlined functions of parallel regions and tasks as the only meta informa-
tion on constructs. The function pointers can be used to obtain source code information
if available. In principle, OMPT provides events for all constructs. However, most of
the callbacks are optional in OMPT. Thus, the set of available events depends on the
OpenMP implementation. With OPARI2, all events are always available, but a user can
disable the instrumentation of any set of constructs. Additionally, OMPT allows direct
measurement of waiting time in synchronization constructs. With OPARI2 a user can
only assume waiting time if the execution time of a synchronization construct is large.
Figure 1 shows the respective event trace of the OpenMP parallel loop construct from
Listing 1.1 in the Vampir trace browser. The upper two charts (white background) de-
pict the event trace recorded with OMPT callbacks. A timeline representation of the
parallel loop execution with four threads is illustrated in the first chart and the corre-
sponding call stack of the master thread is shown in the second chart. The lower two
charts (purple background) present the data obtained from the OPARI2 instrumenta-
tion for the execution of the same OpenMP construct. OMPT reflects that the OpenMP
runtime completes the execution of the parallel loop with an implicit barrier (blue re-
gion), whereas the OPARI2 instrumentation inserts an explicit barrier to the parallel
loop construct.

4 Score-P Implementation

For the purpose of this study, we implemented a Score-P prototype supporting the
OMPT interface. It was our goal to measure OpenMP applications even if the OpenMP
runtime implements only mandatory events. If optional events are available, they should
enrich the measurement with additional information. The Score-P architecture [9] con-
sists of an adapter layer which captures events and a measurement layer which passes
the data to the profiling or tracing backend. Event traces are written in the Open Trace
Format 2 (OTF2) [4], which can be analyzed with Vampir or Scalasca. Call-path profiles
are stored in the CUBE4 format.

First, we implemented a new support component for the internal thread management
under OMPT, making no assumption about the availability of optional events. Unfortu-
nately, the callbacks indicating the begin and end of an implicit task are optional events
in OMPT. However, the information when a worker thread starts or ends its execution
is essential in Score-P. Although we can estimate these times from the begin and end
of a parallel region on the master thread, we still need to know which threads belong

6

Fig. 1: OMPT (white background) and OPARI2 (purple background) perspective on an
OpenMP parallel for region executed with four threads. The Vampir compare view
shows the timeline and call stack view on the respective event traces.

to the parallel region. However, Score-P only learns that a thread is executing a parallel
region if this thread triggers an event inside the region, which is not guaranteed. Thus,
if no events appear inside a parallel region, Score-P can show that there is a parallel
region but does not know about any worker threads running inside.

Second, we developed a new adapter that implements the OMPT callback functions
and translates the call-backs to Score-P events. The OpenMP runtime version that we
used for our experiments does not implement all optional events. However, for most
OpenMP constructs that occurred in our experiments, OMPT call-backs exist.

5 Evaluation

In this section, we compare OPARI2 and OMPT on the basis of performance experi-
ments with several benchmarks. We ran the NAS Parallel Benchmark (NBP) suite in
profiling mode, while we ran LULESH in tracing mode. For each test case, we chose
the minimum execution time of ten measurements.

5.1 Profiling Overhead

Our test platform was the the Linux cluster JUROPA at Forschungszentrum Jülich. JU-
ROPA has 2208 compute nodes, each equipped with two Intel Xeon X5570 quad-core
processors running with 2.93 GHz We used the Intel compiler version 11.1 to build the

7

-1

0

1

2

3

4

5

6

bt cg ep ft is lu sp

%
 O

ve
rh

e
ad

NAS Parallel Benchmarks (8 threads)

OPARI2

OMPT

Fig. 2: Overhead of NPB measurements with OPARI2 instrumentation and with OMPT
callbacks on JUROPA.

OpenMP runtime, Score-P and the NPB suite. The number of threads was always eight.
We measured the runtime of (i) the uninstrumented codes, (ii) with OPARI2 instrumen-
tation of OpenMP constructs, and (iii) with OMPT callbacks to record OpenMP related
data. In addition to OPARI2 instrumentation and OMPT callbacks, we instrumented the
main function manually. The measured overheads are shown in Figure 2.

The overhead is low in all cases. Only the OPARI2-instrumented lu benchmark
shows an overhead of 5.4%. In all other cases the overhead is less than 3.4%. For cg,
ep, and ft, the overhead is even less than the standard measurement deviation for
these applications. With the exception of lu, the overheads of the OMPT and OPARI2
instrumentation are very similar. The difference in runtime is less than the standard
deviation. The negative overhead measured for the OMPT instrumented ep is due to
measurement deviation.

Only in the lu benchmark code, we observed a significant difference between the
overheads of OMPT call backs and OPARI2 instrumentation. The reason is due to the
more than 140,000,000 visits to OpenMP flush constructs in lu. They are instru-
mented by OPARI2, where they produce more than 95% of the events, but do not trigger
any call backs in our OMPT implementation. This is because the Intel OpenMP runtime
has no support for flush callbacks yet.

Except for the creation of a new system thread, the Score-P measurement system
performs no communication or synchronization between threads during the measure-
ment. Thus, we expect Score-P to be embarrassingly parallel. Measurements with the
lu benchmark on JUROPA with up to 16 threads show that the speedup of the OPARI2
instrumented code, the OMPT based measurement and the uninstrumented code are
identical.

8

0,5

1

1,5

2

2,5

20
(0,79)

30
(1.44)

40
(2.69)

50
(4.83)

60
(8.02)

70
(12.43)

80
(18.94)

90
(30.37)

100
(41.13)

R
u

n
ti

m
e

(r
e

la
ti

ve
)

Problem Size
(Base runtime without code changes or instrumentation (in seconds))

Lulesh 2.0 (16 threads)
Empty Callbacks

OMPT Tracing

OPARI Tracing

Lulesh (modified)

OMPT Tracing (modified)

Fig. 3: Runtimes of LULESH with OPARI2 instrumentation and OMPT callbacks. Run-
times are relative to the runtime of the uninstrumented LULESH code. In the modified
(and also uninstrumented) version, the implicit barrier was manually exchanged for an
explicit barrier, similar to the transformation performed by OPARI2 (Listings 1.1 and
1.2).

5.2 Tracing Overhead

LULESH [7] is a shock hydrodynamics code developed at Lawrence Livermore Na-
tional Laboratory. It is known to challenge machine performance. Furthermore, it
stresses compiler vectorization, OpenMP overheads, and intra-node parallelism. For
the latter, it employs for loops in simple non-nested parallel regions. We used LULESH
version 2.0 and conducted our experiments on the Sandy Bridge partition of the HPC
cluster Taurus at Technische Universität Dresden. We ran the job with 16 threads on a
single node, which is equipped with two Intel Xeon CPU E5-2690 (8 cores) at 2.90GHz
and hyperthreading disabled. LULESH, the open source version of the Intel OpenMP
runtime, and the measurement system Score-P were compiled with the Intel compiler
version 13.0.1. To record a similar set of events with both instrumentation approaches
and enable the visualization of worker threads, we inserted calls to the implicit task
begin and end callbacks into the the Intel OpenMP runtime.

We ran LULESH with different problem sizes for a fixed number of 200 iterations.
Figure 3 shows the the runtimes relative to the original LULESH code without instru-
mentation. The runtime of the LULESH code without any instrumentation increases
from 0.79sec for a problem size of 20 to 41.13sec for the problem size 100. The prob-
lem size defines the workload and increases the total computation time, whereas the
number of OpenMP events stays constant. As the number of measurement events is
independent of the problem size, large instrumentation overheads can be forced with
small problem sizes and vice versa. For problem sizes smaller than 90, the OPARI2

9

bt ft
Construct OPARI2 OMPT OPARI2 OMPT
atomic 2 – 0, –
barrier 19 aggregated 9, aggregated
loop 30 aggregated 8 aggregated
master 5 aggregated 1 aggregated
parallel 10 10 9 10

Table 1: Number of constructs distinguished by OPARI2 and OMPT for bt and ft. The
OMPT implementation in our version of the Intel OpenMP runtime does not yet sup-
port atomic regions. For most OpenMP constructs, OMPT-based measurements merge
constructs of the same type and aggregate their data.

instrumented version has between 9 and 73 percentage points less overhead than the
OMPT version. For problem sizes from 50 to 80, the OPARI2 instrumented code was
even faster than the uninstrumented code. During instrumentation, OPARI2 substitutes
explicit barriers for implicit barriers, as depicted in Section 3.1. If we apply this change
manually to the LULESH source code, the uninstrumented code runs up to 26% faster
than the unmodified version. As a consequence, the measurements with OMPT are
much faster, too. The measurements with the modified code are shown in Figure 3 as
dashed lines. We believe that this change alters the compile-time optimization deci-
sions and constitutes the major reason why the OPARI2-based and the OMPT-based
measurements are different.

5.3 Structural Differences in Performance Content

In the following, we highlight structural differences in the output of the two methods.
As these differences are based on the instrumentation technique, our observations apply
to both profiling and tracing equally.

The first observation is that OPARI2 provides source code information on every
OpenMP construct, which allows the user to distinguish them during analysis. Except
for parallel constructs and tasks, OMPT does not provide any information to distinguish
constructs of the same type. Thus, for all remaining construct types, constructs of the
same type appear merged and their performance data aggregated. This can be illustrated
with profiling data from NPB. Since OPARI2 measurements can distinguish multiple
OpenMP constructs of the same type appearing inside the same call path, the call tree
of the OPARI2-instrumented code might look more differentiated. Table 1 shows the
number of distinguishable constructs OPARI2 and OMPT recognize. To quantify the
additional information the distinction among constructs of the same type provides, we
counted the number of call paths (i.e., nodes) in the call tree (Table 2).

Table 2 shows that in most cases the OPARI2 profiles contain significantly more call
paths than the OMPT profiles. For bt, cg, and lu, the OPARI2 profiles show more than
twice as many call paths as the OMPT profiles. A remarkable exception is ft, where
the OMPT instrumentation leads to more call paths than the OPARI2 instrumentation

10

bt cg ep ft is lu sp
OPARI2 Visits 47,994 147,990 154 2682 810 148,517,435 133,690

Call paths 67 54 12 28 23 95 79
OMPT Visits 34,197 127,571 54 172 626 1,712,033 90,265

Call paths 32 26 11 31 18 34 44

Table 2: Number of visits and different call paths in the profile of NPB codes, measured
with OPARI2 and OMPT.

(a) OPARI2 (b) OMPT

Fig. 4: Comparison of the ft call trees generated with OPARI2 and with OMPT.

because it shows one additional outlined function for a parallel construct. Both profiles
are shown in Figure 4a and Figure 4b. The source code contains nine parallel constructs,
as identified by OPARI2.

A second observation are the different visit counts produced by the two methods.
This has several reasons. First, our OMPT implementation did not yet support all con-
structs that appeared. For example, in lu more than 95% of the visits in the OPARI2
instrumented measurement stem from flush constructs, for which the OMPT imple-
mentation does not produce events yet. Another reason is that the OPARI2 module of
Score-P counts the start and the end of the implicit task inside the parallel region for
every thread. Because the implicit task begin event is optional in OMPT, the OMPT
module in Score-P must rely on the begin of the parallel region itself, which happens
only on the master thread. However, this could be easily changed in a post-processing
step, or by implementing the implicit task-begin event callback in the OpenMP runtime.

In some cases, compiler optimizations affect the visit count, which is the number
of times a call path has been visited. For example, a loop in the main routine of ft
iterates over subroutine calls to evolve, fft, and checksum, which contain parallel
constructs. The OPARI2 measurement shows 20 or more visits per thread for these par-
allel constructs. However, the OMPT measurement shows only one visit for each of its
10 parallel constructs. Our explanation is that the compiler applied optimizations, e.g.,

11

moved the parallel region creation around the loop. Optimizations like unrolling are
also a possible explanation why the number of parallel constructs in the OMPT result
for ft differs from the number of parallel constructs in the source code. Furthermore,
optimizations may result in outlined functions which cannot be easily mapped to the
user code. We recompiled ft with optimization level zero to prove this assumption.
The measurement result of the unoptimized ft with OMPT shows 9 outlined functions
for parallel constructs. However, every parallel construct is still visited only once.

Obviously, OMPT measurements may provide insight into compiler optimizations.
However, understanding this information may require knowledge of the compiler and
may even then not be comprehensible at the first glance. In contrast, OPARI2 delivers
information that strictly reflects the source code.

6 Conclusion

We compared OMPT callbacks and OPARI2 instrumentation with respect to their suit-
ability for event-based performance measurements. OPARI2’s source-to-source transla-
tion approach neither has access to object code nor to intermediate representations, but
reflects the structure of the source code very well. An advantage is that a user can eas-
ily map the measurement results onto his mental image of the program. Since OPARI2
passes along all relevant source code information, the results can even be explored in a
source-code browser. On the other hand, the instrumentation may interfere with com-
piler instrumentation and optimization.

For the development of OMPT, one of the initial design guidelines was to create
an interface that can be implemented in the OpenMP runtime without having to change
the compiler. Thus, it provides a view of the OpenMP runtime level, including com-
piler optimization artifacts. This may reflect the execution behavior of the application
more accurately. On the other hand, differences to the source code representation may
obscure measurement results sometimes. Overall, OPARI2 and OMPT provide com-
plementary information, which makes it reasonable to combine both approaches. The
information gathered with OMPT could be extended with source code correlation via
OPARI2, whereas events that are not available with OPARI2 (e.g. thread begin/end,
wait barrier begin/end) could be captured using OMPT. The measurement overhead is
generally low for both, OMPT and OPARI2. In most cases, the measurement system
itself dominates the overhead regardless of the instrumentation method. However, in
cases where the source code instrumentation of OPARI2 interferes with compiler opti-
mization, OPARI2 instrumentation may lead to different execution times.

The mandatory set of callback functions in OMPT allows call-path profiles to be
constructed from the events produced by our instrumentation—provided that no tasks
are used. However, if a worker thread does not trigger any events inside a parallel region,
it may remain invisible in the measurement. To construct call-path profiles for tasks, the
measurement system must be notified of task switches. Thus, to support event-based
performance tools, we recommend to support at least the optional callbacks for the
events ompt event implicit task begin and ompt event task switch
in OMPT implementations.

12

References

1. S. Benedict, V. Petkov, and M. Gerndt. PERISCOPE: An online-based distributed perfor-
mance analysis tool. In Tools for High Performance Computing 2009, pages 1–16. Springer,
Berlin/Heidelberg, 2010.

2. Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching. The Inter-
national Journal of High Performance Computing Applications, 14(4):317–329, November
2000.

3. Alexandre E. Eichenberger, John Mellor-Crummey, Martin Schulz, Michael Wong, Nawal
Copty, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz. OMPT: An OpenMP tools
application programming interface for performance analysis. In OpenMP in the Era of Low
Power Devices and Accelerators, volume 8122 of Lecture Notes in Computer Science, pages
171–185. Springer Berlin Heidelberg, 2013.

4. Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E.
Nagel, and Felix Wolf. Open Trace Format 2 - The next generation of scalable trace for-
mats and support libraries. In Proc. of the Intl. Conference on Parallel Computing (ParCo),
Ghent, Belgium, August 30 – September 2, 2011, volume 22 of Advances in Parallel Com-
puting, pages 481–490. IOS Press, 2012.

5. Karl Fürlinger and Michael Gerndt. ompp: A profiling tool for openmp. In OpenMP Shared
Memory Parallel Programming, pages 15–23. Springer, 2008.

6. Markus Geimer, Felix Wolf, Brian J. N. Wylie, Daniel Becker Erika Abraham, and Bernd
Mohr. The Scalasca performance toolset architecture. Concurrency and Computation: Prac-
tice and Experience, 22(6):702–719, April 2010.

7. Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 updates and changes. Technical
Report LLNL-TR-641973, Lawrence Livermore National Laboratory, August 2013.

8. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir performance analysis
tool-set. In Tools for High Performance Computing, Proceedings of the 2nd International
Workshop on Parallel Tools for High Performance Computing, pages 139–155, Stuttgart,
Germany, July 2008. Springer-Verlag.

9. Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic
Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolfgang E.
Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende,
Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. Score-P – A joint per-
formance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir.
In Proc. of 5th Parallel Tools Workshop, 2011, Dresden, Germany, pages 79–91. Springer
Berlin Heidelberg, September 2012.

10. Chunhua Liao, Daniel J Quinlan, Thomas Panas, and Bronis R de Supinski. A ROSE-based
OpenMP 3.0 research compiler supporting multiple runtime libraries. In Beyond Loop Level
Parallelism in OpenMP: Accelerators, Tasking and More, pages 15–28. Springer, 2010.

11. Xu Liu, John Mellor-Crummey, and Michael Fagan. A new approach for performance anal-
ysis of OpenMP programs. In Proceedings of the 27th international ACM conference on
supercomputing, pages 69–80. ACM, 2013.

12. John Mellor-Crummey et al. OMPT support branch of the open source Intel OpenMP run-
time library. http://intel-openmp-rtl.googlecode.com/svn/branches/
ompt-support, December 2013.

13. Edu Metz, Raimondas Lencevicius, and Teofilo F. Gonzalez. Performance sata collection
using a hybrid approach. SIGSOFT Software Engineering Notes, 30(5):126–135, September
2005.

http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support
http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support

13

14. B. Mohr, A.D. Malony, S.S. Shende, and F. Wolf. Design and prototype of a performance
tool interface for OpenMP. The Journal of Supercomputing, 23(1):105–128, August 2002.

15. D. J. Quinlan et al. ROSE compiler project. http://www.rosecompiler.org, April
2014.

16. Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. The Inter-
national Journal of High Performance Computing Applications, 20(2):287–311, May 2006.

http://www.rosecompiler.org

