
Int J Parallel Prog (2015) 43:656–678
DOI 10.1007/s10766-014-0313-x

Detection of High-Level Synchronization Anomalies
in Parallel Programs

Ali Jannesari

Received: 20 December 2013 / Accepted: 22 May 2014 / Published online: 31 May 2014
© Springer Science+Business Media New York 2014

Abstract In parallel programs concurrency bugs are often caused by unsynchronized
accesses to shared memory locations, which are called data races. In order to sup-
port programmers in writing correct parallel programs, it is therefore highly desired to
have tools on hand that automatically detect such data races. Today, most of these tools
only consider unsynchronized read and write operations on a single memory location.
Concurrency bugs that involve multiple accesses on a set of correlated variables may
be completely missed. Tools may overwhelm programmers with data races on various
memory locations, without noticing that the locations are correlated. In this paper,
we propose a novel approach to data race detection that automatically infers sets of
correlated variables and logical operations by analyzing data and control dependen-
cies. We develop an algorithm that is inspired by lockset analysis and combine it with
happens-before analysis to provide the first hybrid, dynamic race detector for corre-
lated variables. We implemented our approach on top of the Valgrind, a framework
for dynamic binary instrumentation. Our evaluation confirmed that we can catch data
races missed by existing detectors and provide additional information for effective
bug fixing.

Keywords Data race detection · Parallel programs · Dynamic analysis · Correlated
variables · High-level data races

A. Jannesari (B)
German Research School for Simulation Sciences, Aachen, Germany
e-mail: a.jannesari@grs-sim.de

A. Jannesari
RWTH Aachen University, Aachen, Germany

123

Int J Parallel Prog (2015) 43:656–678 657

1 Introduction

As multi-core processors have become more and more ubiquitous in recent years,
programmers are faced with the challenge of writing parallel programs to leverage this
computing power. Yet, writing parallel programs is inherently harder than sequential
ones: among other difficulties, concurrency related bugs, such as deadlocks, atomicity
and order violations [1], tend to appear randomly and are troublesome to reproduce and
fix—especially if several variables are involved. How can we support programmers in
this tedious work and improve existing tools?

1.1 Traditional dynamic data race detection

A popular approach is to automatically detect so-called data races, since data races
often accompany and cause concurrency bugs. A data race occurs

when at least two threads access the same memory location with no synchro-
nization between them1 and at least one of these accesses is a write [2].

Take, for example, Fig. 1: two threads increment a shared variable i in parallel; because
no locking enforces the required mutual exclusion, we can observe a data race on i ,
which indicates an atomicity violation.

Generally, approaches to data race detection can be divided into static and dynamic
analysis. Each brings its own advantages and disadvantages [3]. Among dynamic
methods, which we concentrate on, two main techniques have evolved over time: The
lockset algorithm [4] and happens-before analysis [5]. The lockset algorithm checks
if every access to a shared memory location follows a certain locking discipline. The
happens-before analysis is used to distinguish parallel thread segments from ones that
have a certain order enforced between them (see Sects. 3.2 and 3.4).

While the lockset algorithm is relatively independent from scheduling, the happens-
before analysis is not; however, a pure lockset algorithm suffers from many false
positives, because it does not support many synchronization operations. Therefore,
tools like Helgrind+ [6–9] and others combine these two approaches [10,11]. Such
tools are called dynamic hybrid race detectors.

1.2 Problem Description

The ‘traditional’ definition of data races does not cover concurrency bugs that involve
more than a single memory location or multiple read/write-operations: consider the
function scaleVector shown in Fig. 2, where every access to the shared tuple (x, y) is
protected by lock m. Although scaleVector is clearly intended as an atomic operation
on (x, y), another thread could change x or y during the computation of max . If the
other thread also protects x and y with Lock m, no data race is detected, yet scaleVector
obviously suffers from an atomicity violation.

1 For example by mutual exclusion using locks or by enforcement of a specific order through signal/wait.

123

658 Int J Parallel Prog (2015) 43:656–678

Fig. 1 Two parallel increments causing a data race

Fig. 2 Function with concurrency bug

An extensive study of concurrency bugs in [1] has revealed that a significant number
(34 %) of the examined non-deadlock bugs fall into this category and are therefore not
adequately addressed by existing tools. The detection of such bugs is challenging since
correlations among variables usually escape traditional race detectors which are not
aware of logical relationships.

In this paper, we present a new approach to data race detection that will help
close this gap. Roughly speaking, we developed a new algorithm by adapting the
lockset algorithm and the happens-before analysis to build a dynamic hybrid data
race detector for correlated variables and logical operations. Our race detector is an
end-to-end implementation of integrating the correlation detection algorithm into a
hybrid race detection algorithm.

First and foremost, we must extend the definition of data races to capture scenarios
like the one we just described. Therefore, two aspects of data races need reconsidera-
tion:

– Spatial aspect: Instead of single memory locations, we must monitor sets of cor-
related variables that share a semantic consistency property. We call such sets
correlated sets. In the example above s = {x, y} is one such correlated set.

– Temporal aspect: A logical operation on a correlated set that preserves its consis-
tency property may consist of several elementary reads or writes. We call such opera-
tions computational units. In our example, the computational unit u = scaleV ector
operates on s.

123

Int J Parallel Prog (2015) 43:656–678 659

Using these terms, we come up with the following new definition of extended data
races:

Accesses of two parallel computational units u1 and u2 to the same correlated
set s are called extended data race, if s is modified, and u1 and u2 are not
synchronized in a manner that enforces mutual exclusion or a specific order.

Our work is based on this definition. We can divide our approach into the following
three steps:

1. Automatically and dynamically infer correlated sets and computational units.
2. Adapt the lockset analysis and the happens-before analysis to provide a new algo-

rithm for detection of extended data-races.
3. Build a dynamic, hybrid race-detector for correlated variables.

Note that, beside this name, concurrent logical operations on single variables without
proper synchronization will also be reported.

The remainder of this paper is structured as follows: in Sect. 2, we describe other
approaches that tackle similar problems. In Sect. 3, we present a technique to auto-
matically detect correlated sets and computational units, and we develop our detector.
We briefly discuss its implementation in Sect. 4 and then its evaluation in Sect. 5.

2 Related Work

There is a lot of prior work dealing with data race detection for single memory locations
[8,10,12]. However, the problem of dealing with concurrency bugs involving multiple,
correlated variables has only been addressed by few authors. We briefly describe three
such publications:

(a) The papers [13,14] are tailored towards object oriented environments, in partic-
ular Java. It is assumed that annotated fields of a class (per instance) form an atomic
set, while methods of the same class are units of work on these sets. Atomic sets are
comparable to our correlated sets and units of work to computational units.

But instead of relying on synchronization operations, the authors apply the concept
of serializability [15] as correctness criterion: for parallel units of work, they track
actual sequences of interleaved read and write operations on a shared atomic set. If
such a sequence is not equivalent to a serial execution of these units of work, an error
is reported. This is efficiently checked by comparing the tracked sequences with a list
of patterns that provide a complete characterization of atomic set serializability.

(b) MUVI [16] detects correlated variables by applying data mining techniques
during static analysis. Although the authors’ main focus is to detect inconsistent update
bugs, a basic variant of the dynamic lockset algorithm is developed. It works as follows:
First the lockset for every shared variable v is determined using the standard lockset
algorithm. Then, it is checked whether correlated variables are protected by a common
lock. Bugs caused by using different locks for correlated variables can be detected this
way. However, due to the lack of a concept for logical operations, this approach fails
to detect bugs like the one shown in Fig. 2.

(c) The Serializability Violation Detector (SVD) [17] uses dynamically derived
control and data dependencies to detect computational units on the fly. When compu-

123

660 Int J Parallel Prog (2015) 43:656–678

tational units terminate, information about them is discarded and correlations are built
“from scratch”—that is, no persistent information, as with correlated sets or atomic
sets, is stored. Actually, our own detection of correlated sets and computational units
is based on this work. We will describe it in greater detail in Sect. 3.1. As criterion
for bug detection, again, serializability is used (albeit with a more basic variant than
in [13]).

Looking at the related works, it seems clear that concepts similar to correlated sets
and computational units are necessary for the detection of multi-variable concurrency
bugs. However, the methods to infer such constructs vary significantly, as do criteria
for actual bug detection.

While using serializability can prevent benign races in some cases [13], it is inher-
ently dependent on a concrete schedule. Also, order violation bugs may be overlooked:
an example is the use after initialization pattern, when thread t1 writes an initial value
to v, while thread t2 reads v—these operations are obviously serializable, but can still
lead to program crashes when executed in the wrong order, e.g. if v is a pointer type.

Therefore, it is promising and desirable to bring the benefits of hybrid race detection
to the domain of multi-variable concurrency bugs.

3 Race Detection for Correlated Variables

3.1 Inferring Correlated Sets and Computational Units

A prerequisite for detecting extended data races is to dynamically infer correlated sets
and computational units. In related work, we have seen several solutions to this prob-
lem. Since we aim to develop a method without user intervention, we do not rely on
source annotations. Instead, we infer correlated sets and computational units automat-
ically. Our approach is therefore based on the region hypothesis [17] for computational
units:

– All operations of a computational unit are related through either true data depen-
dencies (read after write) or control dependencies.

– Computational units follow the ‘read compute write’ pattern: a program state is
first read from shared memory, the new state is computed using thread exclusive
memory and finally written back to shared memory. Therefore, there are no true
data dependencies on shared memory locations within computational units.

Additionally, we infer correlated sets using the same heuristic: All memory locations
read or written within a computational unit, form a correlated set.

Based on these criteria, both computational units and correlated sets can be com-
puted fully automatically using the following online algorithm:

1. Initially, each dynamic operation (instruction) forms its own computational unit
and each memory location its own correlated set.

2. When an operation op1 is executed:
– We merge the computational units of all dynamic operations that op1 depends

on through a control dependency.

123

Int J Parallel Prog (2015) 43:656–678 661

(a)

(b)

Fig. 3 Region hypothesis applied to the function scaleVector of Fig. 2. a Merging computational units and
correlated sets due to control dependency. b Ending a computational unit due to shared true dependency

– We merge the computational units of all dynamic operations that op1 depends
on through a true data dependency.2 However, if op1 is true data dependent on
op2 through a shared memory location, op2’s computational unit is not merged,
but instead marked as closed.

– We merge the correlated sets of all memory locations that op1 reads, and the
correlated sets of all memory locations that op1 is control dependent on. The
merged correlated set is also assigned to the variable written by op1 (eventually
overwriting its old correlated set).

In Fig. 3 this algorithm is applied to the function scaleVector. Subfigure (a) shows
the situation before and after executing op = max ← a: first, the assignments a← x
and b ← y form their own computational units u1 and u2, and two correlated sets
s1 = {a, x} and s2 = {b, y} could be inferred during u1 and u2, respectively. After
executing op, because of op’s control dependencies, all operations are merged into a
single computational unit u3 and all memory locations to a single correlated set s3. In
Subfigure (b), we can see the situation before and after executing scaleVector a second
time: all operations within this function are related through either control dependencies
or true data dependencies; therefore scaleVector is recognized as computational unit

2 An operation op1 has a true data dependency on an operation op2, if op1 reads a value that was last
written by op2.

123

662 Int J Parallel Prog (2015) 43:656–678

u3. Furthermore, when executed a second time, a shared true dependency on x is
observed, ending u3 and starting u4.

As one can see, it is possible for correlated sets and computational units to con-
tain both shared and exclusive parts alike. While it is mostly the shared parts, which
finally matter for data race detection, we must also track thread exclusive compu-
tations and memory locations for two main reasons: first, because resources that
are now considered exclusive may become shared later on. Second, because corre-
lations between shared resources are often established through exclusive intermediate
values—as we’ve seen in the example above.

For the scaleVector function, the region hypothesis obviously led to correct results.
However, because of its heuristic nature, this must not always be the case: in fact,
experiments in [17] showed that the region hypothesis holds on the most common
paths of 14 examined atomic regions but fails on some rare paths. One common source
of errors are shared true dependencies within atomic regions. In these cases, the region
hypothesis cuts computational units too early. This limitation could be mitigated by
exploiting information about program structure: shared true dependencies are allowed
within computational units, if both operations occur within the same function body
(similar to the criterion used for units of work in [14] and [13]).

On the other hand, an ‘early if’ could cause the whole program to be interpreted as
a single computational unit. We therefore limited the influence of control dependencies
on merging to function scope. In [17] control dependencies were completely ignored.

We will further discuss the impact of detecting computational units and correlated
sets and show alternatives to the region hypothesis in the conclusion of this paper.

One final aspect that has yet to be clarified is how exactly one can detect control
dependencies during dynamic analysis. To do so, we use the idea of reconvergence
points introduced in [18]. When encountering a conditional jump, the jump target
is probed to determine the type of control flow construct: For example, if the target
is preceded by an unconditional forward jump, we have encountered an if-else
construct; the reconvergence point is the target of the unconditional jump. On the other
hand, if there is no jump, we have encountered an if construct. Figure 4 illustrates
these two cases.

However, in contrast to [18] and [17] that are limited to if and if-else con-
structs, we’re also able to identify loops. This is possible, because of using our loop

Fig. 4 Finding the
reconvergence point (black filled
circle). a if-else construct.
b if construct

(a) (b)

123

Int J Parallel Prog (2015) 43:656–678 663

detection patterns introduced in [7,8]. Furthermore we support non-local jumps caused
by break, continue or return.

3.2 Adapting the Lockset Algorithm

As mentioned, the original lockset algorithm checks if every access to a shared resource
obeys a certain locking discipline that ensures mutual exclusion. Let us briefly review
the original algorithm for better understanding before we discuss our extensions.

The lockset algorithm enforces that every shared memory location v is protected
by a non empty set of locks in the sense that all of these locks are held whenever a
thread accesses v. Since it is at first unclear which memory location is protected by
which locks, we dynamically gather this information during the program’s execution:
For each Thread t we store Lt , the set of all locks currently held by t . We call Lt the
lockset of t . Furthermore, we maintain a candidate set of locks Cv for each memory
location v. Initially, Cv is assumed to consist of all locks and than successively refined
on each access to v. The complete algorithm is shown in Fig. 5.

Obviously, this approach considers neither the spatial nor the temporal aspects
which we earlier captured in form of correlated sets and computational units. There-
fore, to extend this algorithm for our needs, we must somehow substitute Lt and Cv

with equivalents for computational units and correlated sets. Let us look at how we
can redefine locksets first.

Generally spoken, a computational unit u consists of three parts (see Fig. 6):

– excl1(u): u accesses only exclusive variables

Fig. 5 Basic lockset algorithm

Fig. 6 Different parts of a
computational unit u

123

664 Int J Parallel Prog (2015) 43:656–678

Fig. 7 Adapted lockset algorithm

– shared(u): u accesses shared and exclusive variables alike
– excl2(u): u accesses only exclusive variables

Each of these parts can also be empty. Based on this observation we define:

Lu :=
{

heldu, shared(u) �= ∅
all_locks, otherwise

where

heldu :={Lock m|m held throughout shared(u)}

This means: Lu consists of the locks held throughout shared(u), if shared(u) is not
empty (denoted by heldu above); otherwise Lu equals the set of all locks.

However, because of our tool’s intended dynamic nature, we cannot know in
advance exactly when shared(u) starts and ends—actually computing Lu is therefore
a problem itself, which we discuss in Sect. 3.3. For the moment, we assume that we
have all required knowledge available in advance. To complete the adapted lockset
algorithm, we can now simply replace Lt with Lu and Cv with Cs (Cs denotes the
candidate set of a correlated set s and is computed analogously to Cv), yielding the
algorithm shown in Fig. 7.

For the discussion of our locking policy, we assume that a correlated set s is accessed
by u1 and u2 in parallel, with Lu1 ∩ Lu2 �= ∅. Obviously shared(u1) and shared(u2)

cannot overlap, so that only the following two general cases of interleaving are pos-
sible:

– Either shared(u2) precedes shared(u1):

– Or shared(u1) precedes shared(u2):

In the diagrams above, arrows denote the temporal ordering between individual
parts (we will get to know this ordering as happens-before relation in Sect. 3.4). Now,

123

Int J Parallel Prog (2015) 43:656–678 665

since all exclusive parts solely operate on exclusive variables and do not interfere with
parallel computations, the first case is always equivalent to:

while the second is always equivalent to:

Therefore, our initial assumption implies that all possible interleavings of u1 and
u2 must be equivalent to either u2→ u1 or u1→ u2 and are thus serializable. If we
generalize this observation for s with Cs �= ∅ and an arbitrary number of ui accessing
s, all ui are serializable. This guarantees that there is no data race on s.

Note that there are other possibilities to define Lu . In particular, we could have
defined Lu to consist of all locks that are held from the very beginning to the very end
of u. However, this definition would yield many false positives, since excl1(u) and
excl2(u) do not need to be protected by locks.

3.3 Calculating a Computational Unit’s Lockset

In the previous section, we assumed that we are endowed with sufficient a priori
knowledge to compute Lu . That is, knowledge about which memory accesses con-
stitute shared(u). In dynamic program analysis, however, shared(u) can repeatedly
change for various reasons:

1. After the last access to a shared memory location, we must assume that all further
exclusive read/write-operations are part of excl2(u). This assumption must be
revised, if another access to a shared memory location follows.

2. Upon merging two computational units u1 and u2 to u, their shared parts must
be combined, yielding shared(u). shared(u) may now contain accesses that are
neither part of shared(u1) nor of shared(u2) (Fig. 8a).

3. A variable v that was formerly considered exclusive, may later turn out to be
actually shared. The shared part of the computational unit that accessed v earlier,
must then be extended accordingly (Fig. 8b) .

We can solve these problems by introducing a new concept called lock vector, which
is inspired by vector clocks. For a thread t , the lock vector function lt is defined as
follows:

lt : Lock → N× N, m �→ (lt (m)acq, lt (m)rel).

lt maps a lock m to its number of acquisitions lt (m)acq and releases lt (m)rel by thread
t so far. Note that lt (m)acq is in general not equal to the number of calls to m.lock()

123

666 Int J Parallel Prog (2015) 43:656–678

(a)

(b)

Fig. 8 Reasons for shared(u) to change. a Merging of computational units. b Exclusive variable becomes
shared

Fig. 9 Various lock operations
and resulting lt

by t : for example, in the case of a recursive lock, lt (m)acq isn’t further increased, if
t already is in possession of m. Figure 9 shows how lt changes for various calls to
lock() and unlock().

Furthermore, we store two local copies of the lock vector lt at the beginning and
end of shared(u), called lfst,u and llst,u . Then, we can compute Lu as follows:

Lu =

⎧⎪⎨
⎪⎩Lock m|

m held at the beginning of shared(u)︷ ︸︸ ︷
lfst,u(m)acq − lfst,u(m)rel = 1

∧ llst,u(m)rel − lfst,u(m)rel = 0︸ ︷︷ ︸
m not released until the end of shard(u)

⎫⎪⎬
⎪⎭

123

Int J Parallel Prog (2015) 43:656–678 667

Table 1 Lockset algorithm applied to scaleVector (new values are marked bold)

Statement executed lt (m) Part of u lfst,u(m) llst,u(m) Lu Cs

initially (0, 0) excl1 – – all all

lock(m) (1, 0) excl1 – – all all

(a, b)← (x, y) (1, 0) shared (1, 0) (1, 0) {m} {m}
unlock(m) (1, 1) shared (1, 0) (1, 0) {m} {m}
max ← a if a > b else b (1, 1) excl2 (1, 0) (1, 0) {m} {m}
lock(m) (2, 1) excl2 (1, 0) (1, 0) {m} {m}

(x, y)← (x
max ,

y
max

)
(2, 1) shared (1, 0) (2, 1) ∅ ∅

If another shared variable is accessed by u, we can easily update llst,u and Lu ; if
two computational units u1 and u2 are merged to u, we set

lfst,u = min(lfst,u1 , lfst,u2) and

llst,u = max(llst,u1 , llst,u2)

using element-wise comparison and recompute Lu . The problems caused by the above
points 1) and 2) are therefore solved, yet problem 3) still remains. To solve it as well,
we must store additional copies lfst,v and llst,v of lt for an exclusive variable v the first
and last time it is accessed by u. If v later becomes shared, u’s lock vectors are then
updated as follows:

lfst,u = min(lfst,v, lfst,u) and

llst,u = max(llst,v, llst,u)

and Lu is recomputed.
This concludes our description of the adapted lockset algorithm. Before we continue

to explain how to integrate temporal ordering, we will exemplarily apply it to the
function scaleVector in Fig. 2. The result is shown in Table 1: initially, there are neither
acquisitions nor releases of lock m, while u is in excl1 and Lu , therefore, contains all
locks by definition. As we encounter the first acquisition of m, we increase lt for m to
(1, 0). With the assignment in the third row of Table 1, u accesses the shared resources
x and y: u switches to its shared part and makes local copies of lt . When writing
to max , we can assume that u has reached excl2. However, this assumption must be
revised on the next access to x and y. Since lt (m) has changed to (2, 1) in between,
llst,u(m) also takes this new value, causing Lu and finally Cs to become empty. The
detection of an extended data race will be reported at this point.

3.4 Happens-Before Analysis: Hybrid Race Detector

A pure lockset based race detector fails to recognize synchronizations like signal/wait,
fork/join or barriers, and will therefore produce many false positives. As a hybrid race

123

668 Int J Parallel Prog (2015) 43:656–678

Fig. 10 Steps performed in shared-write state

detector, our approach therefore combines the lockset algorithm with the happens-
before relation→hb that tracks the temporal and causal ordering of events. For two
such events e1 and e2 we define:

e1 →hb e2 :⇔ e1 precedes e2 temporally/causally

e1‖e2 :⇔ e1 �→hb e2 ∧ e2 �→hb e1

The happens-before relation itself is implemented by vector clocks: a global
timestamp vector, called v, is tracked using thread local event counters that are
exchanged on synchronization events [19]. For two events e1 and e2 that take place at
times v1 and v2, we then have e1 →hb e2 ⇔ v1 < v2 with element-wise comparison.

To combine the lockset algorithm and→hb, we use a state machine based on our
race detector Helgrind+ [8]. This state machine can distinguish between parallel and
ordered accesses to a correlated set s as follows: whenever s is accessed, a copy of v,
called vs , is stored with s. Any subsequent access to s at time v′ is then parallel to the
first one, iff vs �< v′.

The full state machine is depicted in Fig. 11. Transition labeled with ‘→’ and
‘‖’ denote ordered and parallel accesses, respectively. It consists of the following six
states:

Not-Accessed The correlated set s was not yet accessed; on the first access, we enter
one of the states Exclusive-Read or Exclusive-Write.

Exclusive-Read and Exclusive-Write s is in exclusive possession of a single com-
putational unit u (and has, in case of Exclusive-Write, been modified by u). We stay
in these exclusive states as long as subsequent accesses are ordered by→hb, in which
case Cs is overwritten with the latest Lu . Should any parallel access come along,
we refine Cs according to the lockset algorithm and enter one of states Shared-Read,
Shared-Write or Race, depending on the kind of access and Cs .

Shared-Read and Shared-Write Computational units from different threads,
unordered by →hb, have accessed s. We need to refine Cs on each further access
to detect possible violations of our locking policy. In case of an ordered access, we
can go back to one of the exclusive states and reset the lockset algorithm (see, as an
example, Fig. 10 for the complete algorithm in the Shared-Write state).

Race a race has happened on s. We won’t leave this state, to prevent our tool from
reporting the same race over and over again (Fig. 11).

123

Int J Parallel Prog (2015) 43:656–678 669

Fig. 11 State machine for correlated sets

4 Implementation

Our implementation borrows from Helgrind+ [8], which in turn is based on the Val-
grind framework [20,21]. The general principle behind Valgrind is called disassemble-
instrument-resynthesize:

– A program’s binary is disassembled into a platform independent intermediate rep-
resentation (IR).

– The IR is then handled to the tool for instrumentation: analysis code can be injected
into the original program.

– The program and analysis logic is then reassembled to platform specific code and
brought to execution.

– Valgrind supports multi-threading by intercepting calls to the POSIX Thread API
[22] and redirecting them to its own threading implementation.

Furthermore, Valgrind sends events and callbacks to the active tool, for instance, when
stack frames are opened and closed or when memory is allocated and released. Addi-
tionally, the tool is notified before and after certain library functions are executed. This
includes those functions of the POSIX Thread API, making it possible to implement
the lockset algorithm and the happens-before analysis.

Helgrind+, among other things, provides an implementation of shadow memory: for
every byte of memory b used by the application, there exists a mirrored 64-bit shadow
value sb for storing state information about the ‘application byte’. Our implementation
uses shadow values as follows: in sb we store two references: the first one points to

123

670 Int J Parallel Prog (2015) 43:656–678

Fig. 12 Shadow value for a
memory location accessed by
two threads

the correlated set that b belongs to, whereas the second one points to a collection of
computational units (see Fig. 12).

The latter is necessary for the following reason: we cannot actually represent com-
putational units as sets of dynamic instructions, since such sets may grow too long,
e.g. in case of loops or deep recursions. Instead, we represent a computational unit by
the set of all accessed memory locations. A memory location references all non-ended
computational units, which it was accessed by. Then, tracking computational units
actually becomes propagating these references along the dynamic data flow graph.

5 Evaluation

The experimental evaluation is divided in three parts: first we check if our tool is
able to correctly deal with basic synchronization operations. In the second part, we
look at more complex examples taken from real-world applications (e.g. Apache,
MySQL, etc) to check if computational units, correlated sets, and extended data races
are detected. In the last part, we evaluate a set of micro-benchmarks and real-world
applications to emphasize the effectiveness of our method considering number of false
positives and false negatives. We compare our results to our enhanced race detector,
Helgrind+ [7,8]3 which serves as representative for tools that do not natively support
multi-variable race detection.

5.1 Identifying Basic Synchronization

For the basic tests, shown in Table 2, we use the following notation:

– readA(x): variable x is read, but not written, by thread A.
– wri teA(x): x is written by thread A; the new value does not depend on x’s old

value, e.g. x ← const .
– incA(x): x is first read and then written, depending on its former value, e.g. x ←

x + 1.
– {. . .}m : segment {. . .} is protected by Lock m.

3 Helgrind+is available at https://svn.ipd.kit.edu/trac/helgrindplus/wiki.

123

https://svn.ipd.kit.edu/trac/helgrindplus/wiki

Int J Parallel Prog (2015) 43:656–678 671

Table 2 Tests for synchronization

Test No. Description Expected Detected

0 incA(x) ‖ incB (x) Race Race

1 readA(x) ‖ incB (x) Race Race

2 readA(x) ‖ readB (x) No race No race

3 {incA(x)}m ‖ {incB (x)}m No race No race

4 wri teA(x) ‖wri teB (x) Race × No race

5 {incA(x)}m {incA(x)}m ‖ {incB (x)}m No race No race

6 {incA(x)}m,n ‖ {incB (x)}m No race No race

7 {incA(x)}m ‖ {incB (x)}n Race Race

8 {incA(x)}m {incA(x)}n ‖ {incB (x)}m Race Race

9 incA(x) A→B incB (x) No race No race

10 {incA(x)}m ‖ {incB (x)}m A→B incB (x) No race No race

11 {incA(x)}m ‖ {incB (x)}m A→B readA(x) ‖ readB (x) Race Race

12 {incA(x)}m ‖ {incB (x)}m A→B B→A readA(x) ‖ readB (x) No race No race

13 {incA(x)}m ‖ {incB (x)}m barrier readA(x) ‖ readB (x) No race No race

– A→B : the last segment of thread A and the next segment of thread B are ordered
by the happens-before relation, e.g. if A sends a signal to B.

– ‖: denotes parallel segments.

Tests 0–8 show examples of unordered accesses to a shared variable x . If x is changed,
it must be protected by a lock consistently to prevent data races. However, our approach
fails on test 4 unlike the other tools. We look at this case more closely:

wri te(x) overwrites x with a value that itself does not depend on x , e.g. with a con-
stant expression or any uncorrelated variable. In such cases, our algorithm replaces
x’s old correlated set, and thus cannot detect the absence of locks (as described in
point 2. of the algorithm in Sect. 3.1). Alternatively, we could have merged x’s cor-
related set with the new value’s correlated set. In this case, the race in test 4 would
have been detected. However, such behavior would also increase the probability of
over-estimating the size of correlated sets and computational units: for example, when
independent computations reuse common exclusive variables, they would be consid-
ered as correlated (think of loop counters).

According to our observations, reusing exclusive variables occurs much more often
than overwriting all members of a correlated set with new and independent values.
The latter usually occurs only on initialization or when resetting data structures. We
therefore decided to stick to the current policy, albeit further investigations may be
needed.

As a representative for the remaining test cases that involve ordered accesses, we
explain test 11 in more detail. The following diagram shows the order between all
operations in this case:

123

672 Int J Parallel Prog (2015) 43:656–678

Table 3 Detected correlated sets, computational units and data races

Test No. Description Expected Helgrind+ Our approach

CUs and
CSets

Race

14 ScaleVector without locks Race Race � Race

15 ScaleVector with
interrupted locks

Race × No race � Race

16 Normalize with consistent
locking

No race No race � No race

17 Different locks Race × No race � Race

18 AppendBuffer without
locks

Race × Multiple races � Race

19 Swapping correlated
variables with locks

No race No race � No race

20 Swapping uncorrelated
variables with locks

No race No race × × Race

21 Independent calculations – – × –

incA and incB are not ordered, but both are protected by a lock m; also, since incA

and readB are ordered by A→B , no data race is caused by these three instructions
alone. Unlike test 10, however, there is another unprotected read: readA and incB are
not ordered by any means, thus causing a data race. Our tool reliably detects this case.

The final two test cases basically represent the same scenario, but readA is now
only parallel to readB : in test 12, thread B sends a signal to A (B→A), and in test 13
a barrier synchronization is used. Since parallel reads are not racy by definition, no
warning is issued.

5.2 Detecting Extended Data Races

The results of the second part of our evaluation focuses on the detection of correla-
tions and extended data races shown in Table 3. The simplified codes taken from real
applications are indicated as Tests 14–21 in the table.

Tests 14 and 15 simply represent the function scaleVector from Fig. 2. For test 14,
the locks were completely omitted, whereas in test 15 the locks were kept as in Fig. 2.
While Helgrind+ is able to detect the locking violation in test 14, it fails in test 15:
in this test, atomicity is violated by releasing and re-acquiring locks during a logical
operation. However, Helgrind+ is not able to detect this kind of bug, since each single
access to a shared variable is properly protected by locks. The new approach detects
the race and passes in test 15.

Test 16 represents another arithmetic function for vector normalization (Fig. 13).
It has a more complicated dependency graph, because it uses the sqrt() function.
Still, all correlations are detected. The normalization itself is consistently protected
by a single lock, so it is data race free.

A similar scenario is represented by test 17, shown in Fig. 14: the two shared
variables mCont and mLen are related through the string s, yet protected by different
locks. Again, a typical race detector cannot detect this data race. In contrast, our

123

Int J Parallel Prog (2015) 43:656–678 673

Fig. 13 Test 16: Vector
normalization

Fig. 14 Test 17: Using different
locks for correlated variables

approach correctly infers the correlated set {s,mCont,mLen} and detects its empty
lockset. This test also shows that our method handles function calls reliably: when f()
is called, s is copied from append()’s stack frame to f()’s stack frame, making
the two copies dependent. When f() ends, the return value is stored in a machine
register that depends on the original s and mCont. This register value is finally moved
to mCont establishing the correlation of mCont and s. Likewise, mLen is included
in this correlated set.

Test 18 is shown in Fig. 15; it is part of Apache’s log_config module [23],
which contains a data race (now fixed). outCnt and outBuf implement a buffer for
status messages. The correlation between those two variables is established through

Fig. 15 Test 18: Appending to a buffer without locks

123

674 Int J Parallel Prog (2015) 43:656–678

Fig. 16 Test 21: Independent operations within a atomic region

len, so that bufferAppend() is correctly identified as a single computational
unit. Since there are no locks to protect the shared resources, traditional race detectors
report multiple data races on outBuf and outCnt. In contrast, our approach reports
only a single data race on s = {outCnt,outBuf}. This can make it easier for the
programmer to identify the root cause of the detected race and to apply a correct bug fix.
Just reporting several seemingly unrelated data races on the other hand may mislead
the programmer to wrap every access to a shared variable in locks, but overlook their
correlation. This can be a serious problem, especially if the static distance between
these accesses is bigger than in our example.

Figure 15 also shows a simple implementation of the strlen() function. We
include it to demonstrate how control dependencies are tracked by our implemen-
tation: the incrementation of ctr depends on the outcome of the loop condition
str[ctr], leading to the correlation between ctr and str.

In tests 19 and 20, two shared variables a and b are swapped using a temporary
variable:

tmp = a; a = b; b = tmp;

The outcome depends on the previous state of the two variables a and b: swap-
ping is correctly identified as a logical operation, when a and b were already
correlated. But for independent values our approach fails for the same reason as
in test 4 of the previous section: first, tmp inherits a’s correlated set, while a’s
own correlated set is overwritten with the one of b. Then b’s set is overwritten
by tmp’s. Effectively, a and b have now swapped their correlated sets as well.
When the variables are accessed for the next time, protected by the same locks as
before swapping their values, the locksets then become empty and false positives are
reported.

Finally, in test 21 [17], shown in Fig. 16, a data structure consisting of seman-
tically correlated variables is initialized, but the initialization values are indepen-
dent. Inferring of correlated sets and computational units fails in such cases. This
special case could be solved by considering address calculations for dependency
analysis: head->a and head->b are computed by adding two fixed offsets to
head. However, tracking address dependencies could cause over-estimation of
correlated sets, since struct-members must not automatically be related: think,
for example, of a data structure for counting incoming and outgoing data pack-
ets.

123

Int J Parallel Prog (2015) 43:656–678 675

Table 4 False positives and false negatives

Program LOC Total races Helgrind+ Intel TC Our approach

FN FP FN FP FN FP

Micro Benchmarks – 153 81 11 110 5 32 7

STP 1,120 15 8 13 10 2 5 10

KeyPassLib 1,240 10 5 16 5 3 1 14

PetriDish 1,070 5 4 10 4 3 3 10

Order-sim [Corrs] 480 15 11 0 14 0 3 0

Order-sim [Gaps] 372 22 19 1 22 0 11 0

Order-sim [Unsynch] 334 22 12 5 12 2 3 1

Order-sim [Synch] 360 0 0 0 0 0 0 0

Sum 242 140 56 177 15 58 42

5.3 Effectiveness

The results of the last part of our evaluation focuses on effectiveness of our method
by presenting the number of false positives and false negatives shown in Table 4. We
checked a set of micro-benchmarks (190 benchmarks in total) and some real-world
parallel applications. The benchmarks are mostly taken from Data-race-test [24], a
benchmark suite for race detectors that implements various scenarios including tricky
situations that are difficult to analyze. The open source applications include PetriDish
[25], the program library of KeyPass [26], SmartThreadPool (STP) [27], and different
versions of Order-System Simulation [28].

Table 4 lists the programs and summarizes the actual numbers of false positives
and false negatives that occurred during the race detection for all evaluated programs.
In this part, we compare our results to Intel Thread Checker (Intel Inspector) [29],
which is a commercial tool, and known for detecting conventional concurrency bugs,
in addition to our enhanced race detector, Helgrind+. Our approach has by far the
lowest number of false negatives. It is effectively able to find high-level data races
between correlated variables with few false positives and false negatives. The com-
mercial tool, Intel TC, produces only 15 false positives, which is the lowest false
positive rate among the tools. However, it misses 177 races, which is a high rate of
false negatives. Few false negatives of our dynamic approach are race conditions that
lie on unexecuted paths. Some false positives come from harmless (intentional) data
races inside the programs. The detectors (including Intel TC and Helgrind+) cannot
distinguish between potentially harmful and intentional race conditions. Therefore,
they share the encountered false positives because of intentional data races. Other rea-
sons for false negatives and false positives produced by our approach are the scenarios
categorized and discussed in previous sections. Figure 17 shows the overhead of our
approach for the evaluated programs and compares it with other tools. In most cases
the time and memory overheads are bearable and less than Intel TC.

In summary, our approach is capable of identifying a notorious class of data races
that violates correlation between variables. Detecting these races is essential for any

123

676 Int J Parallel Prog (2015) 43:656–678

(a) (b)

Fig. 17 Overhead of our approach compared to other tools. a Time overhead (ms). b Memory consumption
(MB)

race detector, because otherwise a large number of data races are missed. We consider
handling large data-intensive parallel programs by designing the shadow memory in
a more efficient way to reduce the memory footprint. This could be implemented
by using the signature technique [30] instead of the traditional double-layer table
technique. A signature represents an unbounded set of data approximately with a
bounded amount of state and is widely used in Transactional Memory. The proposed
approach can be adapted to be used profitably for data-intensive parallel computing
platforms using the signature technique.

6 Conclusion and Future Work

Traditional approaches to data race detection fail in cases where several correlated
variables are involved. Based on our definitions of extended data races, computational
units, and correlated sets, we have developed a new algorithm and demonstrated how
to handle such cases. For our implementation, we have opted for inferring correlated
sets and computational units fully automatically. We made use of the region hypothesis
and proposed improvements based on the program structure, i.e. allowing shared true
dependencies within function scope and limiting the effect of control dependencies to
function scope.

The evaluation showed that our enhanced race detection approach is able to detect
synchronization operations reliably. In contrast to previous approaches, it also works
for the case of correlated variables and logical operations. Even if extended data races
manifest as multiple single variable data races, our approach is still able to provide
further information that helps identify the problem’s root cause.

Some technical improvements are necessary and possible for the current imple-
mentation of our approach to integrate it into our race detector Helgrind+ and make
it more practical and usable.

We have also seen that in few cases inferring correlated sets and computational
units fails. Note that one of our approach’s feature is its orthogonality between race
detection and finding correlated sets and computational units: we can switch to other
methods for the latter, without the need to alter the former. This property will make

123

Int J Parallel Prog (2015) 43:656–678 677

it easier to further improve the region hypothesis or use completely different ways
to infer correlated sets in our implementation. For example, it can be worthwhile to
require the user to specify at least correlated sets by annotations.

Alternatively, we could exploit new parallel programming paradigms that are cur-
rently gaining focus: i.e. Tasks and Operations that are being dispatched to exe-
cution queues, or Futures naturally encapsulate concepts similar to computational
units. It is even feasible to extend the concept of computational units and apply it
to automatic parallelization methods [31]. We leave exploring such possibilities for
future work.

References

1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. In: ASPLOS XIII: Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems. ACM, New York, NY,
USA, pp. 329–339 (2008). doi:10.1145/1346281.1346323

2. Netzer, R.H.B., Miller, B.P.: What are race conditions? Some issues and formalizations. ACM Lett.
Program. Lang. Syst. 1(1), 74–88 (1992). doi:10.1145/130616.130623

3. Raza, A.: A review of race detection mechanisms. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.)
CSR, Vol. 3967 of Lecture Notes in Computer Science. Springer, Berlin, pp. 534–543 (2006)

4. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser : a dynamic data race detector
for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997). doi:10.1145/265924.
265927

5. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with critical sections. SIGPLAN
Not. 26(12), 85–96 (1991). doi:10.1145/127695.122767

6. Jannesari, A., Tichy, W.F.: Library-independent data race detection. IEEE Trans. Parallel Distrib. Syst.
PP(99), 1–13 (2013). doi:10.1109/TPDS.2013.209

7. Jannesari, A., Tichy, W.: Identifying ad-hoc synchronization for enhanced race detection. In: 2010
IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–10 (2010). doi:10.
1109/IPDPS.2010.5470343

8. Jannesari, A., Bao, K., Pankratius, V., Tichy, W. F., Helgrind+: an efficient dynamic race detector. In:
Parallel and Distributed Processing Symposium, International 0, pp. 1–13 (2009). doi:10.1109/IPDPS.
2009.5160998

9. Jannesari, A., Tichy, W.F.: On-the-fly race detection in multi-threaded programs. In: PADTAD ’08:
Proceedings of the 6th Workshop on Parallel and Distributed Systems, ACM, New York, NY, USA,
pp. 1–10 (2008). doi:10.1145/1390841.1390847

10. Harrow, J.J.: Runtime checking of multithreaded applications with visual threads. In: Proceedings
of the 7th International SPIN Workshop on SPIN Model Checking and Software Verification, pp.
331–342. Springer, London (2000). http://citeseer.ist.psu.edu/harrow00runtime.html

11. Pozniansky, E., Schuster, A.: Multirace: efficient on-the-fly data race detection in multithreaded c++
programs: research articles. Concurr. Comput. Pract. Exp. 19(3), 327–340 (2007). doi:10.1002/cpe.
v19:3

12. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race conditions via adaptive
tracking. SIGOPS Oper. Syst. Rev. 39(5), 221–234 (2005). doi:10.1145/1095809.1095832

13. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-serializability violations.
In: ICSE ’08: Proceedings of the 30th International Conference on Software Engineering, ACM, New
York, NY, USA, pp. 231–240 (2008) doi:10.1145/1368088.1368120

14. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in an object-oriented
language. In: POPL ’06: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM, New York, NY, USA, pp. 334–345 (2006). doi:10.1145/
1111037.1111067

15. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems.
Addison-Wesley, Reading (1987)

123

http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1145/130616.130623
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/127695.122767
http://dx.doi.org/10.1109/TPDS.2013.209
http://dx.doi.org/10.1109/IPDPS.2010.5470343
http://dx.doi.org/10.1109/IPDPS.2010.5470343
http://dx.doi.org/10.1109/IPDPS.2009.5160998
http://dx.doi.org/10.1109/IPDPS.2009.5160998
http://dx.doi.org/10.1145/1390841.1390847
http://citeseer.ist.psu.edu/harrow00runtime.html
http://dx.doi.org/10.1002/cpe.v19:3
http://dx.doi.org/10.1002/cpe.v19:3
http://dx.doi.org/10.1145/1095809.1095832
http://dx.doi.org/10.1145/1368088.1368120
http://dx.doi.org/10.1145/1111037.1111067
http://dx.doi.org/10.1145/1111037.1111067

678 Int J Parallel Prog (2015) 43:656–678

16. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: Muvi: automatically inferring
multi-variable access correlations and detecting related semantic and concurrency bugs. In: SOSP ’07:
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, ACM, New
York, NY, USA, pp. 103–116 (2007). doi:10.1145/1294261.1294272

17. Xu, M., Bodík, R., Hill, M.D.: A serializability violation detector for shared-memory server programs.
SIGPLAN Not. 40(6), 1–14 (2005). doi:10.1145/1064978.1065013

18. Collins, J.D.,Tullsen, D.M., Wang, H.: Control flow optimization via dynamic reconvergence pre-
diction. In: MICRO 37: Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture, IEEE Computer Society, Washington, DC, USA, pp. 129–140 (2004). doi:10.1109/
MICRO.2004.13

19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7),
558–565 (1978). doi:10.1145/359545.359563

20. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation.
SIGPLAN Not. 42(6), 89–100 (2007). doi:10.1145/1273442.1250746

21. Nethercote, N., Seward, J.: Valgrind: a program supervision framework. http://valgrind.org/
22. Butenhof, D.R.: Programming with POSIX Threads. Professional Computing Series. Addison-Wesley,

Reading (1997)
23. Apache http server project, http://www.apache.org/
24. Data-race-test: a test suite for data race detectors. http://code.google.com/p/data-race-test/
25. Butler, N.: Petridish: Multi-threading for performance in c#. http://www.codeproject.com/Articles/

26453/PetriDish-Multi-threading-for-performance-in-C
26. Reichl, D.: Keepass password safe. http://keepass.info/
27. Smart thread pool. http://smartthreadpool.codeplex.com/
28. Microsoft, Code gallery for parallel programs. http://code.msdn.microsoft.com/Samples-for-Parallel

-b4b76364
29. Intel inspector xe 2013. http://software.intel.com/en-us/intel-inspector-xe
30. Kim, M., Kim, H., Luk, C.-K.: Sd3: A scalable approach to dynamic data-dependence profiling. In:

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, IEEE Computer Society, Washington, DC, USA, pp. 535–546 (2010). doi:10.1109/
MICRO.2010.49

31. Li, Z., Jannesari, A., Wolf, F.: Discovery of potential parallelism in sequential programs. In: Proceedings
of the 42nd International Conference on Parallel Processing. PSTI ’13, Washington, DC, USA, IEEE
Computer Society, pp. 1004–1013 (2013)

123

http://dx.doi.org/10.1145/1294261.1294272
http://dx.doi.org/10.1145/1064978.1065013
http://dx.doi.org/10.1109/MICRO.2004.13
http://dx.doi.org/10.1109/MICRO.2004.13
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/1273442.1250746
http://valgrind.org/
http://www.apache.org/
http://code.google.com/p/data-race-test/
http://www.codeproject.com/Articles/26453/PetriDish-Multi-threading-for-performance-in-C
http://www.codeproject.com/Articles/26453/PetriDish-Multi-threading-for-performance-in-C
http://keepass.info/
http://smartthreadpool.codeplex.com/
http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364
http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364
http://software.intel.com/en-us/intel-inspector-xe
http://dx.doi.org/10.1109/MICRO.2010.49
http://dx.doi.org/10.1109/MICRO.2010.49

	Detection of High-Level Synchronization Anomalies in Parallel Programs
	Abstract
	1 Introduction
	1.1 Traditional dynamic data race detection
	1.2 Problem Description

	2 Related Work
	3 Race Detection for Correlated Variables
	3.1 Inferring Correlated Sets and Computational Units
	3.2 Adapting the Lockset Algorithm
	3.3 Calculating a Computational Unit's Lockset
	3.4 Happens-Before Analysis: Hybrid Race Detector

	4 Implementation
	5 Evaluation
	5.1 Identifying Basic Synchronization
	5.2 Detecting Extended Data Races
	5.3 Effectiveness

	6 Conclusion and Future Work
	References

