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Abstract A notorious class of concurrency bugs is the race condition on cor-
related variables which makes up about 30% of all concurrency non-deadlock
bugs. A solution to prevent this problem is the automatic generation of parallel
unit tests. This paper presents an approach to generate parallel unit tests for
variable correlations in multithreaded code. We introduce a hybrid approach
for identifying correlated variables. Furthermore, we estimate the number of
potentially violated correlations for methods executed in parallel. In this way
we are capable of creating unit tests which are suited for race detectors consid-
ering correlated variables. We were able to identify more than 85% of all race
conditions on correlated variables of 8 applications by applying our parallel
unit tests. At the same time, we reduced the number of generated unit tests
by up to 50% while maintaining the same precision and accuracy in terms of
race detection.

Keywords Unit tests, automatic testing, parallel programming, debugging,
race detection, program analysis, correlated variables.

1 Introduction

Nowadays, unit testing plays a major role in the sphere of software develop-
ment. Software may consist of billions of lines of code and a full error analysis
can be very time consuming and is often unnecessary. Normally, only new and
modified code regions have to be tested. For this reason developers create unit
tests with which small parts of the program can be effectively tested without
executing redundant code regions to find new bugs. This is even more helpful
when dealing with multithreaded software and concurrency bugs. The same
bug in multithreaded software can have different behavior for different thread
interleavings making the debugging of multithreaded software hard and ex-
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Thread Normalize
Acquire Lock

len =
√

x2 + y2;

x = 1
len
∗ x;

y = 1
len
∗ y;

end

end

Thread Double
Acquire Lock

x = 2 ∗ x;
end
Acquire Lock

y = 2 ∗ y;
end

end

Fig. 1: A high-level data race violating the semantics of the vector (x, y).

pensive. A remarkable type of unit test to address this is the parallel unit test,
which focuses on unit testing to find concurrency bugs.

To the best of our knowledge there exists no work which covers parallel unit
test creation for data races on correlated variables. There is no support for race
detectors considering correlated variables in their analysis when dealing with
unit tests. Studies showed that over 30% of all race conditions involve corre-
lated variables [1]. Also, due to the non-determinism of the thread scheduling,
such races are in general hard to reproduce. This further necessitates the need
for unit tests covering race conditions on correlated variables.

In this work we want to combine the benefits of automatic parallel unit
test generation with the advantages of race detection considering correlated
variables. In order to realize this, our work is based on the existing unit test
generator AutoRT [2]. In the scope of this paper we introduce an extension
called CorrRT which enhances AutoRT by identifying possibly violated cor-
relations of method pairs. The higher the number of correlations found, the
higher the probability that a potential race condition violates a variable cor-
relation.

We automatically generated 100 parallel unit tests for correlated variables
on eight different applications. A race detector for correlated variables, HCorr

[3] , analyzing the unit tests reported more than 85% of the race conditions
violating variable correlations. Furthermore, we were able to reduce the num-
ber of redundantly generated tests by up to 50% in comparison to the AutoRT
approach.

2 Background

In this section we introduce terms which we use in the scope of this paper.
Also, we present some basic techniques our algorithms apply and explain how
we define correlations between variables.
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2.1 High-level Data Races

In our work, we define a race condition as an anomalous behaviour of a program
due to a variable’s value unexpectedly depending on the scheduling of threads.
We divide race conditions into high-level and low-level data races, according to
whether we need a semantic understanding of the code for identifying the race.
For low-level data races we can neglect semantics. A low-level data race occurs
when two concurrent threads access a shared variable without synchronization
and when at least one of these accesses is a write operation.

A high-level race condition can be harder to detect. Generally, when the
anomalous behaviour of a race condition is caused by a violation of the under-
lying program semantics and if the anomaly is not a low-level data race, we
speak of a high-level data race. Figure 1 gives an example for such a high-level
data race. All accesses have been secured by locks. However, if the runtime nor-
malizes the vector in between the doubling operation, the values of x and y are
not correctly tuned to each other any more. We recognize that the semantics
of those variables have been violated.

As was seen in the given example, one kind of program semantics are the
semantic relationships between variables and their values. The violation of
these relationships by an anomaly, a race condition, is considered a high-level
data race. Our work aims to detect this kind of high-level data race by applying
the concept of variable correlations to a parallel unit test generation approach.

2.2 Variable Correlations

Function Currency(int euValue)

Euro = euV alue
Y en = euV alue ∗ 107.201;

end

Fig. 2: Two correlated variables Euro
and Y en.

Two variables are correlated if
their values are, or are meant to
be, in a semantic relationship dur-
ing the whole program execution.
We already introduced an example
of a variable correlation in figure
1, where the two variables x and y
constitute a vector. In figure 2 we
show another example for a vari-
able correlation. We can see a function maintaining two variables Euro and
Y en which contain the same value in different currencies. The code implies
a semantic relationship between these two variables (both variables depend
on euV alue). Obviously, this relationship may be violated when these two
variables do not express the same value, in different currency, anymore.

2.3 Parallel Unit Tests

Unit testing has become a common practice in the field of software engineer-
ing. The idea of unit testing is to concentrate debugging on small parts at a
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Function Parallel Unit Test()
// Context

// Initializing objects and variables...

// Concurrently invoke a method pair

Thread1.Start(Method1);
Thread2.Start(Method2);

// Wait for the methods to finish

Thread1.Wait();
Thread2.Wait();

end

Fig. 3: The general structure of a parallel unit test.

time instead of the whole program. This promises better precision and shorter
testing times since bug detection can be focused on the relevant code without
analyzing and/or executing the whole program. A unit test verifies the cor-
rectness of the corresponding program part and informs us when anomalous
behaviour has occurred. For this verification we have to execute the unit test.
During execution, the program part to be tested is invoked and the results
gained are compared to the expected results.

Parallel unit tests are a special class of unit tests which distinguish them-
selves in the following way:

1. A parallel unit test contains the parallel invocation of two methods, a
method pair.

2. It should not be executed directly but is intended to be analyzed by tools
for concurrency bug detection.

3. The parallel unit test remains independent concerning execution. This
means, it can be executed without any additional support. This is an im-
portant feature for dynamic concurrency bug detection tools which need
to execute the code for analysis.

Figure 3 illustrates the generic structure of a parallel unit test, divided
into three parts: Initializing the necessary context, concurrently invoking the
methods and synchronizing with the main thread. Note that the parallel unit
test does not include assertion statements or the like: Bug detection is realized
only by the tools analyzing and/or executing the parallel unit test. As an
example, a race detector can analyze and/or execute the code region specified
by the parallel unit test in order to identify race conditions.

The generation of unit tests, and especially parallel unit tests, bears a cru-
cial challenge: Gaining sufficient test coverage without generating redundant
or irrelevant unit tests. A unit test generator runs into the danger of either
neglecting relevant test cases or generating false positives, like test cases which
cannot happen during real program execution.
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3 Related Work

We present some recent works focusing on the identification of correlated vari-
ables and the automatic generation of parallel unit tests.

MUVI [4] is a hybrid race detector for correlated variables. The algorithm
recognizes correlations among variables by applying a static analysis which
uses data mining techniques. It identifies accesses to variables in the code
which commonly happen in the same method and occur relatively close to each
other. The approach assumes semantic relationships between these identified
accesses and considers their variables to be correlated. However, MUVI does
not consider data or control dependencies during variable correlation detection.

Helgrind+ for correlated variables ( in short HCorr) [3] is a dynamic race
detection approach. It is based on the dynamic race detector Helgrind+ [5], [6],
[7], [8] for single variables. Like its predecessor, HCorr is a tool developed for
the virtual execution environment Valgrind [9]. The approach uses a dynamic
analysis to identify code regions which constitute units of computation. A
computational unit expresses a sequence of variable accesses forming an atomic
computation. With the help of these computational units, HCorr identifies sets
of correlated variables in the following way: In the beginning, each variable has
its own set. Inside one computational unit, whenever there is a data or control
dependency established between two variables of different sets, the sets are
merged. Thus, bigger sets of variable correlations are formed.

The approach has two main weaknesses: It relies heavily on the identifi-
cation of computational units, by considering a specific write and read access
pattern. This pattern can just heuristically identify units of computation and
tends to either measure them too broad, including accesses that do not be-
long to that computation, or measure them too narrowly, excluding relevant
accesses. Obviously, this has a big impact on the precision for identifying cor-
relations. Another issue is that the approach identifies two variables to be
correlated as soon as it identifies one data or control dependency between
their values. Even if these dependencies are of a temporary nature and do not
constitute a real semantic relationship between the variables.

ConCrash [10] uses static as well as dynamic approaches to reactively gen-
erate unit tests for a given program. First the algorithm performs a static race
detection in order to identify race conditions inside methods. In the next step,
the concerned methods are instrumented: They track the program state and
the scheduling of threads during execution. A subsequent dynamic analysis
on these methods captures this information whenever the program throws an
exception. Finally, ConCrash uses the captured information to generate unit
tests for the concerned methods.

Katayama et al. [11] explain an approach for the automatic generation
of unit tests for parallel programs. The approach uses the Event InterAction
Graph (EIAG) and Interaction Sequence Test Criteria, ISTC. EIAG repre-
sents the behaviour of parallel programs. It consists of Event Graphs and
interactions. An Event Graph is a components control flow graph of a par-
allel program. The interactions, in turn, represent synchronizations between
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threads. The ISTC criteria are based on the sequences of interactions and
reduce the number of unit tests which the EIAG provides.

Musuvathi et al. [12] use reachability graphs to generate unit tests for par-
allel programs. In order to avoid a state explosion (of unit tests) they intro-
duce four different techniques to prioritize and topologically sort code regions.
This approach was implemented and evaluated in combination with the model
checking approach Stubborn Set Method. The approach is very effective on
small programs. However, it is not scalable regarding highly parallel programs.

A. Nistor et al. [13] generate parallel unit tests for randomly selected public
class methods. The approach appends complex sequential code to the unit tests
in order to increase the precision of concurrency bug detection. Furthermore,
they employ a clustering technique to reduce the number of falsely identified
bugs. However, the approach only considers some parts of the program for unit
test generation and neglects multiple class interactions.

4 Approach

This section presents CorrRT, a parallel unit test generator for high-level data
races on correlated variables. The approach essentially combines parallel unit
test generation with the identification of correlated variables, in order to obtain
highly specialized unit tests for the detection of correlation violations. First,
we shortly introduce the method in AutoRT. Thereafter, we describe our own
methods and deal with the detailed presentation of our employed analysis.

4.1 CorrRT in Relation to AutoRT

AutoRT is a proactive unit test generator for parallel programs which uses
both dynamic and static approaches for program analysis. For a given pro-
gram the algorithm considers all possible method pairs as candidates for unit
testing. In its subsequent generation steps AutoRT filters this candidate set
to the most significant method pairs. A method pair is significant if its two
methods are parallel dependent on each other and if they are executed in par-
allel (parallelism) during program execution. The algorithm identifies parallel
dependency and parallelism of a method pair in two subsequent analysis:

1. A dynamic analysis checks which method pairs truly run in parallel dur-
ing program execution. Additionally, it reduces the candidate set to these
parallel method pairs.

2. A static analysis operates on the reduced candidate set. The analysis
further filters the candidate set to parallel dependent method pairs, i.e.
method pairs containing accesses to the same variables.

Having obtained a significant candidate set the test generation approach
employs a Capture-and-Replay technique for creating unit tests out of the
remaining method pairs. This means AutoRT dynamically records the object
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states which are necessary for invoking each method pair in parallel, called the
context. After AutoRT has filtered out equivalent contexts, the algorithm be-
gins with the actual unit test creation process. The generator creates a parallel
unit test for each method pair and each different context of that pair. Since
the Capture-and-Replay technique reconstructs only contexts which actually
existed during program execution, the generated unit test cases do not depict
situations which never happen during runtime.

As we can see, AutoRT uses a multi-step candidate set reduction tech-
nique to filter out irrelevant method pairs for unit test creation. CorrRT aims
to support and enhance this process by introducing analysis that is able to
analyze this candidate set for method pairs which are likely to contain corre-
lation violations, which equal high-level data races. This information can be
used for two purposes. On the one hand, we can further reduce the candidate
set and pass it on to the original AutoRT process for unit test generation.
As a result, we obtain a set of parallel unit tests which are likely to contain
high-level data races. This is useful to reduce the overall unit test generation
time which can be very significant for larger applications. On the other hand,
we can just pass along the likelihood for a method pair containing a high-level
data race. As a result, the developer can easily decide whether a parallel unit
test should be analyzed by a race detector considering high-level data races.
This is very useful, since race detectors for high-level data races tend to be
generally slower than their conventional counterparts.

In the following listing we give an overview of our enhancements of the
unit test generation process. Our extension is divided into six parts:

1. We have extended the dynamic parallelism analysis to additionally monitor
and protocol encountered shared variables.

2. A static analysis on the control flow of the whole program uses the in-
formation to detect correlations which involve shared variables. For this
purpose our algorithm uses methods of pattern matching and probability
to estimate whether two variables are correlated.

3. For each method pair (which constitutes a unit test candidate) we deter-
mine the number of accesses to variable correlations which may be violated
by the parallel execution of the method pair.

4. From these recognized correlation accesses, we identify especially endan-
gered correlations.

5. We use the information from the former analysis to compute the correla-
tion rank of the method pair. The correlation rank states the number of
accesses to potentially endangered correlations a method pair contains in
comparison to its total number of accesses.

6. We create unit tests from method pairs with high correlation ranks only.
For this reason we rely on the approach of AutoRT by dynamically record-
ing the object states inside the method pairs and generating unit tests in
which we reconstruct the recorded object states and invoke the method
pair in parallel.
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The result of the steps above is a set of unit tests which are especially
suitable for race detectors considering correlated variables. The following sub-
sections explain the most important enhancements of our approach in detail.

4.2 Correlation Patterns

For identifying correlations between variables we perform a static analysis
of the given program. Our approach is based on the concepts of HCorr [3]
and MUVI [4]. According to HCorr variables are correlated if they become
data and/or control dependent on each other during a computational unit.
This implies a strong relationship between these dependencies and variable
correlations. Further on, MUVI assumes that variables which are accessed
relatively often near to each other, are with a high probability correlated to
each other.

Euro = 300;
Yen = Euro ∗ 107;

(a) Vertical pattern between Y en and
Euro.

if isPrivate == true then
Street = ”PrivateStreet”;

end

(b) Control pattern between isPrivate
and Street.

Person.Street = ”PrivateStr.”;
Person.StreetNo = 107;

(c) Parental pattern between Street and
StreetNo.

Minutes = Seconds/60;
Hours = Seconds/3600;

(d) Horizontal pattern between Minutes
and Hours.

Euro = 300;
Yen = Euro ∗ 107;
Dollar = Yen ∗ 0.012;

(e) Chain pattern between Euro and
Dollar.

Fig. 4: Examples for correlation
patterns.

We combine both ideas. As a re-
sult, we consider variables which are
relatively often data and control de-
pendent on each other to be correlated.
Therefore, we identify correlations on
the basis of predefined patterns which
indicate strong data and control de-
pendencies between the variables. We
use these patterns to find indications
of correlations between variables. If we
recognize enough patterns which sup-
port this indication we then regard the
variables to be correlated. We intro-
duce five types of patterns: vertical,
horizontal, parental, control and chain
patterns.

Vertical pattern: After the execu-
tion of an assignment, the written vari-
able is data dependent on each read
variable. Data dependent values are in
a logical relationship, since we gener-
ated one value from the other. There-
fore, a data dependency and thus a
variable assignment also indicates a
correlation between the written and
the read variable. We call this correla-
tion a vertical correlation. In Figure
4a we can observe the vertical correla-
tion pattern between Euro and Y en.
Since the first assignment does not contain any read variable we do not detect
any correlation in it.
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Control pattern: Variables written inside a control flow branch become con-
trol dependent on the variables read inside the branching condition. Just like
a data dependency, a control dependency also infers a correlation between the
corresponding variables: Their values become logically related to each other.
Therefore, we search the code for write accesses inside control flow branches
with branching conditions reading variables. Each written variable becomes
correlated with the read variable, analogous to a variable assignment. Figure
4b shows an example of a control pattern. Here we see that the value of Street
is dependent on the evaluation of the isPrivate value.

Parental pattern: In the context of classes and their field variables (OOP),
we recognize data dependencies. Naturally, a variable is data dependent on
the class (or object for non-static variables) it belongs to. If a program writes
two variables sharing the same parent subsequently, without any write access
in between, we can expect variables belonging to the same class to have some-
thing in common, like forming the address of a person. Therefore, we consider
them to be parentally correlated. However, not all field variables are really cor-
related, as for example a person’s hair color and size. We consider the chances
of a real correlation to be higher if the two variables are written subsequently,
as they tend to belong to the same computation. Figure 4c shows the variables
Street and StreetNo as correlated by a parental pattern.

Horizontal patterns infer implicit data dependencies from multiple vari-
able assignments. If two variables are data dependent on the same variable at
the same time, we consider these two variable’s values to be in a logical re-
lationship which is independent of the variable they data depend on directly.
Therefore, we search for two subsequent assignments on two different variables
which share a same read variable. Figure 4d shows an example of a horizontal
pattern. Note that each horizontal pattern also includes two vertical patterns.
Therefore, we do not only recognize a correlation between Minutes and Hours
but also between Seconds and Minutes as well as Seconds and Hours.

The chain pattern considers transitive data dependencies through identi-
fying chain assignments. Those are assignments in which the assigned variable
is used as a read variable in the subsequent assignment. A chain assignment
indicates that an assigned variable is correlated to the previously assigned
variables as well as the subsequently assigned variables in the chain. Figure
4e depicts an example of a chain assignment. The transitive data dependency
recognized through the chain assignment indicates a correlation between Euro
and Dollar.

The probability of a correlation between two variables being real is the ratio
of write accesses inside a correlation pattern, indicating such a correlation, to
the total amount write accesses on the variables being considered. When a
variable gains a value which is logical dependent on another variable’s value,
this write access supports the claim that the two variables are correlated.
However, if the value has no such logical dependency it opposes this claim. For
example in Figure 5, a vertical pattern in function A indicates a correlation
between Euro and Y en. Furthermore, function C contains a parental pattern
indicating the same correlation. However, there is a write access on Y en in
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function B which does not support this claim. Therefore, the probability that
Euro and Y en are correlated is about 67%: Two out of three write accesses
on Y en belong to a correlation pattern.

Function A

P.Yen = P.Euro ∗ 107;

end

Function B

P.Yen = 0;

end

Function C
P.Euro = 1;
P.Yen = 107;

end

Fig. 5: Function A and C indicate a correlation between Euro and Y en, func-
tion B does not.

We only have to identify correlations which involve at least one shared
variable. Trivially, a correlation consisting only of local variables cannot be
violated by atomicity violations: There is just one thread accessing the par-
ticipating variables. Of course, two correlated variables which are shared can
potentially be involved in an atomicity violation. But this also counts for a cor-
relation between a shared and a local variable. When another thread changes
the value of the shared variable inappropriately, the values of the correlated
variables loose their logical relationship. As a result, the program may behave
unexpectedly. Figure 6 shows the execution of two threads where thread B vi-
olates the correlation between the shared variable Euro and the local variable
Y en. On the assumption that Euro and Y en are correlated we expect that
thread A stores in Euro an amount of money in the currency of Euro and
subsequently stores in Y en the same amount in the currency of Yen. When
the scheduler executes thread B between the two assignments this logical re-
lationship is lost.

In order to solve the issue with the violated correlation, we can execute the
two logically related operations of thread A under one continuous lock. This
will remove the possibility of thread B executing between the two assignments
so that the final results remain correct.

Thread A
Acquire Lock

Euro = 300;
end
Acquire Lock

Yen = Euro ∗ 107;
end

end

Thread B

Acquire Lock
Euro = 0;

end

end

Fig. 6: A violated correlation between the shared variable Euro and the local
variable Y en.
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4.3 Correlation Accesses

After we have identified the correlation patterns inside the program, we ana-
lyze for a method pair for which correlations may be violated when the two
methods are executed in parallel. We firstly consider the accessed variables
inside the methods. For further analysis, we only regard accesses to variables
which indeed are accessed by several threads and by the method pair, where
at least one of the methods must write the variable. In other words: We only
consider accesses to shared and strongly parallel dependent variables for each
method. We take the information about the shared variables from the formerly
executed dynamic parallelism analysis. For obtaining strongly parallel depen-
dent variables for one method m1 we statically compare all accesses of that
method with the write accesses inside the other method m2 of the pair. The
set of variables which both methods access in this way are the strongly par-
allel dependent variables of m1. Analogously, we identify the strongly parallel
dependent variables of m2. Furthermore, we filter the accesses on variables
which are not correlated to other variables. In this way, we gain the accesses
on correlated variables which can potentially be violated during the parallel
execution of the two methods.

Function A
Output(Euro);
Output(Yen);

...

Euro = 300;
Yen = Euro ∗ 107;

end

Fig. 7: A function containing
four accesses to the correlation
between Euro and Y en.

For each method of the pair we deter-
mine the accessed correlations. A method
accesses a correlation if and only if it con-
tains accesses to both variables of the cor-
relation. This means one access to a cor-
related variable is not enough to count as
an access to a correlation. Henceforth, one
variable access may belong to more than
one correlation access. On the assumption
that Euro and Y en are correlated Figure
7 contains four correlation accesses. The
two read accesses (1), the two write ac-
cesses (2), the write access on Euro and the read access on Y en (3) as well
as the read access on Euro and the write access on Y en (4) are correlation
accesses.

We determine the correlation accesses for both methods in the method pair
separately. The set of correlation accesses of the method pair equals the union
of the correlation accesses of both methods. We consider these the accesses to
the correlations which can potentially be violated during parallel execution of
the pair.

4.4 Endangered Correlations

For each correlation access determined in the previous step, we further investi-
gate how endangered the corresponding correlation is. Therefore, we consider
the synchronisation instructions inside the methods of the pair. Correlated
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Thread A
Output(Euro);
Output(Yen);

end

Thread B
Acquire Lock

Output(Euro);
Output(Yen);

end

end

Thread C
Acquire Lock

Output(Euro);
end
Acquire Lock

Output(Yen);
end

end

Thread D
Acquire Lock

Yen = 107;
Euro = 1;

end

end

Fig. 8: Three parallel reading threads and one parallel writing thread: Only in
thread B is the correlation between Euro and Y en not violated.

variables should be accessed in atomic regions. Therefore, if we encounter ac-
cesses to a correlation which are separated by a synchronization instruction,
the accessed correlation is especially endangered. If we do not detect any syn-
chronization instruction in between the correlation access, we can assume that
the accesses on the variable are either fully protected or not protected at all.
This means we either do not have a correlation violation or we encounter a
low-level race condition instead of an atomicity violation. Figure 8 illustrates
this reasoning. Thread A does not execute a synchronization in between the
accesses on the correlated variables Euro and Y en. The accesses are in fact
not synchronized in any form. Therefore, we have a low-level race condition
with the execution of thread D. Also thread B does not execute any synchro-
nization instruction in between the access on the correlation. We can see that
the correlation is not violated in B since a lock continuously protects the read
accesses to Euro and Y en. Finally, only the parallel execution of thread C
and D yield a high-level data race excluding a low-level data race.

4.5 Correlation Rank

The correlation rank is a metric for our approach to decide whether a method
pair should be used for unit test generation. Therefore, it is important not only
to consider the number of correlation accesses but also to regard the probabil-
ity of a correlation violation. The number of endangered correlation accesses
gives a quantitative as well as a qualitative statement about the accesses to
correlations inside the method pair. In the following we will refer to the sum of
the number of endangered correlations as the correlation amount of a method
pair.

We consider the correlation amount relative to the accesses on uncorrelated
variables and variables, whose correlations cannot be affected by the parallel
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execution of the method pair. We call these accesses the uncorrelated amount
of the method pair. If a method pair consists of an uncorrelated amount to a
great degree in comparison to the correlated amount, we should not consider
the method pair to be suitable for a unit test for correlated variables: The
method pair is more likely to contain concurrency bugs, which do not involve
correlated variables. Due to this reasoning we defined the following metric for
the correlation rank RC , with CA as the correlation amount and UA as the
uncorrelated amount:

RC = CA

CA+UA

A high rank indicates a high number of accessed correlations and/or espe-
cially endangered correlations. When the correlation amount of a method pair
is zero, the correlation rank equals 0%. Analogously, an uncorrelated amount
of zero equals a correlation rank of 100%. Thus, a method pair with a high
correlation rank has a higher probability of containing high-level data races
resulting from correlation violations.

After we have ranked all method pairs we pass only those with a high
correlation rank to the dynamic object recording. For these pairs we generate
unit tests in which we reconstruct the recorded object states and invoke both
methods in parallel.

4.6 Example

For a better understanding of our concepts, we present an example of our
presented approach on a small program. The parallelism analysis and the par-
allel dependency analysis have identified four functions used as parallel unit
test candidates (shown in figure 9). Furthermore, we identified the method
RefreshSecs to be parallel to the three other methods SetMins, SetHours
and SetT ime. The variables Hours, Mins and Secs are shared. We perform
the correlation pattern analysis on the control flow of the program. We iden-
tify a vertical pattern between Hours and Secs inside the method SetHours.
Analogously, we detect a vertical pattern between Minutes and Secs inside
SetMins. Moreover, inside the method SetT ime, we can identify a horizon-
tal pattern between Minutes and Hours. The horizontal pattern spans both
invoked methods SetMins and SetHours. Since there are no other write ac-
cesses to the given variables inside the program, we calculate a 100% certainty
for each indicated correlation.

In the next step, we determine the correlation accesses and the endangered
correlations for each of the four methods. For this reason, we consider the
parallel method pairs (SetMins, RefreshSecs), (SetHours, RefreshSecs)
and (SetT ime, RefreshSecs). SetMins contains exactly one correlation ac-
cess, but since there is a continuous lock surrounding the considered variable
accesses the correlation is not endangered. The same holds for the method
SetHours. RefreshSecs on the other hand does not contain a correlation
access. However, SetT ime includes three correlation accesses: The previously
mentioned correlation accesses inside both invoked methods and the access
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Function SetMins()
Acquire Lock

Mins = Secs/60;
end

end

Function SetHours()
Acquire Lock

Hours = Secs/3600;
end

end

Function SetTime()
SetMins();
SetHours();

end

Function RefreshSecs()
Acquire Lock

Secs = SysTime();
end

end

Fig. 9: Four methods accessing three shared variables. SysT ime() constitutes
a system internal method whose body is not visible.

Program B. Ac-
count

B.
Queue

Dekker Order
Sys.

Corr
Sys.

Petri-
Dish

Key
Pass

STP Sum

LOCs 25 31 15 360 480 1070 1240 1120 -
Methods 4 6 3 7 18 35 58 46 -
Depth
Call Stack

3 2 2 4 5 16 8 12 -

Heap Ob-
jects

1 24 2 56 59 371 98 73 -

Threads 2 3 3 5 5 7 16 4 -
Parallel
Methods

4 6 3 5 10 35 58 37 -

Parallel
Method
Pairs

4 14 5 15 27 230 478 315 -

Detected
Corrs

3 4 1 5 5 16 13 9 46

Low-Level
Races

1 3 0 20 10 3 5 11 63

High-
Level
Races

1 2 2 25 5 2 5 4 46

Detected:
CHESS

0 0 0 0 0 2 2 6 10

Detected:
HCorr

1 2 2 21 5 2 3 3 39

Table 1: Evaluation results of CorrRT.

to the correlation between Mins and Hours. Furthermore, this correlation is
also endangered since there is no continuous lock protecting the variable access
to Mins and Hours. As a result the method pair (SetT ime, RefreshSecs)
acquires a correlation rank of 100% while each of the other pairs have a cor-
relation rank of 0%. Therefore, we only consider (SetT ime, RefreshSecs) for
parallel unit test creation and dismiss the other method pairs. While AutoRT
would have generated unit tests for all four method pairs, our approach was
able to reduce the candidate set to only one method pair. That is, the only
method pair containing a (high-level) data race for correlated variables. By
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this approach, we have eliminated redundant unit tests which do not contain
potential data races, particularly unit tests which do not contain data races
on correlated variables.

5 Implementation

We implemented the approach in the managed environment .NET C#. For
data and control flow analysis as well as the code instrumentation we em-
ployed the Common Compiler Infrastructure (CCI) framework. Therefore the
presented analysis works on the Common Intermediate Language (CIL) which
underlies every .NET program.

The dynamic shared variable analysis monitors the encountered field vari-
able accesses. We identify each field variable by its unique field identifier (ac-
quired from the CCI framework) and the hash code of its parent object.

For the correlation pattern detection we need to identify assignments and
control flow branches. CCI already provides analysis data structures for de-
tecting assignments. However, control flow branch analysis is not supported
by the framework. Therefore, we identify the scope of control flow branches
via post dominator analysis and apply a simple and efficient algorithm, which
was presented in [14].

Detecting endangered correlation accesses requires the identification of syn-
chronization instructions. In .NET synchronization instructions are method
calls to the .NET core library which communicate with the operating system.
We are able to detect these method calls inside the CIL code of the program
by their distinctive namespace: System.Threading. All methods belonging to
that namespace manage synchronization operations between threads. Also, our
analysis does not distinguish the kinds of synchronization, it is therefore able
to identify synchronization instructions in general.

In our implementation we consider variable correlations with a probability
of 50% and above to be true. Furthermore, we only generate unit tests for
method pairs with a correlation rank above 30%.

6 Evaluation

In this section we introduce our test environment, including our evaluation
metrics. Subsequently, we present our evaluation results.

6.1 Test Environment

We use sample programs as well as real-world applications for our evalua-
tion purposes. The race detector CHESS [15], [16] provides small program
examples containing high-level data races. For our evaluation we used the
programs Bank Account, BoundedQueue and Dekker from the CHESS ex-
amples. MSDN Code Gallery [17] contains applications which demonstrate
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Fig. 10: Comparison between AutoRT and CorrRT

the functionality of parallel programming in .NET. We chose an order-system
simulation (a master thread manages many worker threads executed concur-
rently) from MSDN. We additionally implemented an alternative version of
it containing correlated variables for each correlation pattern. Furthermore,
we evaluated the open source programs PetriDish [18], the program library of
KeyPass [19] and SmartThreadPool (STP) [20]. The programs are listed in
Table 1.

We evaluate our unit test generation approach according to three metrics:
The efficiency for the race detection, the performance and the search space
reduction of all possible unit test candidates.

For the efficiency of the race detection we take the number of detected
high-level data races in relation to the total number of high-level data races
inside the program into account. We expect that our test cases are especially
suited for high-level data races only and therefore do not contain many low-
level data races. Hence, we compare the ratio of found low-level data races
with the ratio of high-level data races. For these purpose we use Microsoft
Research CHESS and HCorr as race detectors. HCorr is able to detect race
conditions on correlated variables automatically. For CHESS the user has to
specify correlations inside the given program. We did not provide CHESS with
any information about the variable correlations, hence it can only detect low-
level race conditions. By this, we ensure that the race conditions involving
correlated variables inside the programs cannot be found by race detectors
considering low-level race conditions only.

Besides the race detection, the search space reduction is one of the main
metrics of our evaluation. Filtering out unit test candidates without poten-
tially violated correlations is a major purpose of the presented approach. By
comparing the number of generated unit tests by AutoRT and CorrRT, we
can directly measure the effectiveness of our method.

For the performance, we consider the overall unit test generation time of
our approach and qualify it to the unit test generation time of AutoRT.
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6.2 Race Detection Efficiency

Our unit test generator created 81 parallel unit tests for the eight evaluation
programs. The programs contained 46 race conditions on correlated variables,
of which HCorr found a total of 39 when applied to our generated unit tests.
We observed that this number of missed data races was caused by the inaccu-
racy of HCorr itself: The generated unit tests contained all race conditions on
correlated variables but the race detector was not able to detect all of them in-
side the tests. The reason for this behaviour is the detection of computational
units which the race detector identified as too short. As a result HCorr missed
some correlations between the variables and did not detect the corresponding
high-level races. Still, HCorr was able to overall detect more race conditions of
the programs when analysing the unit tests than analysing each program as a
whole. From the 46 races HCorr could only detect 31 when applied directly to
the programs (instead of the 39 it detected when applied to the generated unit
tests). We observed that HCorr is generally more precise on small programs.
In this case, our parallel unit tests for correlated variables even resulted in an
increased precision of 11%.

CHESS detected a total of 10 data races when analysing the unit tests. This
means our generated unit tests are indeed specialized on correlated variables.
From the total of 46 low-level race conditions inside the programs only 10 were
captured by our generator. These low-level races resided in method pairs which
also contain race conditions on correlated variables. In the generated unit tests
for the corresponding method pairs they, therefore, appear as a by-product.

6.3 Test Case Reduction

Figure 10a shows the number of generated unit tests by AutoRT and CorrRT.
Compared to the original AutoRT we observed a reduction of generated unit
tests up to 50%. On average, we were able to reduce the number of redundant
unit tests about 20% compared to the number of generated parallel unit tests
by AutoRT. Whether our approach is able to reduce the search space depends
highly on the distribution of accesses on correlated and uncorrelated variables
inside the program as well as the number of endangered correlations of course.
We observed the best reduction on programs in which methods either access
only uncorrelated or only correlated variables. This is because our approach
can safely exclude method pairs which do not contain accesses to correlated
variables. Otherwise, the intersection of method pairs which potentially con-
tain race conditions on correlated variables and method pairs which contain
data races in general is higher.

6.4 Time Overhead

The time for unit test generation as seen in Figure 10b is a sum of different
partial times including the static parallel dependency analysis, the static corre-
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lation analysis, the dynamic parallelism analysis and the dynamic object state
recording. We have experienced that the most critical performance impact lies
in the dynamic analysis. Multiple executions of the same program code and
expensive object recording cause a major slow down. The ratio between the
overall unit test generation time and the execution time of the program varies
wildly between a factor of 16 and 266. Big programs with many objects like
PetriDish cause a high state recording time. The static correlation analysis,
only takes a small part of the overall generation time. On average our addi-
tional analysis took about 15% of the total generation time. The analysis time
varies from 25% to less than 5% depending on the execution of the program.
Though we perform an additional analysis on the code and the method pairs,
the generation time of our implementation is negligible compared to the whole
generation time. Additionally, because of the unit test candidate reduction
we partially experience an overall less generation time on comparatively large
programs such as PetriDish, KeyPass and STP.

7 Conclusion

In this paper we introduced an approach which enhances automatic parallel
unit test generation for correlated variables. Our approach is able to identify
highly correlated regions which are especially vulnerable to concurrency bugs.
This reduces the search space in unit test generation and uncovers code suited
for our test analysis approach. During our evaluation we detected more than
85% of the race conditions involving correlated variables inside eight different
applications by using our generated parallel unit tests.

In the future, we want to further optimize the static correlation analysis.
We may apply heuristics for identifying correlated variables for an even bigger
coverage. We may use data mining approaches to infer correlations in addition
to data or control dependencies. Moreover, the region hypothesis established
in [21] and advanced in [3] can also supply correlations between more than
two variables.

Also, we want to pass the results of our correlation detection to the race
detectors executing the generated parallel unit tests. This would be especially
useful for detectors which normally rely on the user intervention for correlation
specifications e.g. [15] or [22]. However, race detectors with automatic correla-
tion detection may profit from a reduced performance overhead and increased
precision by our preceding correlation analysis.

Generating parallel unit tests for correlated variables explores new direc-
tions for other future work. Generally, different race detectors vary in their
effectiveness in detecting specific kinds of concurrency bugs. Even detectors
for correlated variables vary in precision depending on the structure of the
code. Therefore, as a next step we want to provide analyses and metrics which
state how method pairs are suited for specific race detectors. With that infor-
mation, we do not have to restrict ourselves to correlated variables but may
also consider detectors for low-level data races or high-level atomicity viola-
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tions. As a result we would be able to tell which race detector is most suited
for executing a parallel unit test.
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