
Assessing Measurement and Analysis

Performance and Scalability of Scalasca 2.0

Ilya Zhukov and Brian J.N. Wylie

Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

Abstract. The Scalasca toolset was developed to provide highly scal-
able performance measurement and analysis of scientific applications on
current HPC platforms, including leadership systems such as IBM Blue-
Gene/Q and more traditional Linux clusters. Its primary focus is support
for C/C++/Fortran applications using MPI and OpenMP, and mixed-
mode combinations thereof, offering detailed call-path profiles for each
process and thread produced by runtime summarization or augmented
with wait-state analysis of event traces. A new generation of Scalasca
(2.0) uses the community-developed infrastructure comprising of Score-
P and associated components, while continuing to provide the previous
functionality. By comparing the new version of Scalasca with its pre-
decessor, using the applications from the NPB3.3-MZ-MPI benchmark
suite, we validate core functionality and assess overheads and scalabil-
ity. Although adequate for general use, various aspects are identified for
further improvement, particularly for larger scales.

Keywords: parallel performance measurement/analysis, scalability,
MPI+OpenMP.

1 Introduction

Various studies have compared the usability and overheads of different perfor-
mance tools for MPI applications on IBM BlueGene systems [1,7] and Linux
clusters [5], however, we are particularly interested in comparing two generations
of the Scalasca toolset [3] and its implementations on these two quite different
classes of HPC computer system. We also focus on measuring and analysing
the performance of combined OpenMP with MPI in recognition of the current
predominance of this parallelization paradigm in the most scalable applications.

2 Scalasca and Score-P

Scalasca analyses of the execution performance of parallel applications consist of
detailed call-path profiles for each process and thread which allow both quantifi-
cation and localization of performance issues. Metric severity differences between
processes and threads, which may indicate imbalance, and the program call-
paths where these occur, can be readily identified and compared, or refined via

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 627–636, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

628 I. Zhukov and B.J.N. Wylie

hierarchical exploration. A wide range of valuable metrics can be determined
independently for each process and thread during measurement via runtime
summarization. Additional metrics indicating more specific parallel execution
inefficiencies, requiring correlation of events on different processes that is pro-
hibitive during measurement, can be determined via a parallel replay analysis
of event traces. Locations of particularly severe instances of such issues found in
the event traces can also be used to direct interactive trace visualization tools
such as Vampir [4] to present them for detailed investigation.

While this usage has been supported for some years by Scalasca, community-
developed software components promise closer integration with other tools and a
larger basis for extending and improving functionality. For this purpose a number
of Scalasca components have been re-developed with and for the community (the
OPARI source instrumenter and CUBE analysis report utilities and GUI), along
with a new OTF2 event trace format, however, the main new development is the
Score-P instrumentation and measurement infrastructure [6]. The latter provides
a functional replacement for Scalasca’s original infrastructure (known as EPIK),
generating summary analysis reports in CUBE format and/or event traces in
OTF2 format for Scalasca’s parallel trace analyzer (SCOUT).

Existing users of the Scalasca toolset are therefore able to continue to use the
familiar commands to instrument their parallel application programs (SKIN),
launch the instrumented executables under the control of the measurement con-
figuration and analysis nexus (SCAN), and post-process and examine the result-
ing summary and trace analysis reports (SQUARE).

The new Scalasca instrumenter essentially only offers limited backwards com-
patability, since the Score-P instrumenter itself provides all of the functionality
and can be used directly. Each instrumenter operates in the same fashion, using
OPARI and other source instrumenters as appropriate, though command-line
switches and manual instrumentation API have incompatible syntax.

The Scalasca measurement execution configuration and analysis nexus should
also appear familiar in its operation. As before it verifies and sets the execution
configuration for a measurement experiment, validates the resulting measure-
ment artifacts and where appropriate automatically initiates parallel trace anal-
ysis using the same configuration of compute nodes, processes and threads. The
most visible difference is that experiment archive directories are distinguished
with the scorep_ prefix (rather than epik_). While command-line configuration
options are essentially unchanged for basic operation, Score-P environment vari-
ables must be used for detailed configuration and although many are similar to
those for EPIK measurements there are also notable differences. For example,
whereas EPIK uses separate memory buffers for call-path profile and event trace
data on each thread along with per-process definition buffers, Score-P uses a
memory buffer pool on each process for all of its internal measurement manage-
ment and collection. As well as being more convenient, the latter pool can also
be more memory efficient. Similarly, a file with a list of routines to filter during
measurement can be specified in the same way on the SCAN command-line (and
also for testing with SQUARE), however, its Score-P syntax is different.

Assessing Performance and Scalability of Scalasca 2.0 629

For tracing experiments, event trace files with associated definition files are
written directly into the archive directory as before, but the OTF2 library is
used by the Score-P measurement libraries to write the files and by the SCOUT
analyzer to read them. SIONlib [2] is employed to optimize parallel file I/O and
avoid excessive numbers of files. The parallel replay analysis of the traces then
follows, and an augmented analysis report is collated and written using the new
version of CUBE.

Finally, the new Scalasca analysis report examiner, using the latest ver-
sion of the CUBE utilities and GUI, is only superficially distinguished by the
new report format (with a different file extension). Old and new analysis re-
ports have very similar hierarchical structures of metrics, regions/call-paths and
nodes/processes/threads, however, for reading and writing efficiency a binary
file format is used for metric severity values rather than the previous XML. The
new format also provides greater flexibility and functionality, e.g., for storing
either inclusive or exclusive metric severity values. Notably, the Score-P mea-
surement system does not yet provide any topological information for processes
and threads nor compute nodes and processors, either in its own summary anal-
ysis reports or as part of the trace metadata definitions.

The first release of the new generation of Scalasca — version 2.0 — supports
Score-P 1.2 and was co-released in August 2013. Measurements from this are
refered to as Scalasca2 (S2) in comparison to the latest first generation Scalasca
1.4.3 release (S1) of March 2013.

3 Experimental Setup

3.1 Machines

It is of interest to compare these Scalasca generations on the two production
HPC resources at Jülich Supercomputing Centre1, since they offer quite different
execution environments.

Juropa2 is a high-performance cluster of 3288 compute nodes each with 24GB
of memory and dual quad-core Intel X5570 (Nehalem-EP) processors supporting
2-way hardware threading, connected via a non-blocking fat-tree Infiniband QDR
network. The operating environment provides Intel compilers and ParaStation
MPI running under SuSE Linux with Lustre filesystems.

Juqueen3 is a highly scalable IBM BlueGene/Q system consisting of 28 racks
each with 1024 PowerPC A2 processors with 16GB of memory and 16 cores
supporting 4-way hardware threading, and a custom 5D torus interconnect. Ap-
plications running under Linux microkernels on compute nodes use IBM XL
compilers and proprietary MPI library with GPFS filesystems.

To effectively utilise the available hardware resources, a maximum of 16
OpenMP threads is appropriate for Juropa compute nodes, whereas 64 OpenMP
threads is more suitable for Juqueen compute nodes.

1 http://www.fz-juelich.de/ias/jsc/EN/
2 .../Expertise/Supercomputers/JUROPA/JUROPA node.html
3 .../Expertise/Supercomputers/JUQUEEN/JUQUEEN node.html

630 I. Zhukov and B.J.N. Wylie

3.2 Applications

Many HPC applications now use combined MPI and OpenMP parallelization,
therefore the multi-zone versions of the NAS Parallel Benchmarks (NPB3.3-MZ-
MPI) [8] which run on a wide range of computer systems were chosen as the
basis for the comparison. There are three separate pseudo-application bench-
mark codes — BT-MZ (block tri-diagonal solver), SP-MZ (scalar penta-diagonal
solver) & LU-MZ (lower-upper Gauss-Seidel solver) — written in Fortran77
to solve various sizes of computational fluid dynamics problems (refered to as
‘classes’) at varying scales. Larger problem classes take longer to execute and
require more memory.

Notably, while an arbitrary number of OpenMP threads can be used when
executing, LU-MZ has a fixed number of even-sized zones and can therefore only
be configured with a maximum of 16 MPI processes, whereas BT-MZ and SP-
MZ can be configured with up to 16384 MPI processes (for the largest problem
class ‘F’). SP-MZ has equally-sized zones, but BT-MZ’s zones have unequal sizes
and correspondingly varying amounts of computation.

BT-MZ incorporates a static load balancing capability, varying the number of
OpenMP threads for each process, however, this is ineffective when the threads
are confined to the same processor on BlueGene systems (or same compute
node on Juropa), and to avoid detrimental over-subscription such load balancing
must be disabled. BT-MZ class F runs on Juqueen with the maximum 16384
MPI processes, though execution efficiency drops substantially with more than
4096 processes (each with 64 OpenMP threads). Analysis of the performance of
BT-MZ execution with Scalasca has shown that at larger scale computational
imbalance deteriorates particularly severely in the z_solve routine [9].

There is insufficient memory available on Juqueen compute nodes to run SP-
MZ class F, however, SP-MZ class E runs and scales well with up to 4096 MPI
processes (each with 64 OpenMP threads). With a maximum of only 16 MPI
processes, LU-MZ is hardly suitable for systems like BG/Q where the smallest
allocatable partition comprises 32 processors. Nevertheless, 16-process versions
of all three benchmarks were configured for class D and run successfully on
Juqueen as well as a Juropa partition of 16 compute nodes.

For reference we take the (wallclock) execution time reported for each bench-
mark kernel, which is relatively stable and not subject to variations in starting
and initializing processes and their final completion. As well as uninstrumented
optimized executables, additional executables for measurement were also pre-
pared using the instrumenters from Scalasca 1 & 2. In each case, the instru-
menter directed the respective compiler to insert instrumentation calls at every
source routine entry and exit, as well as using OPARI2 for source-code instru-
mentation of OpenMP directives and linking the MPI+OpenMP measurement
libraries. (In the course of subsequent measurement iterations, measurement con-
trol commands were incorporated in LU-MZ sources and measurement filter files
generated for BT-MZ.)

To avoid performance variations that may arise from hardware partitions and
sets of compute nodes, each experiment consisted of a series of measurements

Assessing Performance and Scalability of Scalasca 2.0 631

as well as reference executions in the same batch job using the same allocated
compute resources. Parallel filesystems ($WORK) are required for efficient file
I/O for tracing experiments, however, they are non-dedicated resources such that
variability in performance is unavoidable.

4 Results

Apart from functionality known not to be available yet from Score-P, initial com-
parison of analysis reports produced by Scalasca 1 & 2 verified their correctness
and completeness (with only minor issues). Separate series of experiments were
undertaken to compare measurement and analysis overheads and scalability of
the two versions.

4.1 Measurement Overhead

For each of the three benchmarks, Class D versions for 16 MPI processes were
prepared on both Juropa and Juqueen, and these fully-optimised, uninstru-
mented executables run to have reference execution times, reported in Tab. 1.

Compilation and linking times of approximately 39–43 seconds on Juqueen
increase to 45–47 seconds when instrumenting with both versions of Scalasca. On
Juropa, compilation and linking times of 14–16 seconds increase to 37–43 seconds
with Scalasca1, and 31–35 seconds with Scalasca2. Both versions of Scalasca use
OPARI2 to process source files containing OpenMP, direct the compilers to
insert routine entry and exit instrumentation calls, and additionally link the
measurement libraries. Since shared libraries are available with Scalasca2 on
Juropa, dynamic linking is faster than static linking done by Scalasca1. Although
recompilation of the application is required, the additional time is moderate and
the instrumented executables can be configured for different measurements.

An initial set of summary measurements were taken and scored by Scalasca
to determine whether adjustments would be desirable or required, e.g., to spec-
ify buffer sizes for tracing measurements. Tab. 1 includes the maximum trace
buffer capacity requirements (max tbc) per-thread for Scalasca1 and per-process
for Scalasca2. While there are no serious issues for SP-MZ, the score reports
identify that traces produced by BT-MZ and LU-MZ would be too large to fit
in available memory during measurement. The BT-MZ measurements also had
kernel execution times much larger than the reference executions, by 1–2x for
Scalasca1 and 2–4x for Scalasca2, indicating significant measurement dilation.

The BT-MZ score reports identified several user-level source routines that
were executed very frequently and consequently would be responsible for the
vast majority of the trace buffer capacity requirements (as well as ultimate trace
size). These routines are short-running and tend to have disproportionately large
measurement dilation, while not contributing to analysis of MPI or OpenMP par-
allel efficiency issues. Although the Intel compiler on Juropa appended an extra
underscore character to the routine names, the exact same set of routines and
scoring assessment applied for the IBM XL compiler on Juqueen. Measurement

632 I. Zhukov and B.J.N. Wylie

Table 1. Reference execution times for NPB3.3-MZ-MPI benchmark kernels (class D,
16 processes) and characteristics of default and revised Scalasca 1&2 measurements on
Juropa and Juqueen. Revised configurations using a measurement filter file for BT-MZ
and explicitly instrumented measurement pause after 20 timesteps for LU-MZ.

Juropa Juqueen
16x16 16x16 16x16 16x64 16x64 16x64
BT-MZ LU-MZ SP-MZ BT-MZ LU-MZ SP-MZ

Reference execution time [sec] 177.11 280.29 153.49 315.46 321.83 319.18

S1 default measurement time [sec] 378.20 258.05 151.39 907.63 333.24 408.32
S1 revised measurement time [sec] 184.41 272.79 375.72 333.29

S2 default measurement time [sec] 581.10 265.08 153.57 1619.38 335.27 304.27
S2 revised measurement time [sec] 181.57 300.01 348.00 335.17

S1 default measurement dilation [%] 114 7.9 1.4 188 3.5 27.9
S1 revised measurement dilation [%] 4.1 2.7 19.1 3.6

S2 default measurement dilation [%] 228 5.4 0.1 413 4.2 4.7
S2 revised measurement dilation [%] 2.5 7.0 10.3 4.1

S1 default thread max tbc [MB] 13,488 6,396 74 6,438 1,603 119
S1 revised thread max tbc [MB] 31 602 31 86

S2 default process max tbc [MB] 181,174 21,230 2,321 182,249 21,692 4,991
S2 revised process max tbc [MB] 365 3,120 1,441 1,988

BT-MZ.D LU-MZ.D* SP-MZ.D
0

200

400

600

T
im

e
[s

]

NPB3.3-MZ-MPI 16x16 juropa

378

258

151

90.4

394

193

581

300

161

63.5

365

172

reference
kernel: S1.sum
kernel: S1.sum+filt
kernel: S1.trace+filt
extra: S1.trace
extra: S1.scout

kernel: S2.sum
kernel: S2.sum+filt
kernel: S2.trace+filt
extra: S2.trace
extra: S2.scout

NPB3.3-MZ-MPI 16x16 juropa

*paused after 20 timesteps
BT-MZ.D LU-MZ.D* SP-MZ.D

0

500

1000

1500

2000

2500

T
im

e
[s

]

*paused after 20 timesteps

NPB3.3-MZ-MPI 16x64 juqueen

908

333
408

930 918

2266

1619

335 304

751

1038

1828

reference
kernel: S1.sum
kernel: S1.sum+filt
kernel: S1.trace+filt
extra: S1.trace
extra: S1.scout

kernel: S2.sum
kernel: S2.sum+filt
kernel: S2.trace+filt
extra: S2.trace
extra: S2.scout

NPB3.3-MZ-MPI 16x64 juqueen

Fig. 1. NPB3.3-MZ-MPI benchmark class D experiments on Juropa (left) and Juqueen
(right) comparing measurement dilation of execution kernels and additional time asso-
ciated with trace collection and SCOUT trace analysis: for each benchmark, Scalasca1
left of dotted line and Scalasca2 on right. Black dashed lines show the uninstrumented
reference kernel execution time, the first bar in each set is the kernel execution time for
summary measurement (with and without filter for BT-MZ), with the following three
bars separating kernel execution time for trace measurement, generation and analysis
times.

Assessing Performance and Scalability of Scalasca 2.0 633

filter files listing the names of these routines were therefore prepared and applied
for subsequent summary and tracing measurements.

In comparison, while LU-MZ measurements showed acceptable dilation of
up to 8% on Juropa and less than 5% on Juqueen, the LU-MZ score reports
identified an OpenMP flush directive in the sync_left routine (syncs.f:27)
that would be responsible for prohibitive trace buffer capacity requirements.
Although it is possible to direct the Scalasca instrumenter not to instrument
OpenMP flush directives, that would then compromise the subsequent analysis
since OpenMP flush time would not be distinguished from computation time.
With over 15% of total execution attributed to OpenMP flush time (and almost
entirely from this particular one of the 5 flush directive use locations), it is
desirable to retain this key part of the execution performance analysis. In this
case, it is preferable to only measure a subset of the 300 LU-MZ.D timesteps, by
explicitly inserting a conditional pause region in the source code of the timestep
loop using the provided measurement control APIs. For LU-MZ.D, additional
instrumented executables were prepared where measurement was paused after 20
timesteps, and corresponding trace buffer capacity requirements thereby reduced
substantially.

Measurement dilation and execution overheads for experiments with Scalasca
1 & 2 are shown in Fig. 1. Although unfiltered BT-MZ measurements suffer
significant dilation, the filters employed to reduce traces to managable sizes
are also effective in bringing dilations down to acceptable levels (below 20%
on juqueen and only 7% on juropa). As well as dilated execution time of the
measured application, trace generation and subsequent analysis with the SCOUT
analyzer require compute nodes to be allocated for additional time. (Time for
collating and writing summary measurements is negligible and not shown.) At
this scale, trace generation times are small (even for the larger LU-MZ trace
files), however, the trace analysis times are found to be highly dependent on the
application and computer system (though Scalasca2 analysis is generally slightly
faster than Scalasca1). If memory was available to trace the full 300 LU-MZ.D
timesteps, rather than only 20, times for trace generation and analysis would be
more than ten times longer.

4.2 Scalability

Execution times of the three benchmarks (classes C, D, E & F) with different
numbers of MPI processes (one per processor) on Juqueen are shown in Fig. 2(a).
In comparison to their execution times on 128 processors, with 4096 processors
(i.e., 32 times as many) SP-MZ.E demonstrates an excellent speed-up of 29
whereas BT-MZ.E has a speed-up of only 8.4.

While the excellent speed-up characteristics of SP-MZ.E on Juqueen make its
execution performance analysis less important for tuning, the absence of scaling
artifacts also suggests it to be preferable when examining and comparing the
scaling efficiencies of performance analysis tools.

Fig. 2(b) shows the SP-MZ.E kernel execution times for summary and
tracing measurements with Scalasca1 and Scalasca2 (blue and orange lines,

634 I. Zhukov and B.J.N. Wylie

256 512 1024 2048 4096 8192 1638416 32 64 128
Processes

10

100

1000

E
xe

cu
tio

n
T

im
e

[s
ec

]

BT-MZ.F
BT-MZ.E
SP-MZ.E

BT-MZ.D
SP-MZ.D
LU-MZ.D

BT-MZ.C
SP-MZ.C
LU-MZ.C

NPB3.3-MZ-MPI scalability on juqueen (64 threads/process)

128 256 512 1024 2048 4096
Processes

10

100

1000

T
im

e
[s

]

kernel: reference
kernel: S1.sum
kernel: S2.sum
kernel: S1.trace
kernel: S2.trace

extra: S1.sum
extra: S2.sum
extra: S1.trace
extra: S2.trace
extra: S1.scout
extra: S2.scout

NPB3.3-MZ-MPI SP-MZ.E NPx64 juqueen overheads

(a) Kernel execution times (b) SP-MZ.E measurement experiments

Fig. 2. Executions times on Juqueen BG/Q with 64 OpenMP threads per MPI process.
(a) NPB3.3-MZ-MPI kernel execution times for the benchmark classes C (triangle), D
(diamond), E (rectangle) & F (circle). (b) SP-MZ.E measurement dilation and execu-
tion overheads with Scalasca1 (dotted lines) & Scalasca2 (solid lines).

indistinguishable for different experiment types) and extra time associated with
measurement and analysis. From comparison with the uninstrumented reference
SP-MZ.E kernel execution times (black dashed line), measurement dilation was
a maximum of 11% with Scalasca1 and 7% with Scalasca2 (compared with 28%
and 5%, respectively, for SP-MZ.D 16x64 in Tab. 1). The larger dilation from
Scalasca1 may be attributed to additional callpath consistency checking and
metrics calculated.

Summary measurement finalization times (red lines in Fig. 2(b)) increase
roughly linearly with the number of processes for which measurements are writ-
ten to the analysis report. These are notably larger for Scalasca1 due to the
extra metrics, along with the additional metadata describing the hardware and
application topologies (not yet provided by Scalasca2), and report collation and
writing time becomes significant at scale.

Trace generation times (green lines in Fig. 2(b)) similarly increase with the
number of processes for which event data is written. Since Scalasca2 doesn’t
yet use the much more efficient SIONlib, creation and writing of trace files is
currently considerably slower and less scalable than Scalasca1, and prohibitive
for thousands of processes. Whereas Scalasca2 creates two files for every thread,
Scalasca1 uses SIONlib to create only one file per I/O bridge on BG/Q and
write thread data aligned to filesystem blocks as sections within these multifiles.
As a result Scalasca2/OTF2 traces on disk only grow slowly from 246GB for
128 processes to 292GB with 4096 processes, whereas Scalasca1/SIONlib traces
which are initially 25% smaller grow to be about four times larger than their
counterparts (shown in red in Fig. 3(b)).

Trace analysis times (magenta in Fig. 2(b)) follow the same trend for both
versions of Scalasca’s automated trace analyzer SCOUT: good scalability for up
to 512 processes (matching that of SP-MZ.E) is reversed for larger configura-
tions. The time breakdown in Fig. 3(a) shows that for Scalasca1 this is primarily

Assessing Performance and Scalability of Scalasca 2.0 635

128 256 512 1024 2048 4096
Processes

1

10

100

1000

T
im

e
[s

]

S1.TOTAL
S2.TOTAL
S1.defs
S2.defs
S1.events
S2.events
S1.prep
S2.prep
S1.correct
S2.correct

S2.replay
S1.replay
S2.collate
S1.collate

NPB3.3-MZ-MPI SP-MZ.E NPx64 juqueen scout analysis

128 256 512 1024 2048 4096
Processes

10
0

10
1

10
2

10
3

10
4

10
5

10
6

S
iz

e
[M

B
yt

es
]

S1.max_tbc [thrd]
S2.max_tbc [proc]
S1.trace memory
S1.trace on disk
S2.trace on disk
S1.scout memory
S2.scout memory
S1.report raw
S2.report raw
S1.report final
S2.report final

NPB3.3-MZ-MPI SP-MZ.E NPx64 juqueen buffer/file sizes

(a) Trace analysis time breakdown (b) File sizes and memory requirement

Fig. 3. Scaling of SP-MZ.E tracing experiments on Juqueen with Scalasca1 (dotted
lines) & Scalasca2 (solid lines). (a) Breakdown of time in stages of SCOUT automated
trace analysis. (b) Trace buffer content and file size on disk, trace analyzer memory
requirement, and analysis report size.

explained by the time to collate and write the linearly growing analysis report
sizes, whereas for Scalasca2 it is reading the trace metadata definitions that
dominates at scale. At smaller scales, Scalasca2 is dominated by time to prepro-
cess the already loaded trace data. Scalasca2 trace replay analysis is found to be
consistently faster than its predecessor.

While Fig. 3(b) shows that the size of the largest trace buffers decreases
linearly, the total amount of trace event data in memory buffers is largely in-
dependent of the number of processes (approx. 190GB) and disk space for the
resulting trace files is somewhat larger. Also both versions of the Scalasca trace
analyzer require similar amounts of memory and produce raw trace analysis
reports of comparable size.

To be efficient and flexible, analysis reports written directly by the Scalasca
measurement libraries and parallel trace analyzers contain a minimal set of
unstructured metrics. These intermediate Scalasca2 reports in CUBE4 format
are 4–8% larger than Scalasca1 reports in CUBE3 format. Additional metrics
are derived and a hierarchy of metrics created during subsequent offline post-
processing. The final analysis reports are four times larger with Scalasca2, but
processed 4–5 times faster by the scoring utility, since they store inclusive metric
values for more efficient reading rather than the exclusive values supported by
Scalasca1. Analysis report sizes and post-processing times are proportional to
the complexity of the raw reports, determined by the number and type of call-
paths but also by the number of processes (and threads per process). Whereas
the Scalasca1 metric remapper utility uses hard-coded metric derivations and
mappings, the Scalasca2 version is configurable via specification files. Remap-
ping the SP-MZ.E trace analysis reports for 4096 processes takes just over 10
minutes with Scalasca1, but roughly 20 times longer with Scalasca2.

636 I. Zhukov and B.J.N. Wylie

5 Conclusion

Basic functionality of the new version (2.0) of the Scalasca toolset has been val-
idated with the three MPI+OpenMP codes of the NPB3.3-MZ-MPI benchmark
suite on IBM BlueGene/Q and a large Linux cluster. Its performance and scal-
ability, particularly measurement dilation and overheads associated with trace
generation and analysis, have been examined and found to be comparable (and in
many cases better) than its predecessor. Score-P/OTF2 tracefile handling needs
to be improved and future versions are expected to use SIONlib to improve scal-
ability. As well as supporting additional HPC platforms, missing functionality
such as topology descriptions are also expected to be incorporated. However,
currently the most critical limitation of Scalasca2 is the very slow and ineffi-
cient analysis report post-processing (remapper), which is inconvenient both for
experiments with complex call-trees or large numbers of processes/threads.

References

1. Chung, I., Walkup, R., Wen, H., Yu, H.: MPI performance analysis tools on Blue-
Gene/L. In: Proc. ACM/IEEE SC 2006 Conference on High Performance Network-
ing and Computing, Tampa, FL, USA. ACM Press (November 2006)

2. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files.
In: Proc. ACM/IEEE SC 2009 Conference Portland, OR, USA (November 2009),
http://www.fz-juelich.de/jsc/sionlib/

3. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010), http://www.scalasca.org/

4. GWT-TUD GmbH: VAMPIR. Technische Universität Dresden, Dresden, Germany,
http://www.vampir.eu/

5. Iwainsky, C.: an Mey, D.: Comparing the usability of performance analysis tools.
In: César, E., Alexander, M., Streit, A., Träff, J.L., Cérin, C., Knüpfer, A., Kran-
zlmüller, D., Jha, S. (eds.) Euro-Par 2008 Workshops. LNCS, vol. 5415, pp. 315–325.
Springer, Heidelberg (2009)

6. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler,
D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik,
Y., Philippen, P., Saviankou, P., Schmidl, D., Shende, S.S., Tschüter, R., Wag-
ner, M., Wesarg, B., Wolf, F.: Score-P – A joint performance measurement
run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Proc.
5th Parallel Tools Workshop, Dresden, Germany, pp. 79–91. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-31476-6_7, http://www.score-p.org/

7. Mohr, B., Wylie, B.J.N., Wolf, F.: Performance measurement and analysis tools for
extremely scalable systems. Concurrency and Computation: Practice and Experi-
ence 22(16), 2212–2229 (2010)

8. Van der Wijngaart, R.F., Jin, H.: NAS Parallel Benchmarks, Multi-Zone versions.
Tech. Rep. NAS-03-010, NASA Ames Research Center, Moffett Field, CA, USA
(July 2003), http://www.nas.nasa.gov/Software/NPB/

9. Wylie, B.J.N.: Parallel performance measurement & analysis scaling lessons. In:
Proc. SC 2012 Workshop on Extreme-Scale Performance Tools, Salt Lake City, UT,
USA (November 2012), http://juser.fz-juelich.de/record/128166

http://www.fz-juelich.de/jsc/sionlib/
http://www.scalasca.org/
http://www.vampir.eu/
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://www.score-p.org/
http://www.nas.nasa.gov/Software/NPB/
http://juser.fz-juelich.de/record/128166

	Assessing Measurement and AnalysisPerformance and Scalability of Scalasca 2.0
	1 Introduction
	2 Scalasca and Score-P
	3 Experimental Setup
	3.1 Machines
	3.2 Applications

	4 Results
	4.1 Measurement Overhead
	4.2 Scalability

	5 Conclusion
	References

